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Abstract

Background: Data collected to inform time variations in natural population size are tainted by sampling error. Ignoring
sampling error in population dynamics models induces bias in parameter estimators, e.g., density-dependence. In particular,
when sampling errors are independent among populations, the classical estimator of the synchrony strength (zero-lag
correlation) is biased downward. However, this bias is rarely taken into account in synchrony studies although it may lead to
overemphasizing the role of intrinsic factors (e.g., dispersal) with respect to extrinsic factors (the Moran effect) in generating
population synchrony as well as to underestimating the extinction risk of a metapopulation.

Methodology/Principal findings: The aim of this paper was first to illustrate the extent of the bias that can be encountered
in empirical studies when sampling error is neglected. Second, we presented a space-state modelling approach that
explicitly accounts for sampling error when quantifying population synchrony. Third, we exemplify our approach with
datasets for which sampling variance (i) has been previously estimated, and (ii) has to be jointly estimated with population
synchrony. Finally, we compared our results to those of a standard approach neglecting sampling variance. We showed that
ignoring sampling variance can mask a synchrony pattern whatever its true value and that the common practice of
averaging few replicates of population size estimates poorly performed at decreasing the bias of the classical estimator of
the synchrony strength.

Conclusion/Significance: The state-space model used in this study provides a flexible way of accurately quantifying the
strength of synchrony patterns from most population size data encountered in field studies, including over-dispersed count
data. We provided a user-friendly R-program and a tutorial example to encourage further studies aiming at quantifying the
strength of population synchrony to account for uncertainty in population size estimates.
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Introduction

Observed in many taxa, spatial population synchrony is the

tendency of spatially disjoint populations to exhibit correlated

fluctuations [1]. Besides providing potential cues on the factors

underlying population fluctuations [2–4] the spatial synchrony of

local population dynamics can be a critical determinant of the

stability and the persistence of metapopulations [5]. Since a

complete census of a population is generally impossible, most

abundance data used in empirical studies and a fortiori in

synchrony studies arise from a sampling procedure that provides

an estimate of the true population size tainted by sampling error.

Exploring spatio-temporal patterns of variations in true population

size from such data is challenging because ignoring sampling error

may lead to biased estimation of some key population dynamic

parameters such as the density-dependence strength [6], the

temporal variability of population size [7] and all related

parameters including population synchrony [8]. As a consequence,

many studies have developed methods to account for sampling

error when estimating density-dependence (e.g., [9–12]) and

temporal variability in population size (e.g., [7,13]). However,

little attention has been given to the consequence of ignoring

sampling variance when quantifying the strength of synchrony

patterns (but see [8]).

The sampling strategy commonly used in synchrony studies

consists in monitoring animal abundance/density on the same sites

(i.e., areas defined geographically) at fixed time intervals, typically

every year. Within each year, the mean population size, i.e., the

mean number of individuals present at a given site, is estimated
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from the numbers of individuals counted (e.g., along transects)

either simultaneously on several spatial sampling units, or

repeatedly on the same spatial unit during a period sufficiently

short to hold the population closed geographically and demo-

graphically. In ecological literature, the term sampling error is used

in a broad sense to represent the difference between the true

population size and its estimate, i.e., it mixes two types of errors

[14,15]: (i) the ‘pure’ sampling error arising because only parts of

the study site are prospected and/or because the positions of

animals change between sampling occasions [16], and (ii) the

observation error arising because of imperfect detectability of

individuals within the sampling units. The sampling error induces

variability (called sampling variance) in the estimated population

size that is not meaningful for population biologists. By contrast,

the process variations, which are temporal variations in true

population size, are of prime interest in synchrony studies.

However, most of them ignore sampling error and thus quantify

synchrony among temporal variations in population size estimates

resulting from the combination of both process and sampling

variations.

The approach widely used for quantifying the strength of the

synchrony between two sampled populations [17] consists in

computing a zero-lag correlation between the two time series of

observed (log) population sizes (called the population correlation

rpop). Statistical inference of population synchrony using this

approach is difficult because of the serial correlation (i.e., temporal

autocorrelation) often present in time series of population size [17].

To overcome this difficulty, an alternative approach based on

population dynamics modelling is sometimes preferred [17]. It

consists in (i) modelling local population using population dynamic

models – where process and sampling variations are not separated

(process-error-only models [10]) – to account for serial correlation

through density-dependence and, (ii) computing zero-lag correla-

tion between the residuals (called the process error correlation

rproc). These two notions of spatial synchrony (population vs.

process) are unified by the Moran theorem [18], which states that

when two populations are subject to the same linear density-

dependence and are not connected by dispersal, rpopandrproc will

provide identical results. In most cases the conditions underlying

this equality are not fulfilled, but rproc may nevertheless provides a

useful information because, for non experimental populations, it is

the best way for estimating the so-called Moran effect [3], i.e., the

extrinsic, environmental component of synchrony. When dispersal

is not explicitly accounted for in the model by deterministic

coupling between populations, then rprocprovides a rough estimate

of environmental synchrony because it is generally less affected by

dispersal than rpop [19]. In sampled populations, rpopand rprocare

underestimates of the theoretical values, rpop and rproc, respec-

tively. This is largely acknowledged [8,20,21] but has rarely been

accounted for in previous works dealing with the synchrony of

natural populations. Therefore, whether it is a source of concern

remains to be assessed.

From a biological point of view, ignoring sampling variance not

only leads to underestimation of population synchrony but can

also lead to a misidentification of the underlying mechanisms. For

instance, only climate can induce high synchrony between

populations that are separated by large distances [22], but

sampling error may lower the observed synchrony to a point

where climate no more appears as the sole plausible mechanism.

Another consequence of underestimating population synchrony is

underestimation of the extinction risk of a metapopulation [5].

