
RESEARCH ARTICLE

A Robust Design Capture-Recapture Analysis

of Abundance, Survival and Temporary

Emigration of Three Odontocete Species in

the Gulf of Corinth, Greece

Nina Luisa Santostasi1,2,3,4*, Silvia Bonizzoni1,3, Giovanni Bearzi1,3, Lavinia Eddy1,3,

Olivier Gimenez2

1 Dolphin Biology and Conservation, Oria, Italy, 2 Centre d’Ecologie Fonctionnelle et Evolutive, Montpellier,
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Abstract

While the Mediterranean Sea has been designated as a Global Biodiversity Hotspot,

assessments of cetacean population abundance are lacking for large portions of the region,

particularly in the southern and eastern basins. The challenges and costs of obtaining the

necessary data often result in absent or poor abundance information. We applied capture-

recapture models to estimate abundance, survival and temporary emigration of odontocete

populations within a 2,400 km2 semi-enclosed Mediterranean bay, the Gulf of Corinth. Boat

surveys were conducted in 2011–2015 to collect photo-identification data on striped dol-

phins Stenella coeruleoalba, short-beaked common dolphins Delphinus delphis (always

found together with striped dolphins in mixed groups) and common bottlenose dolphins Tur-

siops truncatus, totaling 1,873 h of tracking. After grading images for quality and marking

distinctiveness, 23,995 high-quality photos were included in a striped and common dolphin

catalog, and 2,472 in a bottlenose dolphin catalog. The proportions of striped and common

dolphins were calculated from the photographic sample and used to scale capture-recapture

estimates. Best-fitting robust design capture-recapture models denoted no temporary emi-

gration between years for striped and common dolphins, and random temporary emigration

for bottlenose dolphins, suggesting different residency patterns in agreement with previous

studies. Average estimated abundance over the five years was 1,331 (95% CI 1,122–1,578)

striped dolphins, 22 (16–32) common dolphins, 55 (36–84) “intermediate” animals (potential

striped x common dolphin hybrids) and 38 (32–46) bottlenose dolphins. Apparent survival

was constant for striped, common and intermediate dolphins (0.94, 95% CI 0.92–0.96) and

year-dependent for bottlenose dolphins (an average of 0.85, 95% CI 0.76–0.95). Our work

underlines the importance of long-term monitoring to contribute reliable baseline information

that can help assess the conservation status of wildlife populations.
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Introduction

The need for preserving cetaceans in the Mediterranean Sea is recognized in several interna-

tional agreements (e.g. ACCOBAMS, the Agreement on the Conservation of Cetaceans of the

Black Sea, Mediterranean Sea and Contiguous Atlantic Area) and robust assessments of popu-

lation abundance, trends and distribution are necessary to inform conservation actions [1].

Obtaining such quantitative information about cetacean populations, however, is expensive

and logistically challenging [2]. The evaluation of the conservation status of Mediterranean

cetaceans has been hampered by poor information for all cetacean species, especially in the

southern and eastern portions of the region [3]. Here, we partially fill this gap by providing

detailed quantitative information on the abundance of three cetacean species inhabiting the

Gulf of Corinth in Greece: the striped dolphin (Stenella coeruleoalba), the short-beaked com-

mon dolphin (Delphinus delphis; hereafter “common dolphin”) and the common bottlenose

dolphin (Tursiops truncatus; hereafter “bottlenose dolphin”).

The Gulf of Corinth is a semi-enclosed basin located between continental Greece and the

Peloponnese. It contains a variety of pelagic and coastal habitats within a relatively restricted

area (2,400 km2) and hosts a unique mixture of sympatric pelagic and coastal odontocetes [4].

Because of its relevance for cetaceans, the Scientific Committee of ACCOBAMS listed the Gulf

of Corinth as an area of special conservation importance and called for the creation of a marine

protected area (Resolution 3.22; [5]). In this area, striped dolphins are the most abundant ceta-

cean species [4, 6]. Common dolphins are found only in mixed-species groups with striped

dolphins, and individuals showing an intermediate pigmentation suggest the occurrence of

hybridization [4, 6]. Bottlenose dolphins also occur in the Gulf in single-species groups.

This semi-enclosed area is vulnerable to a number of human impacts that affect coastal

areas throughout the Mediterranean [7]. The main known anthropogenic impact in the Gulf is

an industry for aluminum production that has been operating in the Bay of Antikyra since

1966 (Fig 1), dumping massive quantities of industrial discards in the Gulf’s waters [8, 9, 10].

The impact of overfishing remains scarcely documented, but likely to have caused significant

ecosystem change in the Gulf of Corinth, as reported from other parts of the Ionian Sea [11].

While global populations of striped, common and bottlenose dolphins are classified as

Least Concern in the IUCN Red List of Threatened Species [12, 13, 14], the Mediterranean

“subpopulation” (sensu IUCN) of common dolphins is classified as Endangered [15], whereas

striped and bottlenose dolphins are Vulnerable [16, 17]. Because of their restricted range and

their apparent geographic [4, 6, 18] and reproductive isolation [19, 20, 21, 22], striped and

common dolphins in the Gulf of Corinth are vulnerable to local anthropogenic pressures such

as habitat degradation, prey depletion and anthropogenic noise [23, 24, 25]. It is therefore

important to monitor their status and abundance. Even though bottlenose dolphins are known

to perform mid-distance movements to areas outside of the Gulf of Corinth [26], knowing

how many individuals use this area on a regular basis is important to evaluate their conserva-

tion status and propose management actions at the local scale.

In this context, the lack of robust abundance baselines may prevent the detection of decline

resulting from anthropogenic impacts [27, 28, 29]. Here, we contribute robust estimates of

abundance and survival that can be used to inform conservation action in the Gulf of Corinth.

