7 Lack of fit

WORK IN PROGRESS

7.1 Trap dep

Multievent formulation à la Pradel and Sanz-Aguilar (2012). Also add example w/ individual time-varying covariate.

7.2 Transience

Multievent treatment à la Genovart and Pradel (2019). Remind of the two age-classes on survival technique.

7.3 Temporary emigration

Multistate treatment as in Schaub et al. (2004). See example in Bǎncilǎ et al. (2018).

Transition matrix:

\[\begin{matrix} & \\ \mathbf{\Gamma} = \left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right . \end{matrix} \hspace{-1.2em} \begin{matrix} z_t=\text{in} & z_t=\text{out} & z_t=\text{D} \\ \hdashline \phi (1-\psi^{\text{in} \rightarrow \text{out}}) & \phi \psi^{\text{in} \rightarrow \text{out}} & 1 - \phi\\ \phi \psi^{\text{out} \rightarrow \text{in}} & \phi (1-\psi^{\text{out} \rightarrow \text{in}}) & 1 - \phi\\ 0 & 0 & 1 \end{matrix} \hspace{-0.2em} \begin{matrix} & \\ \left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right ) \begin{matrix} z_{t-1}=\text{in} \\ z_{t-1}=\text{out} \\ z_{t-1}=\text{D} \end{matrix} \end{matrix}\]

Observation matrix:

\[\begin{matrix} & \\ \mathbf{\Omega} = \left ( \vphantom{ \begin{matrix} 12 \\ 12 \end{matrix} } \right . \end{matrix} \hspace{-1.2em} \begin{matrix} y_t=1 & y_t=2 \\ \hdashline 1 - p & p\\ 1 & 0\\ 1 & 0 \end{matrix} \hspace{-0.2em} \begin{matrix} & \\ \left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right ) \begin{matrix} z_{t}=\text{in} \\ z_{t}=\text{out} \\ z_{t}=\text{D} \end{matrix} \end{matrix}\]

7.4 Individual heterogeneity

On wolf, see Cubaynes et al. (2010), Gimenez and Choquet (2010), or go full non-parametric w/ Turek, Wehrhahn, and Gimenez (2021). See Pradel (2009) for black-headed gull example.

Our example is about individual heterogeneity and how to account for it with HMMs. Gray wolf is a social species with hierarchy in packs which may reflect in species demography. As an example, we’ll work with gray wolves.

Dominance in wolves.

Figure 7.1: Dominance in wolves.

Gray wolf is a social species with hierarchy in packs which may reflect in demography. Shirley Pledger in a series of papers developed heterogeneity models in which individuals are assigned in two or more classes with class-specific survival/detection probabilities. Cubaynes et al. (2010) used HMMs to account for heterogeneity in the detection process due to social status, see also Pradel (2009). Dominant individuals tend to use path more often than others, and these paths are where we look for scats.

Individual heterogeneity

  • 3 states

  • alive in class 1 (A1)

  • alive in class 2 (A2)

  • dead (D)

  • 2 observations

  • not captured (1)

  • captured (2)

Vector of initial state probabilities

\[\begin{matrix} & \\ \mathbf{\delta} = \left ( \vphantom{ \begin{matrix} 12 \end{matrix} } \right . \end{matrix} \hspace{-1.2em} \begin{matrix} z_t=A1 & z_t=A2 & z_t=D \\ \hdashline \pi & 1 - \pi & 0\\ \end{matrix} \hspace{-0.2em} \begin{matrix} & \\ \left . \vphantom{ \begin{matrix} 12 \end{matrix} } \right ) \begin{matrix} \end{matrix} \end{matrix}\]

\(\pi\) is the probability of being alive in class 1. \(1 - \pi\) is the probability of being in class 2.

Transition matrix

\[\begin{matrix} & \\ \mathbf{\Gamma} = \left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right . \end{matrix} \hspace{-1.2em} \begin{matrix} z_t=A1 & z_t=A2 & z_t=D \\ \hdashline \phi & 0 & 1 - \phi\\ 0 & \phi & 1 - \phi\\ 0 & 0 & 1 \end{matrix} \hspace{-0.2em} \begin{matrix} & \\ \left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right ) \begin{matrix} z_{t-1}=A1 \\ z_{t-1}=A2 \\ z_{t-1}=D \end{matrix} \end{matrix}\]

\(\phi\) is the survival probability, which could be made heterogeneous.

Transition matrix, with change in heterogeneity class

\[\begin{matrix} & \\ \mathbf{\Gamma} = \left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right . \end{matrix} \hspace{-1.2em} \begin{matrix} z_t=A1 & z_t=A2 & z_t=D \\ \hdashline \phi (1-\psi^{12}) & \phi \psi^{12} & 1 - \phi\\ \phi \psi^{21} & \phi (1-\psi^{21}) & 1 - \phi\\ 0 & 0 & 1 \end{matrix} \hspace{-0.2em} \begin{matrix} & \\ \left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right ) \begin{matrix} z_{t-1}=A1 \\ z_{t-1}=A2 \\ z_{t-1}=D \end{matrix} \end{matrix}\]

\(\psi^{12}\) is the probability for an individual to change class of heterogeneity, from 1 to 2. \(\psi^{21}\) is the probability for an individual to change class of heterogeneity, from 2 to 1.