This inappropriate assessment of both statistical and biological

consequences of ignoring sampling variance in synchrony studies

may be explained by a lack of research exploring the size of the

bias in synchrony estimation that can be encountered in sampled

populations. The bias quantification would facilitate an under-

standing of the ways in which the sampling error influences an

analysis that ignores it [23]. In this paper, we will use realistic

values of sampling error, estimated from natural populations, to

show how serious the problem could be. First, we use published

estimates of sampling variance for bird species to show that the

approach commonly used (i.e., using rpop) for quantifying

population synchrony can lead to strong downward bias in

synchrony estimations. Second, we focus on the quantification of

population synchrony in a population modelling framework (i.e.,

using rproc). We present a state-space model for quantifying

population synchrony that explicitly accounts for sampling

variance and illustrate our approach using (i) a published dataset

of fish (Alestes baremoze) abundance [24] for which sampling

variance has been estimated in a prior study, and (ii) an original

dataset of feral cat (Felis silvestris catus) abundance for which

sampling variance has to be estimated. Then we compare our

results to those obtained using a standard approach ignoring

sampling variance. We deliberately used systems composed of few

populations unlikely to be strongly connected by dispersal and

simple linear models to account for their dynamics. Indeed, our

aim is to focus on the consequences of sampling error on the

estimation of population synchrony not to deal with all the factors

known to be potentially relevant, such as non-linearity, dispersal,

demographic stochasticity, heterogeneity among populations,

biotic interactions, colour of the environmental noise and distance

between sites.

Materials and Methods

1. Inferring Population Synchrony
1.1. Inferential framework, bias definition and

notations. Suppose that we can observe without error the

(biological) log population size xij of some species at NI sites and

NJ dates (typically years). Let U~ xij ,i~1,2, . . . ,NI ,
�

j~1,2, . . . ,NJg be the set of corresponding data (see File S1 for

a list of the main mathematical notations used). U is a finite

(statistical) population, and all statistics computed from U are fixed

values called finite population parameters. This is the case of the

correlation between two time series of log population sizes xi and

xi0 (two vectors of length NJ ), that we denoted r
pop
U ,ii0 , and of the

correlation between the corresponding two time series of process

errors zi and zi0 , denoted rproc
U ,ii0 (see File S2). Statistical inference

has no sense here unless we make reference to a stochastic process

that may have generated the particular U under consideration.

Such a stochastic process is known as a superpopulation model,

that is, a model able to generate an infinite set of possible

populations U1,U2,:::,Um,::: sharing some statistical features with

U[25]. In population dynamic studies, the superpopulation model

is usually called the ‘‘population process’’. Under this framework,

the values xij and xi0j are viewed as realizations of random

variables Xij and Xi0j , respectively. Thus, at the superpopulation

level we consider two parameters: the correlation between Xi and

Xi0 , that we denoted r
pop
ii0 and the correlation between the

corresponding process errors Zi and Zi0 that we denoted rproc
ii0 (see

File S2).

At this stage, the statistical inference concerns the super-

population parameters, estimated by their finite population

counterpart, i.e., the inference concerns the parameter r
pop
ii0 that

is estimated by rpop
U ,ii0 . The source of stochasticity needed for the

inference is the population process and is denoted in this paper

using the subscript ‘p’ for the expectation, variance and covariance

Bias in Population Synchrony Estimation
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operators. In addition, the concept of (statistical) bias of an

estimator may be denoted p-bias.

Now, we introduce another level of stochasticity by considering

that the (biological) observed log population sizes are tainted by

sampling errors. We do not know U but only a set s of observed

values yij that differ from the true values xijof U by some quantity

that we called ‘sampling error’, generated by a sampling process.

At the level of s, we can consider the correlation between two

observed time series yi and yi0 of length NJ , that we denoted r
pop
ii0 ,

and the correlation between the corresponding two time series of

residuals – obtained by fitting population dynamics models where

process and sampling variations are not separated – denoted r
proc
ii0 .

As population and sampling processes are hierarchically related,

two possible levels of inference can be considered. If the scope of

the inference is U , then the source of stochasticity comes from the

sampling process and is denoted in this paper using the subscript

‘s’ for the expectation, variance and covariance operators. For

instance, for descriptive purpose, we may want to estimate the

finite population parameter rpop
U ,ii0 by using r

pop
ii0 . For scientific

purpose, the relevant inference level is the superpopulation one

(here the population process). With the two levels of statistical

inference involved, r
pop
ii0 is an estimator of the finite population

parameter r
pop
U ,ii0 which is in turn an estimator of the super-

population parameter rpop
ii0 . The possible bias of r

pop
ii0 as an

estimator of rpop
ii0 may be denoted as a ps-bias, which involves both

s-expectation and p-expectation (see File S2 for details). In what

follows we assessed the magnitude of the ps-bias of r
pop
ii0 as an

estimator of r
pop
ii0 that can be encountered in natural populations.

1.2. Bias of the usual synchrony estimator (rpop) due to
sampling error. The approach commonly used to quantify

spatial synchrony between NI~2 sampled populations consists in

computing the zero-lag correlation:

r
pop

ii0 ~
S

Tot;ii0

STot;i S
Tot;i0

ð1Þ

where S
Tot;ii0 is the covariance measured between yi and yi0 ;

S2
Tot;iand S2

Tot;i0are the total temporal variances in observed log

population size – the magnitude of the temporal variations in yi

and yi0 due to both population (s2
p,i) and sampling (s2

s,i) processes –

for site i and i’, respectively.