To do so, we apply capture-recapture (CR) methods [30, 31, 32] that have been used extensively

on several taxa (reviewed by [33]) including marine mammals [34, 35, 36, 37, 38, 39, 40, 41].

Several cetacean species can be individually photo-identified based on long-term natural mark-

ings, allowing for the application of non-invasive CR methods [42]. Two families of CR models

can be used to estimate abundance, depending on the duration of the sampling period and the

movement patterns of the studied population. Closed population models rely on the assumption
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of population closure to additions (births or immigration) and losses (death or emigration) for

the duration of the study [31]. This assumption can be relaxed using open population models

that allow for entries and losses [43, 44]. However, these models do not fully accommodate for

multiple movements in or out of the study area (so-called temporary emigration; e.g. [45]).

Pollock’s robust design (RD) [46, 47, 48] offers an alternative approach. It has been applied

on terrestrial animals e.g. [49, 50] and on a number of cetaceans species including common

bottlenose dolphins e.g. [38], Indo-pacific bottlenose dolphins Tursiops aduncus [51, 52] and

Guiana dolphins Sotalia guianensis e.g. [53]. It relies on a number of primary sampling occa-

sions, each being composed of secondary occasions [46]. The time interval between secondary

sampling occasions must be short enough to meet the population closure assumption, while

consecutive primary occasions should be sufficiently separated in time to allow the population

to change. Data from secondary samples within each primary period are analyzed using closed

models to derive estimates of capture probability and population size. Apparent survival and

temporary emigration are estimated using open models by collapsing data from the secondary

periods. In general, RD estimates are more accurate and precise than those obtained through

the application in sequence of closed and open models because they allow estimation of sur-

vival and abundance while accounting for temporary emigration [45, 48, 54].

In this study, our objectives were threefold. First, we addressed different degrees of site

fidelity by carefully designing the sampling periods to meet RD model assumptions. Second,

we applied a RD approach to striped, common and bottlenose dolphins in the Gulf of Corinth

and estimated their abundance and survival in years 2011–2015. Third, we evaluated the statis-

tical power of our monitoring program in detecting a potential temporal trend in abundance

given the achieved level of survey effort, and provided suggestions for future monitoring and

management [2, 55, 56]. Overall, our study contributes important baselines to assess dolphin

Fig 1. The Gulf of Corinth study area in Greece, with survey tracks in 2011–2015. The locations shown in the map include: Galaxidi (our base port), the

aluminum factory (indicated by an icon) near Antykira, the artificial Corinth Canal that connects the Gulf to the Aegean Sea and the Strait of Rion (crossed by

the Rion-Antirion bridge) that connects the Gulf with the Ionian Sea.

doi:10.1371/journal.pone.0166650.g001
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conservation status and provides a methodological framework to investigate abundance under

a challenging scenario including the occurrence of mixed-species groups, highly diverse popu-

lation numbers, and contrasting site fidelity patterns.

Materials and Methods

Ethic statement

Data collection (individual photo-identification of free-ranging animals from boats) was done

based on research permits issued by the Hellenic Ministry of Environment, Energy and Cli-

mate Change, in compliance with legal and ethical principles of animal welfare. Data collection

entailed no handling of animals, no harm caused to animals, and no harassment of animals.

Research permits issued by the Hellenic Ministry of Environment, Energy and Climate Change

do not require further assessment by an animal ethics committee, and the benign research

conducted for in the context of this study does not raise ethical issues.

Study area

The Gulf of Corinth is a semi-enclosed basin located in the eastern Mediterranean Sea, between

the Peloponnese and mainland Greece. It has a surface area of 2,400 km2, a length of about 130

km and a maximum width of about 32 km. It is connected to the Ionian Sea through the Strait

of Rion (maximum width 2 km, maximum depth 65 m) and to the Aegean Sea through the arti-

ficial Corinth Canal (width 21 m, length 6.4 km, maximum depth 8 m) that crosses the Isthmus

of Corinth. The edge of the northern continental shelf is characterized by gentle slopes, while

the southern continental slope is steeper. The Gulf reaches a maximum depth of 935 m.

Sampling methods

Navigation was conducted from a 5.8 m boat with a 100 HP four-stroke outboard engine, from

May to October, between 2011 and 2015. The duration of the sampling season was determined

largely by weather constraints and funding availability. One day of sampling was defined as a

“survey” and each encounter with a dolphin group as a “sighting”. All surveys started and

ended at the port of Galaxidi (Fig 1). Apart from this constraint, survey routes were intended

to attain an extensive coverage of the study area during each month of sampling, with different

area coverage in different days (also depending on sea state and weather conditions). Naviga-

tion in search for dolphins was carried out under the following conditions [6]: (1) daylight and

long-distance visibility, (2) sea state� 2 Douglas, (3) at least two experienced observers scan-

ning the sea surface, (4) eye elevation of approximately 1.6–1.8 m for both observers, and (5)

survey speed between 26 and 30 km/h. Binoculars were not used during navigation.

Photo-identification

When a dolphin group was sighted we approached the group slowly to minimize disturbance.

Individual photo-identification was conducted following [57]. We took photos from a maxi-

mum distance of about 20 m to a minimum distance of about 1 m when the animals voluntar-

ily approached the boat. Photographs were taken using 18 megapixel SLR cameras equipped

with 70–200 mm f2.8 zoom lenses. Photographic identification was used as a “capture” method

[57]. Individual identification of dolphins relied on nicks and notches visible from both sides

of the dorsal fin [58]. We attempted to photograph the dorsal fin of all dolphins in each

encountered group, taking as many photos as possible of both dorsal fin sides. Photos were

taken randomly, regardless of dorsal fin markings. Once a group was left, we either returned

to the port or continued navigation in search for dolphins.