Observation matrix

\[\begin{matrix} & \\ \mathbf{\Omega} = \left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12\end{matrix} } \right . \end{matrix} \hspace{-1.2em} \begin{matrix} y_t=1 & y_t=2\\ \hdashline 1 - p^1 & p^1\\ 1 - p^2 & p^2\\ 1 & 0 \end{matrix} \hspace{-0.2em} \begin{matrix} & \\ \left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12\end{matrix} } \right ) \begin{matrix} z_{t}=A1 \\ z_{t}=A2 \\ z_{t}=D \end{matrix} \end{matrix}\]

\(p^1\) is detection for individuals in class 1, and \(p^2\) that of individuals in class 2.

Results

##     mean   sd 2.5%  50% 97.5% Rhat n.eff
## p1  0.38 0.09 0.23 0.38  0.56 1.04   210
## p2  0.50 0.12 0.25 0.50  0.73 1.01   229
## phi 0.81 0.05 0.71 0.81  0.91 1.04   317
## pi  0.62 0.12 0.36 0.63  0.83 1.02   164

We have lowly detectable individuals (class A1 with \(p^1\)) in proportion 62%. And highly (or so) detectable individuals (class A2 with \(p^2\)) in proportion 38%. Note that interpretation of classes is made a posteriori. Survival is 81%.

From the simulations I run, seems like the categorical sampler on latent states gets stuck in places that depend on initial values. Changing for the slice sampler improves thing a bit, but not that much. Only option is to get rid of the states and use the marginalized likelihood. Nice illustration of the use of simulations (to check model is doing ok, estimated are valid, etc.), changing samplers, nimbleEcology, NIMBLE functions, etc.

You may consider more classes, and select among models, see Cubaynes et al. (2012). You may also go for a non-parametric approach and let the data tell you how many classes you need. This is relatively easy to do in NIMBLE, see Turek, Wehrhahn, and Gimenez (2021). More about individual heterogeneity in Gimenez, Cam, and Gaillard (2018).

7.5 Memory model

How to make your models remember?

So far, the dynamics of the states are first-order Makovian. The site where you will be depends only on the site where you are, and not on the sites you were previously. How to relax this assumption, and go second-order Markovian?

Memory models were initially proposed by Hestbeck, Nichols, and Malecki (1991) and Brownie et al. (1993), then formulated as HMMs in Rouan, Choquet, and Pradel (2009). See also D. J. Cole et al. (2014).

Remember HMM model for dispersal between 2 sites

Transition matrix

\[\begin{matrix} & \\ \mathbf{\Gamma} = \left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right . \end{matrix} \hspace{-1.2em} \begin{matrix} z_t=A & z_t=B & z_t=D \\ \hdashline \phi^A (1-\psi^{AB}) & \phi^A \psi^{AB} & 1 - \phi^A\\ \phi^B \psi^{BA} & \phi^B (1-\psi^{BA}) & 1 - \phi^B\\ 0 & 0 & 1 \end{matrix} \hspace{-0.2em} \begin{matrix} & \\ \left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right ) \begin{matrix} z_{t-1}=A \\ z_{t-1}=B \\ z_{t-1}=D \end{matrix} \end{matrix}\]

Observation matrix

\[\begin{matrix} & \\ \mathbf{\Omega} = \left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right . \end{matrix} \hspace{-1.2em} \begin{matrix} y_t=1 & y_t=2 & y_t=3 \\ \hdashline 1 - p^A & p^A & 0\\ 1 - p^B & 0 & p^B\\ 1 & 0 & 0 \end{matrix} \hspace{-0.2em} \begin{matrix} & \\ \left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \end{matrix} } \right ) \begin{matrix} z_{t}=A \\ z_{t}=B \\ z_{t}=D \end{matrix} \end{matrix}\]

HMM formulation of the memory model

To keep track of the sites previously visited, the trick is to consider states as being pairs of sites occupied

  • States

  • AA is for alive in site A at \(t\) and alive in site A at \(t-1\)

  • AB is for alive in site A at \(t\) and alive in site B at \(t-1\)

  • BA is for alive in site B at \(t\) and alive in site A at \(t-1\)

  • BB is for alive in site B at \(t\) and alive in site B at \(t-1\)

  • D is for dead

  • Observations

  • 1 not captured

  • 2 captured at site A

  • 3 captured at site B

Vector of initial state probabilities

\[\begin{matrix} & \\ \mathbf{\delta} = \left ( \vphantom{ \begin{matrix} 12 \end{matrix} } \right . \end{matrix} \hspace{-1.2em} \begin{matrix} z_t=AA & z_t=AB & z_t=BA & z_t=BB &z_t=D \\ \hdashline \pi^{AA} & \pi^{AB} & \pi^{BA} & \pi^{BB} & 0\\ \end{matrix} \hspace{-0.2em} \begin{matrix} & \\ \left . \vphantom{ \begin{matrix} 12 \end{matrix} } \right ) \begin{matrix} \end{matrix} \end{matrix}\]

where \(\pi^{BB} = 1 - (\pi^{AA} + \pi^{AB} + \pi^{BA})\), and \(\pi^{ij}\) at site \(j\) when first captured at \(t\) and site \(i\) at \(t - 1\).