In absence of sampling error, r
pop
ii0 ~rpop

U ,ii0 is a p-unbiased

estimator of r
pop
ii0 since r

pop
ii0 ~ Ep(r

pop
U ,ii0 ). However, it can be shown

that when sampling variance is constant (s2
s,ij~s2

s Vi,j) and

sampling errors are additive and independent among populations,

Es(r
pop
ii0 ) v r

pop
U ,ii0 and therefore Eps(r

pop
ii0 ) ~ Ep(Es(r

pop
ii0 )) v r

pop
ii0 ,

i.e., r
pop
ii0 is a downward ps-biased estimator ofr

pop
ii0 . When an

estimate S2
s of the sampling variance s2

s is available, the theoretical

synchrony among populations can be estimated according to [24]:

r
pop

ii0 ^Eps r
pop

ii0

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

S2
s

S2
Tot;i

 !
1{

S2
s

S2
Tot;i0

 !vuut
0
@

1
A ð2Þ

From eqn 2 it follows that the ps-bias of the correlation

estimator r
pop
ii0 depends on the contribution of sampling variance to

the total temporal variance in observed population size. Besides

this statistical consideration, what is important from a methodo-

logical point of view is to assess the extent of the ps-bias that can be

encountered in empirical studies when the sampling error is

neglected. Based on both eqn 2 and published estimates of the

ratio between sampling and total temporal variance, we illustrated

the extent of the ps-bias that can be expected when quantifying

synchrony among time series of observed population size. Link

et al. [26] have estimated such a ratio for 98 bird species. We

selected 9 species whose ratio spread over the range of the 98 ratio

values. Based on these 9 ratio values, we used eqn 2 to compute

the ps-bias that can be expected when quantifying synchrony

among populations of these species using r
pop
ii0 , without accounting

for sampling error.

1.3. Quantifying population synchrony in the presence of

sampling error. When (i) sampling variance is constant and

has been estimated, and (ii) sampling errors are both additive and

independent among populations, eqn 2 can be used to correct

correlation estimates (r
pop
ii0 ) a posteriori. However, this case is unlikely

to be frequently encountered in practice because sampling

variance may depend on population size and hence is not constant

through time, or the number of spatial or temporal sampling units

used may have varied through time (e.g., from one year to the

next) and, as a result, sampling variance too. To overcome these

difficulties, we propose to quantify population synchrony in a more

general framework of population dynamics modelling. The aim is

to quantify density-dependence and synchrony between process

errors (rproc
ii0 ) to in turn quantify the synchrony between

populations (rpop
ii0 ). We consider the general case with NIw2, by

introducing the average correlation among the process errors,

which we denoted �rrproc, and the average correlation among

populations, which we denoted �rrpop (see File S2 for details). State-

space models provide a flexible way of accounting for sampling

error when quantifying such population dynamic parameters [9].

In what follows, we present a Bayesian state-space model that

allows estimating both density-dependence and synchrony among

population processes – and in turn population synchrony – from

time series of observed log population size. In a first stage we

considered the case where sampling variance has been estimated

in a prior study and, in a second stage, we considered the case

where synchrony and sampling variance have to be jointly

estimated.

When population size is estimated using, for example, distance

sampling methods [27], we get an estimate (dij ) of the population

density at site i and time j as well as a coefficient of variation

estimate (cvij ) reflecting the uncertainty about dij . To account for

this uncertainty when quantifying population synchrony between

yi~ log (di) and yi0~ log (di0 ), we propose to use a state-space

framework where we can jointly define the sampling and the state

processes. The state process models the underlying population

dynamics that changes log population size over time and the

sampling process links the unobservable true log population size to

its estimate [9]. In our model, the estimatesyij are viewed as

normally distributed with mean xijand variance s2
s,ij . We

considered the following system:

Yij Xij ~ xij

� ��� *N (xij ,S
2
s,ij) ð3Þ

Xj ~ f (Xj{1,:::,Xj{h) zWGICC
j ð4Þ

where eqn 3 describes the sampling process with xij the

unobservable true log population size at site i and time j to be

estimated. In the example of distance sampling, the S2
s,ij-values are

distance sampling estimates (S2
s,ij ~ log (cv2

ij z 1)) of the sampling

Bias in Population Synchrony Estimation
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variance (s2
s,ij ) that play the role of assigned parameter values. Eqn

4 describes the state process, with f (:) a function of past population

states representing deterministic variations in local population

dynamics. In its more general definition,f (:)may accommodate for

non-linear and/or heterogeneous population dynamics as well as

for predation by nomadic predators or dispersal among popula-

tions. In eqn 4 WGICC
j is a NI -element vector of stochastic terms

(WGICC
ij ) that describes how the process error variance (s2

p,i) is

partitioned into shared and unshared variations among sites (see

Discussion in [28]) after accounting for deterministic variations in

true population size:

WGICC
ij ~ sp,i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rGICC

p :tj z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{rGICC

p
:gij

h i
ð5Þ

In eqn 5, rGICC[ 0,1½ � is the state-space model parameter –

thereafter called Generalised Intra-Class Correlation – corre-

sponding to the fraction of the residual process variance (s2
p,i) that

is shared among sites, i.e., quantifying the average synchrony

(�rrproc) among residual process variations (see File S3); the random

terms tj *N (0,1) and gij *N (0,1) represent shared and

unshared variations, respectively. We assume that the random

variables t and g are mutually independent and that each is

exchangeable between two times j and j’. The fitting method of the

state-space model will determine the statistical properties of the

different estimators such as r̂rGICC . An alternative approach would

be to use WMVN
j instead of WGICC

j , with WMVN
j following a

multivariate normal distribution of null mean vector and variance-

covariance matrix S (see File S2). In this paper we used WGICC
j

since it requires less parameters and enables the explicit modeling

of the synchronous component of temporal variations in popula-

tion sizes.

According to the superpopulation model (see File S2), when two

populations are subject to the same linear density-dependence and

are not connected by dispersal (i.e., whenf (:)is simply a linear

function of past population states), then r̂rGICC is also an estimator

of the average population synchrony (�rrpop). If rGICC?1, then the

shared process pattern would account for a large fraction of the

total temporal variance at each site; the time variations in

abundance would then be synchronous among the populations.

Conversely, if rGICC?0, then the time variations in abundance

are asynchronous among the populations. When f (:) is non-linear,

differs among populations, or includes dispersal or predation

mechanisms, then rGICC is no longer an estimator of �rrpop. In this

case, an estimate of the average synchrony among populations

(�rrpop) can be obtained through Monte Carlo simulations, or in

some cases analytically, based on the model parameter estimates

[29]. When the magnitude of temporal fluctuations are similar

among sites – as such we can consider s2
p,i ~ s2

pV i – an alternative

parameterization of Wijcan be used: WICC
ij ~ tjsshared z

gijsunshared , where s2
shared and s2

unshared represent the magnitude

of the shared and unshared fluctuations, respectively, in residual

process variations among populations with s2
p~s2

sharedzs2
unshared .