Dolphin Abundance and Survival in the Gulf of Corinth, Greece
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All photos taken in the field went through a first selection to exclude those without dol-

phins, those out of focus and those in which the dorsal fin was not completely visible. The

remaining photos were imported in Adobe Lightroom and cropped around the dorsal fin and

the visible part of the body. The correct identification of individuals is a fundamental assump-

tion of CR methods [31]. To meet this assumption, we stratified our sample based on 1) photo

quality categories (adapted from [34]), and 2) dorsal fin distinctiveness [35, 59]. All images

were scored after being cropped around the dorsal fin. We assigned a quality score of 1 to 3 to

each photo based on sharpness, exposure and angle of the dorsal fin. Partially obscured fins

(e.g. by water spry or other dolphins) were discarded. Grade 3 and 2 photos were judged suit-

able for the recognition of marked fins and they also ensured recognition of small markings.

Grade 1 photos were dropped because they were considered suitable only for the recognition

of the most marked individuals. Additionally, we stratified the individuals into different dis-

tinctiveness categories corresponding to the degree of natural markings on the leading and

trailing edges of the dorsal fin [60]. Three categories were used: D1 (multiple big or medium

notches; distinctive features, which would be recognizable in distant or poor-quality photos);

D2 (smaller nicks, which would not be recognizable in distant or poor-quality photos); and D3

(subtly marked or unmarked fins). Only individuals classified as D1 were included in the anal-

yses. During matching, each distinctive dorsal fin photo was compared with all others and an

identity code was assigned to photos of the same individual. Once the matching process was

completed, three experienced operators re-checked the whole catalogue to look for false posi-

tive and false negative errors [59].

Mixed-species groups

Because it was impossible to discriminate between striped, common and intermediate individ-

uals based on dorsal fin photographs alone, striped and common dolphins as well as individu-

als with intermediate pigmentation were considered together in CR analyses [6]. The

proportion of striped and common dolphins in the population was estimated based on a subset

of photographs of animals showing relevant portions of their body during aerial behavior, or

performing other conspicuous surfacings [6]. We included in the analyses exclusively well-lit

photos cropped around visible portion of the body, portraying one side of the animal (ventral,

dorsal, front and rear views excluded), including: 1) jumps, leaps or energetic surfacings expos-

ing the whole body or at least three-fourths of it, including dorsal fin and whole lateral portion

of the body; and 2) surfacings showing upper lateral portion of the body including whole dor-

sal fin, eye and upper flank. Retained images had 100% agreement between two independent

assessors with 15+ years of experience. If either assessor was unable to attribute a species cate-

gory the image was discarded. Following this filtering step, the final abundance estimate was

corrected using the proportion of photographs of each species, and a coefficient of variation

calculated for the abundance estimate of each species [6] as:

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCVspeciesÞ2 þ ðCVdistinctivenessÞ2 þ ðCVNÞ2
q

where CVspecies is the coefficient of variation of the proportion of the different species, CVdis-
tinctiveness is the coefficient of variation of the proportion of marked individuals, and CVN is

the coefficient of variation of the total population estimate.

Capture-recapture matrices

We considered two separate datasets: one for bottlenose dolphins and one for striped, com-

mon and intermediate individuals. For each dataset, we built a capture matrix (i.e. a binary
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table with individuals in rows and sampling occasions in columns). The entries of the matrix

are 1s if an individual is detected in a sampling occasion and 0s if the individual is not detected.

A “capture” was defined as a photograph of sufficient quality of an individual dolphin’s dis-

tinctively marked dorsal fin, obtained during a sampling occasion. These matrices were used

to estimate abundance with RD models [46, 47]. These models are based on primary and sec-

ondary sampling occasions: the population is assumed closed between secondary occasions

and open between primary occasions. Schematically, data from primary occasions are used to

estimate apparent survival and temporary emigration rates using open population models

[43], whereas data from the secondary occasions are used to estimate population abundance

using closed population models [31].

To meet the closed population assumption, we set primary and secondary occasions of dif-

ferent durations for the two species to account for their different movement patterns in and

out of the study area (Table 1). Striped and common dolphins in the Gulf of Corinth are con-

sidered geographically isolated subpopulations [4, 6]. In this case, we considered annual sam-

pling seasons (i.e. between May and October) as primary sampling occasions. We collapsed

the sighting histories on a monthly basis using months as secondary sampling occasions, as

they correspond to one monthly coverage of the entire study area.

Because bottlenose dolphins in the Gulf of Corinth are known to perform mid-distance

movements to areas outside of the Gulf [26], we considered a short time frame for secondary

occasions, consistent with the assumption that emigration did not occur within those periods.

We selected primary occasions with the aim of maximizing sample size while minimizing the

duration to reduce the risks of violating the closure assumption. Primary occasions for bottle-

nose dolphins were intervals between 4 and 9 days long in June and/or July of each year of the

study, with the exception of year 2011 due to reduced sample size. Secondary occasions were

single days (Table 1).

Estimating population parameters of distinctly marked individuals

RD models allow estimating population abundance, capture probability and apparent survival

while accounting for temporary emigration [46, 47]. We define the temporary emigration

parameter (U”) as the probability of an individual being a temporary emigrant, given it was

alive and present in the study area in the previous primary sampling occasion [47]. The other

temporary emigration parameter (U’) is the probability of an individual being a temporary

emigrant given it was a temporary emigrant in the previous sampling occasion [47]. Apparent

Table 1. Primary and secondary capture occasions for the two capture matrices (striped and common dolphins, and bottlenose dolphins). All

sampling days with encounters of the three species are listed in S1 and S2 Tables.