Transition matrix

\[\begin{matrix} & \\ \mathbf{\Gamma} = \left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \\ 12 \\ 12\end{matrix} } \right . \end{matrix} \hspace{-1.2em} \begin{matrix} z_t=AA & z_t=AB & z_t=BA & z_t=BB & z_t=D \\ \hdashline \phi^{AAA} & \phi^{AAB} & 0 & 0 & 1 - \phi^{AAA} - \phi^{AAB}\\ 0 & 0 & \phi^{ABA} & \phi^{ABB} & 1 - \phi^{ABA} - \phi^{ABB}\\ \phi^{BAA} & \phi^{BAB} & 0 & 0 & 1 - \phi^{BAA} - \phi^{BAB}\\ 0 & 0 & \phi^{BBA} & \phi^{BBB} & 1 - \phi^{BBA} - \phi^{BBB}\\ 0 & 0 & 0 & 0 & 1 \end{matrix} \hspace{-0.2em} \begin{matrix} & \\ \left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \\ 12 \\ 12\end{matrix} } \right ) \begin{matrix} z_{t-1}=AA \\ z_{t-1}=AB \\ z_{t-1}=BA \\ z_{t-1}=BB \\ z_{t-1}=D \end{matrix} \end{matrix}\]

\(\phi^{ijk}\) is probability to be in site \(k\) at time \(t + 1\) for an individual present in site \(j\) at \(t\) and in site \(i\) at \(t - 1\)

Transition matrix, alternate parameterization

\[\begin{matrix} & \\ \mathbf{\Gamma} = \left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \\ 12 \\ 12\end{matrix} } \right . \end{matrix} \hspace{-1.2em} \begin{matrix} z_t=AA & z_t=AB & z_t=BA & z_t=BB & z_t=D \\ \hdashline \phi \psi^{AAA} & \phi (1 - \psi^{AAA}) & 0 & 0 & 1 - \phi\\ 0 & 0 & \phi (1 - \psi^{ABB}) & \phi \psi^{ABB} & 1 - \phi\\ \phi \psi^{BAA} & \phi (1 - \psi^{BAA}) & 0 & 0 & 1 - \phi\\ 0 & 0 & \phi (1-\psi^{BBB}) & \phi \psi^{BBB} & 1 - \phi\\ 0 & 0 & 0 & 0 & 1 \end{matrix} \hspace{-0.2em} \begin{matrix} & \\ \left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \\ 12 \\ 12\end{matrix} } \right ) \begin{matrix} z_{t-1}=AA \\ z_{t-1}=AB \\ z_{t-1}=BA \\ z_{t-1}=BB \\ z_{t-1}=D \end{matrix} \end{matrix}\]

\(\phi\) is the probability of surviving from one occasion to the next. \(\psi_{ijj}\) is the probability an animal stays at the same site \(j\) given that it was at site \(i\) on the previous occasion.

Observation matrix

\[\begin{matrix} & \\ \mathbf{\Omega} = \left ( \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \\ 12 \\ 12\end{matrix} } \right . \end{matrix} \hspace{-1.2em} \begin{matrix} y_t=1 & y_t=2 & y_t=3 \\ \hdashline 1 - p^A & p^A & 0\\ 1 - p^B & 0 & p^B\\ 1 - p^A & p^A & 0\\ 1 - p^B & 0 & p^B\\ 1 & 0 & 0 \end{matrix} \hspace{-0.2em} \begin{matrix} & \\ \left . \vphantom{ \begin{matrix} 12 \\ 12 \\ 12 \\ 12 \\ 12\end{matrix} } \right ) \begin{matrix} z_t=AA \\ z_t=AB \\ z_t=BA \\ z_t=BB \\ z_t=D \end{matrix} \end{matrix}\]

7.6 Posterior predictive check

Classical m-array (minimal sufficient statistics for CJS model) as in Paganin and de Valpine (2023). Individual performance in Chambert, Rotella, and Higgs (2014) and Nater et al. (2020). Sojourn time is geometric assumption in Conn et al. (2018).

For the CJS model, we would use the so-called m-array which gathers the elements \(m_{ij}\) for the number of marked individuals initially released at time \(i\) that were first detected again at time \(j\).

Refer to a case study. With m-array and Nimble functions. Refer to paper by Paganin & de Valpine and use code in https://github.com/salleuska/fastCPPP. Also papers by Chambert et al. (individual performance) and Conn et al. (geometric time, and hidden semi-Markov models).

Check out https://r-nimble.org/nimbleExamples/posterior_predictive.html.