Like rGICC in eqn 5, the ratio rICC ~
s2

shared

s2
shared z s2

unshared

(called

Intra-Class Correlation) leads to an estimator r̂rICC of the strength

of the average synchrony among population processes �rrproc(see

File S3). It follows that for populations that are not connected by

dispersal and subject to the same linear density-dependence,

r̂rICC is also an estimator of the average synchrony among

populations �rrpop. When the condition s2
p,i~s2

pV i applies, WICC
ij

may be preferred to WGICC
ij because of the reduced number of

parameters involved. When s2
p,i=s2

pV i we recommend using

WGICC
ij because WICC

ij will lead to underestimate �rrproc. By definition

both the intra-class correlation and the generalized intra-class

correlation are devoted to the quantification of positive synchrony

patterns which was the focus of most synchrony studies (for a

review see [1]). However in some cases, for example in presence of

apparent competition, a negative correlation between populations

can be expected [30]. When residuals process variation are

modeled using WICC
ij or WGICC

ij , exploring such a pattern of

negative correlation can still be revealed by quantifying the

correlation matrix between the NI time series of estimates of

residuals process variations ŴWi.

The state-space modelling approach presented above can be

extended to accommodate the case where sampling variance and

population synchrony have to be jointly estimated. This typically

applies when the collected data (dk ijð Þ) are densities of individuals

present on NK(ij) spatial or temporal sampling units

(k(ij) [K(ij)~f1,2, . . . ,NK(ij)g) nested within site i at time j. Here

we consider that the number of spatial or temporal sampling units

may have varied through sites and/or time. Updating eqn 3, the

sampling process becomes:

Yk(ij) Xij~xij

��� �
*N (xij ,s

2
s,ij)

with yk(ij)~ log (dk(ij)) and where s2
s,ij is here a parameter to be

estimated.

Bayesian methods provide a flexible way of fitting both types of

model. Generally, if the data are informative enough, the

likelihood dominates the non-informative priors and the results

are close to that of a frequentist inference [31]. In the following

analysis, summaries of the posterior distribution of the parameters

are obtained using the Markov Chain Monte Carlo (MCMC)

algorithms implemented in the JAGS 3.3 software [32]. We used

the R-packages dclone [33] and RJAGS [34] to call JAGS from

the R 3.0.1 software [35].

2. Illustrative Examples
We aimed to illustrate how the state-space model presented in

the previous section can be used to account for sampling variance

when quantifying the strength of population synchrony from time

series of observed population size. In addition, we performed a

‘what-if’ scenario analysis to exemplify the impact of neglecting

sampling variance when quantifying population synchrony, i.e.,

we compared the results obtained with our state-space model with

those of a standard approach neglecting sampling error. We

considered first the case where sampling variance has been

estimated in a previous study; in a second stage, we considered the

case where both sampling variance and spatial synchrony have to

be estimated. In both examples, the populations are suspected to

be synchronised by a Moran effect.
2.1. Estimation of spatial synchrony using an

independent estimate of sampling variance. In this exam-

ple, we used the abundance data analysed by Tedesco et al. [24] to

explore intra- and inter-specific synchrony patterns in population

dynamics of four West African fishes caused by a Moran effect.

The only topic we considered here is the way the sampling error is

accounted for, i.e., we were not interested in improving other

aspects of the analysis performed by Tedesco et al. [24]. We used

24-year time series (1974–1997) of abundance estimates of Alestes

baremoze collected at three sites (inter-site distances: 176–367 km)

Bias in Population Synchrony Estimation
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in two different catchment basins in Côte d’Ivoire (West Africa).

On a given site i within a given year j, several gill-net fishing trials

were conducted at a few month intervals. Note that the numbers

(NL(ij)) and the dates of the experimental fishing (‘(ij)) changed

according to site and year. As there is only one fish abundance

estimate per experimental fishing (k~1), in what follows we

omitted the index k that denoted the replicates. The data are

expressed as catch per unit effort (CPUE‘(ij)), which is the number

of fish caught in 100 m2 of net per night at a given site i during

a given year j and a given experimental fishing ‘(ij) [
L(ij)~f1,2, . . . ,NL(ij)g. Since the sampling variance cannot be

estimated with the data available from Côte d’Ivoire samples, it

was estimated from data of the same species from similar river

systems (Mali-Guinea) and sampled with the same technique.

Assuming that it is constant on the log scale, Tedesco et al. [24]

reported the following estimate S2
s ~0:21 of sampling variance (s2

s )

for one experimental fishing (NL(ij)~1).

Since we are interested in quantifying synchrony among inter-

annual variations in mean population size, the difference in the

average abundance of fish between the experimental fishing at

each time j at site i was considered to be part of the sampling

process:

Yj Xj~xj

� ��� ~DjxjzcjzOj

with y‘(ij)~ log10 (CPUE‘(ij)z0:2) where 0.2 is the minimal

non-zero value found in the series [following 24]; Oj is a NL,j-

element vector (NL,:j~
P

i

NL(ij)) of random variables

O‘(ij)*N (0,S2
s ) where S2

s plays the role of assigned parameter

value; Dj is an NL,:j|NI matrix of 0 s and 1 s that translates the

NI true log population size at time j into NL,:j true log population

size at time j; and cj is a NL,:j-element random vector with

c‘(ij)*N (0,s2
c) that accounts for the difference in the average

abundance of fish between the experimental fishing within each

year j at site i. Following Tedesco et al. [24], we used a stochastic

Gompertz model to describe the deterministic inter-annual

dynamics of the fish populations. Since the magnitudes of the

temporal variations of fish abundance are similar among the study

sites (see Fig. 1), we considered the following state process to

quantify the strength of synchrony among fish populations:

Xj~

X1,j{1

..

.

Xi,j{1

..

.

XNI ,j{1

2
666666664

3
777777775
z

1 X1,j{1

..