Striped and common dolphins

Primary occasions Summer 2011 Summer 2012 Summer 2013 Summer 2014 Summer 2015

Secondary occasions 12–30 May 7–10 June 6–23 June 7–30 June 4–30 June

14–24 June 8–15 July 2–30 July 7–26 July 7–24 July

2–16 July 5–25 August 10–24 August 5–31 August 1–29 August

12–28 September 2–9 September 8–20 September 11–26 September

Bottlenose dolphins

Primary occasions 15 June—8 July 2011 8–11 July 2012 8–11 July 2012 11–17 June 2014 6–14 July 2015

Secondary occasions 15 June 8 July 8 July 11 June 6 July

20 June 10 July 9 July 13 June 13 July

8 July 11 July 10 July 16 June 14 July

11 July 17 June

doi:10.1371/journal.pone.0166650.t001
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survival rate (S) is the probability of surviving and staying in the study area, and is the product

of true survival and fidelity to the study area, while p is the capture probability [43, 46, 47, 48].

A set of 30 models composed of parameters for population size (N), apparent survival rate

(S), temporary migration rates (U”, U’) and capture probability (p) were fitted to the data with

program R [61], package RMark [62], to construct models from program MARK [63]. The fol-

lowing three temporary emigration patterns were considered: 1) no temporary emigration

(U” = U’ = 0); 2) random temporary emigration, (U” = U’) where the probability of an individ-

ual being present in the study area is not dependent on whether or not it was present in the

study area in the previous sampling period; and 3) Markovian temporary emigration (U”,U’)

where the probability of an individual being present in the study area is conditional on

whether it was present in the study area before. For all three patterns of temporary emigration,

we considered models where apparent survival was either constant or varying between pri-

mary occasions and capture probability was either constant, or varying with time (between

secondary occasions, between primary occasions, or both). The Akaike’s Information Crite-

rion with a correction for small sample sizes (AICc) was used as a measure of relative model

fit. The model with the lowest AICc was selected as the most parsimonious and parameter esti-

mates were averaged when there were models within 2ΔAICc from the best model [64]. To

explore the effect of heterogeneity in capture probabilities, we fitted our models with two-class

finite mixtures [65] allowing for detection probabilities to vary among individuals (Mh) and

among individual and secondary capture occasions (Mth). Under the two-class finite mixtures,

individuals may belong to one class of animals with a capture probability p1 in some propor-

tion π or to another class of animals with a capture probability p2 in proportion 1 –π.

Validation of model assumptions

An important step when fitting CR models is to evaluate the validity of the assumptions under-

lying their construction [43]. Here we describe how we designed our study to meet each of the

RD protocol assumptions. 1) Individual marks are correctly recognized: only high-quality pho-

tographs (Q3 and Q2) and highly marked (D1) dorsal fin markings were used to identify indi-

viduals and investigators with extensive experience double-checked all matches. 2) The
sampling interval for a particular secondary sample is instantaneous: the sampling occasions

selected for our analyses were relatively short in duration (1 week or 1 month) compared with

the study period [36, 66]. 3) The population is closed within primary periods: genetic [19, 20, 21,

22] and distribution data [4, 6, 18] indicate that striped and common dolphin populations in

the Gulf of Corinth are geographically isolated. For bottlenose dolphins we restricted the

length of primary sampling occasions to 4–9 days so that movements could be negligible. A

limited number of deaths might have occurred within each primary period. Because striped

common and bottlenose dolphins are long-lived mammals with high survival rates [67], we

considered as negligible the number of deaths that may have occurred within the duration of

primary occasions (up to four months). Calves were all unmarked (distinctiveness category

D3) and therefore they were not included in the estimation of D1 individuals. 4) Capture and
survival probability do not vary among individuals. We tested these assumptions by i) fitting

models incorporating heterogeneity in capture probability and ii) by running specific tests

using program U-CARE [68] on the data pooled by primary occasions. TEST 2 evaluates the

assumption of homogeneous detection probabilities and has two components. TEST 2.CT is

interpreted as a test for trap dependence and tests the null hypothesis that individuals encoun-

tered and not encountered at occasion t have the same probability of being re-encountered at

time t+1, conditional on their presence on both occasions. TEST 2.CL tests the null hypothesis

that there is no difference in the expected time of next re-encounter between individuals

Dolphin Abundance and Survival in the Gulf of Corinth, Greece
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encountered and not encountered at occasion t, conditional on their presence on occasion t

and t+2, [43]. TEST 3 evaluates the assumption of homogeneous survival probabilities and has

also two components. TEST 3.SR is interpreted as a test for transience and tests the null

hypothesis that there is no difference in the probability of being re-encountered between

“new” (never encountered before) and “old” (already encountered) individuals. TEST 3.Sm

tests the null hypothesis that there is no difference in the expected time of first re-encounter

between the “new” and “old” individuals encountered at occasion t and later re-encountered

[43]. To date both TEST 2.CL and TEST 3.Sm have received no simple biological interpreta-

tion [69]. The global test (TEST 2 + TEST 3) is used as a goodness of fit test for the Cormack-

Jolly-Seber model [43]. Whenever these tests were found significant, we calculated the variance

inflation factor (ĉ; χ2 of the GOF test divided by the degrees of freedom) to account for the

lack of fit [43].

Population abundance

To estimate total population size, abundance of the marked population has to be corrected for

the proportion of identifiable individuals. This proportion (θ) was calculated on an annual

basis from the photographic sample as the ratio of high quality photographs (Q2 and Q3) with

distinctive dorsal fins (D1) to the total number of Q2 and Q3 photos with distinctive and non-

distinctive dorsal fins [70]. The total population abundance was then estimated as:

Ntot ¼ Nm=y

where Ntot is the estimated population size, Nm the estimated marked population size and θ
the estimated mark ratio in the population. The variance of the total population estimate was

calculated as:

Var ðNtotÞ ¼ ðNtotÞ2
varðNmÞ
ðNmÞ2

þ
1 � y

ny

 !

where n is the number of identified animals from which θ was estimated, Nm the estimated

number of marked animals, θ the mark ratio and Var(Nm) the variance of Nm [34]. Log-nor-

mal 95% confidence intervals were calculated with a lower limit of Ntotal/C and an upper limit

of Ntotal x C [34, 71], where C was calculated as:

C ¼ exp 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Trends in abundance

To determine the ability of our monitoring to detect a population trend in abundance using

linear regression, we performed a statistical power analysis [55]. A trend was detected when

the regression of population abundance estimates over time had a slope significantly different

from zero [55]. The conclusion that a trend in abundance is occurring when it is not, is called

a Type 1 error (α). The conclusion that no trend in abundance is occurring when in fact it is, is

a Type 2 error (β). The statistical power is expressed as 1 –β and is the probability of correctly

detecting a trend using linear regression when it actually occurs. The power is related to the

number of samples (n), the precision of the estimates (CV), the rate of change in the popula-

tion (R) and the probability of Type 1 and Type 2 errors (α and β). We used a power analysis
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to calculate the minimum rate of change (R) that we were able to detect with an acceptable sta-

tistical power of 0.8 [56] given the duration of our monitoring plan (5 yearly samples) and the

precision of our estimates. Analyses were conducted using the package “fishmethods” [72], set-

ting the parameters as follows: the probability of Type 1 error α = 0.05, a linear type of change

in abundance and a one-tailed test. For CR estimates the CV is expected to be proportional to

the square root of abundance [56]. We calculated the overall CV of the monitoring period by

averaging the annual CVs of estimates [53, 73].

Results

Sampling results

From 2011 to 2015 navigation was performed on 211 days and covered 21,435 km, yielding a

total of 468 sightings of striped dolphins or mixed-species groups including striped dolphins,

common dolphins, or animals of intermediate pigmentation, and 53 sightings of bottlenose

dolphins. A summary of the sampling effort and photo-identification results by year is pre-

sented in Table 2.

For striped and common dolphins, a total of 23,995 high quality (Q2 and Q3) photographs

were analyzed, leading to the identification of 393 D1 individuals. Of those, 72 individuals

(18%) were photographed in only one year, 72 (18%) in two years, 90 (23%) in three years, 96

(24%) in four years and 63 (16%) in each of the five years. The number of newly identified

individuals (“rate of discovery”) decreased over time (Fig 2). At the end of the fifth year of

photo-identification, more than 90% of the individuals (either striped or common dolphins)

had already been photographically captured in previous years (Table 2).

For bottlenose dolphins, a total of 2,472 high quality photographs were analyzed, resulting

in 41 D1 individuals identified. Of these, 13 (32%) were sighted in only one year, 10 (24%) in

two years, 11 (27%) in three years, 7 (17%) in four years, and no individuals in all the five

years.

Model selection and abundance of marked individuals

For the striped and common dolphin dataset the overall goodness of fit test was significant

(χ 2 = 18.03; p< 0.05, df = 8). The lack of fit was mainly due to the significance of TEST 3.Sm

that has no clear biological interpretation [69]. We therefore corrected our estimates for a vari-

ance inflation factor ĉ = 18.03/8 = 2.25 to accommodate for the lack of fit. The best-fitting

model included a constant apparent survival rate, monthly and yearly variation in capture

probability, and no temporary emigration between years. No model was within 2ΔQAICc

Table 2. Main characteristics of the dataset. Survey effort, hours of dolphin tracking, number (#) of sam-

pled groups, number (#) of high quality photos (Q2 and Q3) and percentage (%) of new identified individuals

by year and by species (Sc+Dd = striped and common dolphins; Tt = bottlenose dolphins) are reported.

Year survey effort(km) hours of

dolphin tracking

# of groups # of Q2 and Q3

photos

% of new D1

individuals

Sc+Dd Tt Sc+Dd Tt Sc+Dd Tt Sc+Dd Tt

2011 4,171 316 17 96 7 3,527 83 100 100

2012 3,362 342 53 77 10 4,570 462 39 83

2013 4,243 450 84 78 9 6,000 441 13 10

2014 4,514 382 104 100 15 4,817 1,038 12 12

2015 5,145 383 77 75 10 5,081 448 9 31

TOT 21,435 1,873 335 426 51 23,995 2,472

doi:10.1371/journal.pone.0166650.t002
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from the best-fitting model (Table 3). Models including individual heterogeneity of capture

probability were not supported (data for ΔQAICc> 47 are in S3 Table). Model parameter esti-

mates are shown in Table 4.

For the bottlenose dolphin dataset, there was no sign of lack of fit (χ2 = 1.62, p> 0.5,

df = 7). The best-fitting model had daily variation in capture probability, constant survival,

and random temporary emigration between years (Table 5). Six more models were within

2ΔAICc from the best-fitting model (Table 5), and therefore we resorted to model averaging

considering the first six models in Table 6 and obtained the model-averaged estimates listed in

Table 6. The model-averaged temporary emigration probability (Ƴ’) was estimated to be 0.16

(SE = 0.13). Models with ΔAICc> 4.99 are shown in S4 Table.

Mark ratio, total abundance and species proportions

All estimates are reported with their 95% confidence interval between parentheses. For striped,

common and intermediate dolphins the mark ratios are reported in Table 4. Using these pro-

portions, the cumulative total population abundance was 1,593 (1,257–2,018) in 2011, 1,272

Fig 2. Rate of discovery of new D1 individuals over time for the two photo-identification datasets.

doi:10.1371/journal.pone.0166650.g002

Table 3. First ten models applied to the striped and common dolphin dataset, ranked by lowest QAICc, number of parameters (n par) and differ-

ence in QAICc scores (ΔAICc). QAICc weights indicate strength of evidence for a given model. S(year) = yearly variation in apparent survival; S(.) = no vari-

ation in apparent survival; p(year.month) = yearly and monthly variation in capture probability; p(month) = monthly variation in capture probability.