. ..
.

1 Xi,j{1

..

. ..
.

1 XNI ,j{1

2
666666664

3
777777775

b0

b1

� �
zWICC

j

where Xj~½X1j ,:::,Xij , . . . ,XNI j �0 is the true mean (log) number of

catch per unit effort at site i in year j; b0zb1Xi,j{1 is the first order

Gompertz model where b1 is a coefficient of density-dependence

and b0 is an intercept. Here r̂rICC is an estimator of the strength of

the average synchrony (�rrpop) among fish populations (see Materiel

and Methods section 1.3). Both the fish dataset and the R-program

used to fit the state-space model are available as supplementary file

(File S4)

2.2. Joint estimation of spatial synchrony and sampling

variance. Here, we aimed at illustrating (i) the use of

the Generalised Intra-Class Correlation instead of Intra-Class

Correlation to estimate average population synchrony, and (ii) the

joint estimation of spatial synchrony and sampling variance using

count data. Thus, for the sake of simplicity, we considered the

same density-dependence structure as in the previous example. We

used an original dataset of feral cat abundance collected at four

sites (Port-aux-Français, Port-Jeanne-d’Arc, Port-Couvreux, Rat-

manoff; inter-site distances: 20–60 km) of the Grande Terre Island

of the Kerguelen Archipelago (sub-Antarctic) from 1996 to 2007

[36,37]. The sampling protocol used is based on the collection of

replicated count data (see File S2) within field sessions of 7–10 days

all year round. Based on the climate dynamics, we can distinguish

two seasons per year: (1) ‘Summer’ from November to April and

(2) ‘Winter’ from May to October. At each site, a permanent linear

transect delimited by coloured posts was established. Typically,

during a field session at a given site i and during a given time j

(corresponding to a given season in a given year), the transect was

covered several times by a single trained observer. Each time the

transect was travelled, the total number of adult cats detected by

the observer on either side of the transect was recorded. Each site

was visited approximately every three months, but due to climatic

and logistical constraints, the order and the frequency of the visits

changed from one season to the next, i.e., there was a varying

number of field sessions within each site-time and varying number

of counts within each field session. Therefore, the data are

expressed as the total number of adult cats (NCobs
k(‘(j(i)))) observed

during a given count (k) in a given field session (‘), at a given time

(j) at a given site (i). Note that in this case study j is nested in i, ‘ is

nested in j, and k is nested in ‘. To avoid cumbersome notation we

did not report the ‘‘nested’’ notation, i.e., we used ij‘k instead of

k(‘(j(i))). On average, the transects were covered 21 times per

site-time (min = 2, max = 69) and overall, 1496 transect counts

(NCobs
ij‘k) were performed during the study period.

It is largely acknowledged that exploring spatio-temporal

pattern of variation in population size from such ‘‘raw’’ count

data requires consideration for imperfect detection in order to

prevent any confounding effect of detectability on abundance [38].

By contrast to strip-transect counts, which are complete census

within the strip-area, it is likely that the observer only detect a

fraction of the actual number of cats present in the strip. To

account for imperfect detection in our state-space model we follow

the approach of Kéry et al. [39] which consists in defining an

observation process:

NCobs
ij‘k*B(NCij‘k,pij)

where NCij‘kis the true number of cats and pij is the cat detection

probability at site i at time j. We showed elsewhere that the

relationship between the mean and the variance of the NCobs
ij‘k has

a quadratic form [40] leading us to assume that the distribution of

the number of cats available for detection within the field sessions

can be approximated by a negative binomial distribution (e.g.,

[41] pp 185–220) with mean lij‘ and variance lij‘z
l2

ij‘

h
, where

lij‘ is the theoretical mean number of cats present during the ‘th

field session at time j at site i, and h a is an unknown constant

independent of l that accounts for the over-dispersion of the data

in comparison with the Poisson model. As for the fish dataset, the

difference in the average abundance of cats between the counting

sessions (‘) within each time j at site i was considered to be part of

the sampling process:
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NCij‘k*N egBin(lij‘k, h)

log (lj)~D
(2)
j (D

(1)
j xjzcj)zDistj

ð6Þ

with the total numbers of observations and field sessions at time j

given by NK ,:j:~
P
i ‘

NK,ij‘ and NL,:j~
P

i

NL,ij , respectively. In

eqn 6, lj is a NK ,:j:-element vector of lij‘k; Distj is a NK ,:j:-element

vector containing the logarithmic distance covered by the observer

during a given count (log (Distij‘k)) to account for the likely

increase in the number of cats available for detection with the

distance covered; D
(2)
j and D

(1)
j are two NK ,:j:|NL,:j and

NL,:j|NI matrices of 0 s and 1 s that translate the NL,:j (log)

mean population size at time j into NK ,:j: (log) mean population

size at time j and the NI (log) mean population size at time j into

NL,:j (log) mean population size at time j, respectively; and cj is a

random vector with cij‘*N (0,s2
c) a random term that accounts

for the difference in the (log) mean abundance of cats between the

field sessions (‘) within each time j at site i.

Contrary to the fish data, the magnitude of temporal varia-

tions in cat abundance differed widely from site to site (see Fig. 2).

Thus, we used the WGICCparametrization to quantify popu-

lation synchrony among cat populations. More specifically, we

considered the following state process:

Xj~

X1,j{1

..

.

Xi,j{1

..

.

XNI ,j{1

2
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3
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z
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j

where Xj~½X1j ,:::,Xij , . . . ,XNI j �0 is the true (log) mean number of

cats at site i in year j; b0zb1Xi,j{1 is the first order Gompertz

model where b1 is a coefficient of density-dependence and b0 is a

constant. Here r̂rGICC is an estimator of the strength of the average

synchrony (�rrpop) among cat populations (see Material and

Methods section 1.3).

2.3. Ethics Statement. The fieldwork has been made by

qualified people according to the French legislation. Accreditation

has been granted to the UMR-CNRS 5558 (accreditation number

692660703) for the feral cat program.