Model n par QAICc ΔQAICc QAICc weight

S(.)p(year.month) no emigration 25 -1,737.89 0.00 0.57

S(.)p(year.month) random emigration 26 -1,735.82 2.06 0.20

S(year)p(year.month) no emigration 28 -1,734.57 3.32 0.11

S(.)p(year.month) Markovian emigration 27 -1,733.76 4.13 0.07

S(year)p(year.month) random emigration 29 -1,732.49 5.39 0.04

S(year)p(year.month) Markovian emigration 30 -1,730.42 7.46 0.01

S(.)p(month) no emigration 10 -1,695.78 42.11 0.00

S(.)p(month) random emigration 11 -1,693.75 44.14 0.00

S(year)P(month) random emigration 14 -1,692.94 44.94 0.00

S(.)p(month) Markovian emigration 12 -1,691.72 46.16 0.00

doi:10.1371/journal.pone.0166650.t003
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(1,022–1,583) in 2012, 1,199 (958–1,500) in 2013, 1,439 (1,168–1,774) in 2014 and 1,535

(1,218–1,933) in 2015. We applied to these cumulative estimates the estimated species propor-

tions of the population: 0.944 (0.910–0.981) for striped dolphins, 0.017 (0.007–0.025) for com-

mon dolphins and 0.039 (0.010–0.066) for intermediate animals. Taking these proportions

into account, we obtained separate abundance estimates for striped, common and intermedi-

ate dolphins (Table 7).

For bottlenose dolphins, the mark ratios are reported in Table 6. After applying these

corrections, we obtained total population abundances shown in Table 7. The estimate

obtained for 2011 was considered unreliable due to small sample size (only 5 individuals and

1 recapture).

Table 4. Parameter estimates (with 95% confidence interval) for best model for the striped and common dolphin dataset; n = number of photo-

identified individuals (D1), θ = mark ratio, N marked = estimated abundance of D1 individuals; CV = coefficient of variation, S = apparent survival

probability; p = capture probability.

Primary occasion n θ N marked CV S Secondaryoccasion P

Summer 2011 215 0.24 379 (315–455) 0.09 0.94 (0.92–0.96) May 0.22 (0.16–0.28)

June 0.11 (0.08–0.15)

July 0.38 (0.30–0.47)

Summer 2012 246 0.26 327 (301–354) 0.04 0.94 (0.92–0.96) June 0.21 (0.17–0.26)

July 0.25 (0.21–0.30)

August 0.34 (0.28–0.39)

September 0.37 (0.32–0.43)

Summer 2013 234 0.27 318 (292–346) 0.04 0.94 (0.92–0.96) June 0.32 (0.27–0.37)

July 0.32 (0.27–0.37)

August 0.35 (0.29–0.40)

September 0.12 (0.09–0.16)

Summer 2014 269 0.25 356 (330–385) 0.04 0.94 (0.92–0.96) June 0.18 (0.14–0.23)

July 0.20 (0.16–0.24)

August 0.42 (0.36–0.47)

September 0.36 (0.31–0.42)

Summer 2015 221 0.23 350 (315–389) 0.05 June 0.16 (0.13–0.21)

July 0.13 (0.10–0.17)

August 0.32 (0.27–0.37)

September 0.28 (0.23–0.33)

doi:10.1371/journal.pone.0166650.t004

Table 5. First ten models applied to the bottlenose dolphin dataset ranked by lowest AICc, number of parameters (n par) and difference in AICc

scores (ΔAICc). AICc weights indicate strength of evidence for a given model. S(.) = no variation in apparent survival; p(day) = daily variation in capture prob-

ability; p(year) = yearly variation in capture probability; p(day.year) = daily and yearly variation in capture probability.

Model n par AICc ΔAICc AICc weight

S(.)p(day) random emigration 11 170.14 0.00 0.24

S(.)p(day.year) random emigration 24 171.05 0.91 0.15

S(.)p(day.year) no emigration 23 171.26 1.12 0.14

S(.)p(day) Markovian emigration 12 171.98 1.83 0.10

S(year)p(year) random emigration 14 172.03 1.89 0.09

S(.)p(year) no emigration 11 172.12 1.98 0.09

S(.)p(year) random emigration 12 172.78 2.64 0.07

S(.)p(day.year) Markovian emigration 25 173.85 3.71 0.04

S(.)p(year) Markovian emigration 15 174.34 4.20 0.03

S(.)p(year) Markovian emigration 13 175.13 4.99 0.02

doi:10.1371/journal.pone.0166650.t005
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Trends in abundance

For striped dolphins the average CV of the estimates was 0.155. The minimum rate of popula-

tion decline detectable with a statistical power of 0.8 was an overall decrease of 47% (Fig 3).

Such decrease was not detected in a linear regression (see S1 Fig). Detecting a slighter decrease

in abundance (i.e. 30%) with a power of 0.8 would require an additional 8 years of monitoring

(i.e. a total of 13 years of monitoring; Fig 3).

For common dolphins the average CV of the estimates was 0.320. The minimum rate of pop-

ulation decline detectable in 5 years with a 0.8 statistical power was an overall decrease of 80%.

For bottlenose dolphins the average CV of the estimates was 0.192. The minimum rate of

population decline detectable with 0.8 statistical power (based on 4 yearly samples, because

2011 estimate was discarded) was an overall decrease of 67%. Such decrease was not detected

in a linear regression (see S2 Fig).

Discussion

Temporary emigration patterns

We tested a range of models on different dolphin datasets, to account for presence and absence

of temporary emigration. The best models supported previous knowledge about movement

Table 6. Parameter estimates (with 95% confidence interval) for best model for the bottlenose dolphin dataset; n = number of photo-identified indi-

viduals (D1), θ = mark ratio, N marked = estimated abundance of D1 individuals; CV = coefficient of variation, S = apparent survival probability;

p = capture probability.