2.4. Estimating spatial synchrony using the standard

approach neglecting sampling variance: a ‘what if’ scenario

analysis. Here we aimed to assess the bias of the average

synchrony estimator �rrproc that we would have encountered if we

had neglected sampling error associated with the fish and cat

Figure 1. Averaged time variations in observed fish population size at the three study sites. Points represent the mean of log-
transformed fish population size estimates. The grey bars represent the respective standard deviation of the observed means on the logarithmic
scale.
doi:10.1371/journal.pone.0087084.g001
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population size estimates. We considered two cases often

encountered in synchrony studies. We first considered the case

where sampling variance is completely neglected, i.e., when using

only one population size estimate for each site and time step

(NK~1). The second case we considered is when sampling

variance is only partially accounted for, i.e., when abundance data

are collected according to a replicated sampling protocol and the

NKw1 samples are aggregated into one estimate to reduce

uncertainty about the population size estimate.

Fish example: based on the model parameter estimates, following

the superpopulation model (see File S2 for details), we first

generated a collection of NM sets of time series of ‘true’ population

states fU1,U2, . . . ,Um, . . . ,UNM
g. Second, within each Um, we

averaged, for each site i and year j, NK estimates of (log) population

size �yyij:~
1

NK

XNK

k~1

yijk drawn at random from a normal distribu-

tion: Yijk Xij~xij

� ��� *N (xij ,S
2
s ). Since we aimed to explore the

case where sampling variance is completely neglected, we

considered one experimental fishing per year in our simulations.

Third, we fitted a Gompertz model to each set of time series of

averaged population size and quantified the synchrony strength

by computing the average sample correlation (�rrproc~

2

NI (NI{1)

X
ivi0

r
proc
ii0 ) within each set of time series of residuals of

the Gompertz models.

Cat example: we used the same approach for the cat example

except that within each Um, we averaged, for each site i and year j,

NK log-transform estimates of population size

�yyij~
1

NK

XNK

k~1

log (NCobs
ijk z1) drawn at random from a binomial

distribution NCobs
ijk *B(NCijk,pij) with NCijk*N egBin( exp (xij),

h). As for the simulation of fish abundance, we only considered

one field session per site-time.

For both the fish and cat examples, we performed NM = 1000

simulations for different values of NK~ 1,3,10,50f g. To assess the

ps-bias of �rrproc, we compared the NM average correlations �rrproc
m to

the estimate obtained using the state-space modelling approach,

that we considered as a gold standard of �rrproc (see File S5).

Results

1. Expected Bias of the Usual Synchrony Estimator in the
Presence of Sampling Error

Fig. 3 shows the extent of the bias of the usual synchrony

estimator (r
pop
ii0 ) that can be encountered when sampling variance is

Figure 2. Averaged time variations in observed cat population size at the four study sites. The different panels show the time series for
the four study sites (from top to bottom): Port-aux-Français, Port-Jeanne-d’Arc, Port-Couvreux and Ratmanoff. Points represent the mean of log-
transformed cat population size estimates. The grey bars represent the respective standard deviation of the observed means on the logarithmic scale.
The symbols ‘S’ and ‘W’ stand, respectively, for summer and winter.
doi:10.1371/journal.pone.0087084.g002
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neglected. For example, consider two perfectly synchronous

populations (rpop~1) of Yellow-throated Vireo. Based on the

estimates of the ratio between sampling and total variance

reported by Link et al. [26], ignoring sampling variance would

lead to an underestimation of the synchrony pattern of approx-

imately 70% on average. More generally, Fig. 3 shows that a wide

range of situations can be encountered: while ignoring sampling

variance would lead to negligible bias for some species (e.g.,

Acadian Flycatcher), it can also, at least in theory, completely

mask the synchrony pattern (e.g.,Yellow-billed Cuckoo).

2. Illustrative Examples
To fully specify our Bayesian models, we provided non-

informative priors to all of the parameters. Specifically, we chose

normal distribution with mean 0 and variance s2
b for b0 and b1,

and uniform distribution on [0,1] for rGICC . We chose inverse-

gamma with both parameters equal to 0.001 for s2
b,s2

p,i, s2
c , s2

shared

and s2
unshared , and exponential with inverse scale parameter equal

to 1 for h. All priors were selected as sufficiently vague in order to

induce little prior knowledge.

For both state-space models, we generated three chains

(MCMC) of length 1,200,000 and discarded the first 100,000 as

burn-in. To accommodate memory constraints, we thinned the

chains by taking all 100th values. Convergence of the Markov

chains was assessed using the Gelman and Rubin statistic (see [42]

pp. 294–298).

2.1. Estimation of spatial synchrony in fish and cat

populations. Using our state-space models, we found a strong

pattern of synchrony among fish populations (r̂rICC : mean = 0.86,

sd = 0.11, Table 1) as well as among cat populations (r̂rGICC :

mean = 0.75, sd = 0.22, Table 2). Estimates of the density-

dependence parameter b1 are mean(sd) 20.26(0.10) and

20.44(0.16) for the fish and the cat populations, respectively.

The estimates of detection probabilities (p̂pij ) for the cat dataset

range from 0.19 to 0.76. On each site the average detection

probability are: 0.54 for Port-aux-Français, 0.61 for Port-Jeanne-

d’Arc, 0.54 for Port-Couvreux and 0.52 for Ratmanoff. Estimates

of pij and their 95% credible intervals are available as

supplementary file (File S6).

2.2. Estimating spatial synchrony using the standard

approach neglecting sampling variance: a ‘what if’ scenario

analysis. Monte Carlo simulations revealed that neglecting

sampling variance (i.e., using NK = 1 replicate of population size

estimate), or partially accounting for sampling variance (i.e., using

NK~ 3,10,50f g replicates of population size estimate) lead to

underestimate the strength of spatial synchrony patterns (Figs. 4

and 5). For NK~ 1,3,10,50f g, Monte Carlo estimates of average

synchrony among fish populations are {mean (sd): 0.19 (0.12), 0.34

(0.13), 0.55 (0.11), 0.76 (0.08)}, vs. 0.86 (0.11) estimated by fitting

the state-space model. Among cat populations we obtained {mean

(sd): 0.06 (0.10), 0.12 (0.11), 0.22 (0.12), 0.37 (0.13)}, vs. 0.75

(0.22). As expected, the strength of density-dependence is

overestimated: for fish populations the Monte Carlo estimates

are {mean(sd): 20.91 (0.14), 20.82 (0.16), 20.73 (0.17), 20.67

Figure 3. Bias of the cross-correlation estimator r
pop
ii0 in presence of sampling error. The thick line represent the value of the ratio (bias) of

the true correlation r
pop
ii0 between two populations i and i’ and of the Esperance Eps r

pop
ii0

� 	
of the correlation estimator classically used to measure

population synchrony among two time series of observed population size, in relation to the contribution of sampling variance s2
s to the total

temporal variance in observed population size s2
Tot. Dashed vertical bars represent the values of

s2
s

s2
Tot

estimated by Link et al. [26] for 9 bird species.

doi:10.1371/journal.pone.0087084.g003
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(0.17)} vs. 20.26 (0.10) estimated by fitting the state-space model,

and for cat populations we obtained {mean(sd): 20.90 (0.14),

20.80 (0.15), 20.68 (0.17), 20.62 (0.17)} vs. 20.44 (0.16).

Discussion

1. Accounting for Sampling Error when Inferring
Population Synchrony from Time-series Data

Using Bayesian state-space models in which process and

sampling variances are separately defined, we showed that the

temporal fluctuations in abundance of both fish and cat

populations are strongly synchronised. As expected, the results of

the Monte Carlo simulations based on the model parameter

estimates show that ignoring sampling variance would not have

enabled highlighting these patterns. When the ratio between

sampling and total temporal variances is large, i.e., when we

considered only one replicate of cat abundance per time unit, the

synchrony estimates fall near zero. Thus, based on real data, we

showed that neglecting sampling variance can completely mask a

synchrony pattern whatever its ‘true’ strength. These results show

that there is a clear need to account for sampling error to

accurately quantify the strength of synchrony patterns. Assessing

the bias of an estimator of the strength of the synchrony pattern in

the presence of sampling error requires knowing the value of �rrproc,

i.e., the superpopulation parameter describing the correlation

among population processes. This was not possible for the two

datasets analysed here because the true states of the populations

were unknown. But for the purpose of this study, we considered

synchrony estimates obtained with state-space models as true

values (or gold standards) because such a modelling approach has

negligible bias (File S5).

In this study we focus on the consequences of ignoring sampling

variance on the estimation of spatial synchrony but other factors

can modulate population synchrony estimates. For instance, in

small populations, demographic stochasticity can tend to dominate

environmental stochasticity and consequently population synchro-

ny is expected to increase with population size [19,43]. Ideally, the

model fitted on the cat dataset should have included a

demographic component in the process error. However, at present

time there is not enough data for estimating demographic variance

in the cat populations studied. We acknowledge that a fully

realistic model should also have allowed for non-linear density

dependence (e.g., theta-logistic model, [20]) and/or spatial

variations in the strength of the density dependence. Moreover,

given the life expectancy of both species studied here, age struc-

ture should have been taken into account [44]. In both illustra-

tive examples, we assumed no age structure effect and a

density-dependence linear and identical among populations.

These assumptions were compromise between complexity and

reality. Exploring the consequence of the misspecification of the

form of the density-dependence on the quantification of synchrony

among population processes was beyond the scope of this paper

(e.g. [45]). Note however that if dispersal does not occur,

theoretical works suggest that when non linearity or heterogeneity

among populations are features of the population process then

�rrpop
v�rrproc [29]. So the estimates r̂rGICC and r̂rICCprovided in this

study for �rrprocare likely to be lower bounds of the actual values, if it

is assumed that dispersal between populations is null (fish data) or

negligible (cat data). Non-linearity and heterogeneity among

populations can easily be implemented in a Bayesian state-space

model with the consequence that the hypothesis that �rrproc and

�rrpopare equal will no more hold. In this case, �rrpopcan be estimated

by simulations or, in some cases, analytically, using parameter

values of the model [29].

In this study, we showed that averaging replicates of population

size estimates (or indices) allows decreasing the bias in the

estimation of the strength of spatial synchrony. We also showed

that the bias in the density-dependence estimation decreases as the

number of replicates increases. However, we used up to 50

replicates in our simulations while in practice the sampling

procedure rarely exceeds 3 replicates, mainly because of financial

and logistic constraints. Such limitations (NK = 3) would have led

to underestimating the strength of the synchrony pattern by 60%

for fish populations and by 84% for cat populations. It follows that

averaging few replicated samples does not guarantee that the

synchrony strength will not be substantially underestimated. Thus,

accurately quantifying the strength of spatial synchrony requires

combining both a sampling protocol that enables the estimation of

sampling variance and a statistical procedure allowing proper

accounting for it.

In their study of the fish dataset, Tedesco et al. [24] used eqn 2

to correct the synchrony estimate a posteriori. But this approach has

some limitations. For instance, they had to assume that sampling

error is independent of population size and thus to select a fixed

number of replicates within each time period; they worked with a

balanced subset of the data (representing 73% of the data

available) to cope with the homoscedasticity assumption. By

accounting for sampling variance at the observation level, state-

space models overcome these limitations. By doing so, all the

available data are included in the analysis and all the model

Table 1. Model parameter estimates for the fish example.

Parameters Mean SD CI95%

b0 0.25 0.11 0.04;0.50

b1 20.26 0.10 20.48; 20.08

s2
shared

0.04 0.02 0.01;0.10

s2
unshared

0.007 0.007 0.0006;0.0261

rICC 0.86 0.11 0.52;0.98

s2
c

0.005 0.005 0.0004;0.020

Posterior mean, standard deviation and 95% credible interval of the model
parameter estimates obtained for the state-space model fit on the fish dataset.
doi:10.1371/journal.pone.0087084.t001

Table 2. Model parameter estimates for the cat example.