Primary occasion n θ N marked CV S Secondary occasion p

June/July 2011 5 0.65 10 (3–33) 0.69 0.86 (0.63–0.96) 15 June 0.27 (0.08–0.63)

20 June 0.26 (0.07–0.60)

08 July 0.30 (0.08–0.68)

July 2012 30 0.78 39 (31–50) 0.13 0.86 (0.70–0.94) 08 July 0.29 (0.17–0.45)

10 July 0.36 (0.23–0.52)

11 July 0.45 (0.28–0.64)

July 2013 20 0.77 24 (17–34) 0.18 0.87 (0.64–0.96) 08 July 0.26 (0.13–0.44)

09 July 0.27 (0.13–0.48)

10 July 0.29 (0.09–0.64)

11 July 0.62 (0.28–0.87)

June 2014 25 0.69 26 (23–29) 0.06 0.82 (0.42–0.96) 11 June 0.42 (0.19–0.69)

13 June 0.40 (0.22–0.62)

16 June 0.48 (0.30–0.67)

17 June 0.70 (0.49–0.85)

July 2015 13 0.62 22 (11–42) 0.35 06 July 0.23 (0.09–0.47)

13 July 0.25 (0.09–0.50)

14 July 0.35 (0.18–0.58)

doi:10.1371/journal.pone.0166650.t006

Table 7. Total abundance estimate (N tot) and 95% CI for the three species and intermediate animals.

Striped dolphins Common dolphins Intermediate dolphins Bottlenose dolphins

Year N tot 95% CI CV N tot 95% CI CV N tot 95% CI CV N tot 95% CI CV

2011 1,506 (1,108–2,045) 0.16 25 (14–47) 0.32 62 (29–132) 0.40 15 (5–42) 0.56

2012 1,202 (884–1,635) 0.16 20 (11–37) 0.32 49 (23–105) 0.40 50 (38–66) 0.14

2013 1,133 (836–1,537) 0.16 19 (10–35) 0.32 47 (22–99) 0.40 31 (21–44) 0.19

2014 1,361 (1,028–1,800) 0.14 23 (12–42) 0.32 56 (27–118) 0.39 38 (29–49) 0.14

2015 1,451 (1,060–1,985) 0.16 24 (13–45) 0.32 60 (28–127) 0.39 35 (19–63) 0.31

doi:10.1371/journal.pone.0166650.t007
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patterns of the three species in the Gulf of Corinth. For striped and common dolphins, absence

of temporary emigration was the most likely scenario indicating that no movements occurred

outside of the study area between primary sampling occasions. However, this result refers only

to the intervals between primary sampling occasions and cannot be extended to other time

frames.

Random temporary emigration was instead detected for bottlenose dolphins and each indi-

vidual had about a 16% probability of being outside the study area during a primary occasion.

Such result is in agreement with information reported by [26]. The authors compared photo-

identification catalogs from the Gulf of Corinth and other areas in the Ionian Sea, and found that

9 of 31 individuals identified in the Gulf were also photographed in areas up to 265 km apart.

Differences in ranging patterns between odontocete populations have been related to avail-

ability of food resources [74, 75, 76]. In the Gulf of Corinth, [4] inferred a relatively high abun-

dance of pelagic prey resources based on the abundance of pelagic predators, and suggested

that availability of such prey may sustain a year-round resident population of striped and com-

mon dolphins. Conversely, scarce and patchily-distributed demersal prey may prompt move-

ments of bottlenose dolphins to distant areas [26, 74, 75, 76]. An assessment of the status of

fish and cephalopod stocks in the area, lacking at the moment, would help clarify this point.

Mark rate

For striped and common dolphins the mark rate could be considered low (an average of 0.25

over the 5 years) if compared to other photo-identification studies on dolphin species (mostly

Tursiops sp) in which the mark rate is often> 0.5 e.g. [38, 40, 77, 78]. However, the uncertainty

associated to the proportion of unmarked animals is taken into account in the total population

Fig 3. Power analysis for striped dolphins. Percent population changes that we were able to detect for striped

dolphins, with a power of 0.8 (squares) and 0.9 (triangles), as a function of the duration of the study (yearly

samples). The dashed lines indicate a percent population change of respectively -50 and -30.

doi:10.1371/journal.pone.0166650.g003
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estimate because the lower is the mark rate, the higher is the variance [34]. [79] estimated the

abundance of a population of Hector’s dolphins (Cephalorhynchus hectori) in New Zealand,

based on a mark rate of 0.104, and obtained an estimate which was consistent with a parallel

and independent one obtained through distance sampling by the same authors, indicating that

capture-recapture methods can produce accurate estimates even with a low percentage of

marked animals. Furthermore, increasing the mark ratio by including less distinctive animals

(D2) is risky because it could bias the abundance estimate upwards as recapture probabilities

would be lowered [35]. We therefore consider the estimates obtained with only highly distinc-

tive individuals (D1) as more reliable and conservative, and less likely to invalidate CR

assumptions of correct mark recognition and homogeneous capture probability.

Abundance estimates

Our point estimates of striped dolphins are higher than the one obtained by [6] using CR

methods. We urge caution in comparing the results of the two studies because the sampling

and analytical strategies implemented simply cannot be compared. [6] covered only the central

part of the Gulf and sampled considerably fewer groups of dolphins (23 in a single year of sam-

pling, versus our average of 85 groups per year across five years of sampling). The differences

in the estimates likely reflect the different coverage and sample sizes [34, 80, 81, 82] and imply

that sampling by [6] was insufficient as suggested by [83].