Parameters Mean SD CI95%

b0 21 0.38 21.86; 20.33

b1 20.44 0.16 20.82; 20.15

sp,1 0.41 0.21 0.06;0.89

sp,2 1.02 0.32 0.47;1.74

sp,3 0.58 0.26 0.17;1.20

sp,4 0.22 0.16 0.01:0.62

rGICC 0.75 0.22 0.16;0.99

h 5.11 0.67 3.95;6.61

s2
c

0.12 0.03 0.07;0.20

Posterior mean, standard deviation and 95% credible interval of the model
parameter estimates obtained for the state-space model fit on the cat dataset.
See the supplementary file (S6) for the estimates of pij .
doi:10.1371/journal.pone.0087084.t002
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parameters are adjusted for sampling variance. Another appealing

feature of the state-space model presented here is that it can easily

accommodate for over-dispersion in count data.

2. What are the Likely Mechanisms Beyond Synchrony?
Altogether, our results suggest that ignoring sampling error, in

addition to leading to spurious estimates of the strength of spatial

synchrony among populations, increases the difficulty of identify-

ing the mechanisms beyond synchrony. Three non-mutually

exclusive factors are classically involved in driving synchrony:

individual dispersal [4,46], predation by a nomadic predator [2]

and spatially correlated climatic conditions (Moran effect [3]). For

example, to identify whether the Moran effect is acting, one can

compare the correlation among climatic conditions to the

correlation among time variations in population size. In case of

climatically-driven population synchrony, these correlations are

expected to be equal. But this holds only if (i) the biological

assumptions of the Moran theorem apply (no dispersal between

populations and identical linear density-dependence structures),

and (ii) both population sizes and climatic variables are known

without error. In practice, both population sizes and climatic

variables are tainted by sampling errors. Consequently, correlation

estimators neglecting sampling variance will be downward biased

estimators of the theoretical correlations. For some climatic

variables the sampling error impact may be negligible but this

should be assessed case by case. Whenever the contribution of the

sampling variance to the total temporal variance has a strong

impact on the correlation estimator, it should be accounted for.

Disentangling synchronisation mechanisms from patterns is

challenging, especially when sampling error is neglected. However,

estimates of synchrony strength may provide clues regarding the

most plausible mechanisms.

The synchrony parameter among the fish populations is

estimated to 0.86, i.e., very close to the correlation of 0.87

reported by Tedesco et al. [24] among the annual discharge index

of the corresponding basins. It was not possible to account for

sampling variance when estimating the correlation among annual

discharge index (data not available) and thus this estimate is likely

to be an underestimation of the true value. In spite of this, this

result is consistent with the probable role of hydrological

conditions on the dynamics of the fish populations and suggests

that the Moran effect is acting. This is reinforced by the fact that

the populations studied are living in different river systems, i.e.,

disconnected populations, excluding dispersal as a synchronising

agent (see [24] for more details). Such a demonstration of a Moran

effect would not have been possible by considering the synchrony

estimates of 0.21 obtained when sampling error is neglected.

For the cat example, considering (i) the absence of cat predator

on the Kerguelen archipelago and (ii) the strong genetic structure

among the cat populations (suggesting low dispersal among

populations [47]), and (iii) the strong strength of synchrony

(0.75) observed, climate appears to be the most plausible

mechanism. A possible scenario is that the cat population dynamic

is strongly related to the population dynamics of its main prey, the

rabbit. The rabbit (Oryctolagus cuniculus) population dynamics is

likely under the influence of the yearly plant biomass production

which is itself influenced by climatic conditions. This hypothesis is

Figure 4. Monte Carlo estimates of the bias of the cross-correlation estimator �rrproc for the fish example. The boxplot represent the
Monte Carlo distribution of cross-correlation estimates obtained when averaging NK~f1,3,10,50g replicates of fish population size tainted by
sampling error minus the synchrony estimate obtained using a state-space modelling approach accounting for sampling error i.e., a gold standard.
doi:10.1371/journal.pone.0087084.g004
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reinforced given that (i) climatic conditions have been shown to be

synchronous at a level higher than 0.5 at a spatial scale similar to

our study [48] and (ii) the yearly production of plant biomass is

also synchronous (0.70) among the four study sites [40,49]. Here,

the yearly plant biomass production was estimated from the

Normalized Difference Vegetation Index and is tainted by

sampling error [49]. In absence of estimate of sampling variance

in yearly production of biomass it was not possible to obtain a

synchrony estimate corrected for it, but it is likely that the true

value is much higher than 0.7. The synchrony of 0.75 between cat

populations can be viewed as a result of the synchrony in yearly

vegetation production, mediated by rabbit population dynamics.

Since dispersal cannot be excluded by design in this system,

further studies are needed to assess the relative contribution of

climate and dispersal to the synchronization of cat populations.

Dispersal and climate are likely to act on local population

dynamics at different spatial scales. A strategy for disentangling

their contribution to the synchrony pattern would consist in

exploring how fast the correlation among populations decrease

with geographic distance, i.e., in quantifying the ‘spatial scaling of

population synchrony’ [50,51]. Assuming that a larger number of

study sites than considered in this study was monitored, the spatial

scaling of population synchrony can be assessed by computing all

the pair correlations among the NI time series of estimates of

residual process variations (ŴWi) and then comparing these estimates

to the corresponding inter-site distances. Alternatively, it could be

possible to extend the state space modeling approach presented

here to include a spatial covariance modeled as a function of the

inter-site distances (e.g., [52]).

3. Conclusion
We showed that when the contribution of sampling variance to

the total temporal variance is set to values typical for natural

populations, (i) ignoring sampling variance can mask a synchrony

pattern, and (ii) averaging few replicates of population size

estimates poorly performed in decreasing the bias of the estimator

of the synchrony strength. Bayesian state-space models, as the one

presented in this study, provide a flexible way of quantifying the

strength of synchrony patterns from most population size data

encountered in field studies, including over-dispersed count data.

We strongly encourage further studies aiming at quantifying the

strength of population synchrony to account for uncertainty in

population size estimates.
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