Common dolphins occur in critically low numbers (see Table 7). While historical informa-

tion is lacking for this area, a steep decline of this species has been documented for the larger

Mediterranean region, including in portions of the Ionian Sea, due to prey depletion by fisher-

ies and incidental mortality in fishing gear [11, 84]. An additional threat in the Gulf of Corinth

may be hybridization with striped dolphins. Hybridization among Delphininae is not rare,

with many intergeneric and intrageneric pairs of species able to produce viable hybrid off-

springs, and in at least some cases viable backcrosses [85]. Hybridization is a relatively unex-

plored cause of extinction, especially for small populations that mix with more abundant ones

[86, 87]. In this context, our estimate of intermediate dolphins (most likely hybrids) is an

important baseline to monitor hybridization dynamics over time and its impact on the viabil-

ity of the two species.

An average of 38 (32–46) bottlenose dolphins were found to occur the Gulf of Corinth from

2012 to 2015. Given bottlenose dolphin movement patterns in and out of the Gulf, our yearly

estimates should be interpreted strictly as the number of individuals using the area during the

primary occasions and inter-annual variability is unlikely to reflect fluctuations in population

size [39]. In other areas, seasonal variations in the abundance of bottlenose dolphins have been

related to temporal shift in habitat use, due to factors including reproduction [52], disturbance,

and prey availability [23, 40]. Comparisons with photo-identification catalogs from other areas

in the Ionian Sea (and beyond) as well as genetic analyses would be needed to investigate pop-

ulation structure [88].

Apparent survival rates

The most parsimonious model for striped and common dolphins had constant apparent sur-

vival. Apparent survival reflects true survival if there is no permanent emigration from the popu-

lation [41]. Genetic and distribution data would support such hypothesis for striped and

common dolphins in the Gulf of Corinth, and our estimate of annual apparent survival is likely

representative of true survival. Since striped, common and intermediate individuals were pooled

together in the CR analyses, we could not obtain separate survival estimates, nor could we dis-

criminate between adults and juveniles. However, our survival estimate is largely representative
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of striped dolphins (representing 94.4% of the assessed population). To our knowledge, this is

the first annual survival estimate for any striped dolphin population, worldwide. The estimated

survival of 0.94 (0.92–0.96, SE = 0.01) is similar to annual survival estimated for spinner dol-

phins Stenella longirostris in Hawaii, i.e. 0.97 (SE = 0.05; [41]) and it is high, as expected, for

slowly reproducing mammals whose life span is longer than the study duration [53, 89].

Average apparent survival for bottlenose dolphins was 0.85 (0.76–0.95, SE = 0.04). Such

estimate is lower than those obtained for adult individuals of the same species in other areas.

For instance, a study conducted in the northern Adriatic Sea found adult survival ranging

between 0.825 ± 0.054 SE and 0.938 ± 0.042 SE [90]. Another study in the Azores found

0.97 ± 0.03 SE [38] and a study in New Zealand 0.94 (0.92–0.95; [91]). However, our estimate

is consistent with estimated survival of juveniles in the Azores which is 0.815 ± 0.083 [38].

Two factors may bias our survival estimates downwards. First, the presence of subadults that

have lower survival rates than adults [67]. Second, the occurrence of transient individuals [26]

that may cause an underestimation of apparent survival [92]. This phenomenon was not

detected by a TEST 3.SR performed on our dataset, likely due to the low power of such test

with reduced sample sizes [93].

Conservation and management implications

The abundance and survival estimates produced in this study can be used for the evaluation of

these populations’ extinction risks trough Population Viability Analysis [24, 94, 95, 96, 97] and,

ideally, for conservation status assessment following IUCN criteria for regional populations [24,

98]. A challenge is to incorporate the effect of hybridization on demographic rates [87].

Even though striped dolphins are the most abundant species, their estimated abundance is

still well below the threshold that would qualify this local population as Vulnerable (10,000

mature individuals) or Endangered (2,500), if coupled with a continuous population decline of

respectively 10 or 20% [98, 99]. For striped dolphins our monitoring showed sufficient power

to detect a precipitous decline of 50% in the population during the entire study. Such decline

was not detected (see S1 Fig). Continuation of monitoring appears essential to assess the con-

servation status of this species.

Our results can be used to assess the most cost-effective management strategy to detect pop-

ulation trends [100]. Nonetheless, if management measures are to be taken only if a decline is

detected, many additional years are needed before this actually happens (for example 8 more

years to detect a 30% decline). Interestingly, the relatively high numbers of striped dolphins

would allow us to use a combination of power and population viability analyses [101] to assess

the benefits and costs of implementing management actions before a decline is detected (as

prescribed by a precautionary approach) or after (traditional approach).

Power to detect trends in abundance decreases as a population becomes smaller [2]: for bot-

tlenose and especially common dolphins, the power to detect trends is exceedingly low. As a

consequence, also considering low population numbers, conservation measures should be put

in action regardless of the detection of a decline [2].

Conclusions

In summary, we successfully applied a Robust Design analytic framework to a challenging sce-

nario with different odontocete populations characterized by distinct movement patterns and

mixed-species groups. We contributed revised baseline data of abundance and survival for

striped dolphins, common dolphins and possible hybrids between the two species in the Gulf

of Corinth. We provided the first estimate of survival, abundance and temporary emigration

for bottlenose dolphins in this part of Greece. Finally, we illustrated the importance and the
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power of long-term monitoring to provide baselines for future conservation and management

of cetaceans in this area.
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represents the regression of abundance over time. The determination coefficient (R squared)

and the significance level are reported.
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S2 Fig. Estimates of abundance of bottlenose dolphins. Year 2011 is omitted from the regres-

sion because the estimate was judged non-reliable (see Results section). The line represents the

regression of abundance over time. The determination coefficient (R squared) and the signifi-

cance level are reported.
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probability, p(mixture) = individual heterogeneity in capture probability.
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(ΔAICc). QAICc weights indicate strength of evidence for a given model. S(year) = yearly vari-
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