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SUMMARY

There are many sources of uncertainty in scenarios and models of socio-ecological systems, and under-
standing these uncertainties is critical in supporting informed decision-making about the management of
natural resources. Here, we review uncertainty across the steps needed to create socio-ecological scenarios,
from narrative storylines to the representation of human and biological processes in models and the estima-
tion of scenario and model parameters. We find that socio-ecological scenarios and models would benefit
from moving away from ‘‘stylized’’ approaches that do not consider a wide range of direct drivers and their
dependency on indirect drivers. Indeed, a greater focus on the social phenomena is fundamental in under-
standing the functioning of nature on a human-dominated planet. There is no panacea for dealing with uncer-
tainty, but several approaches to evaluating uncertainty are still not routinely applied in scenario modeling,
and this is becoming increasingly unacceptable. However, it is important to avoid uncertainties becoming
an excuse for inaction in decision-making when facing environmental challenges.
INTRODUCTION

‘‘The whole problem with the world is that fools and fanatics are

always so certain of themselves, but wiser people so full of

doubts.’’1 With this phrase, Bertrand Russell highlights the

imperative of embracing uncertainty rather than fooling our-

selves into thinking that it does not exist. This holds especially

true for how we understand the natural world, including the

increasingly important role of humans in socio-ecological sys-

tems. We know that socio-ecological systems are complex.

They are non-linear, bifurcate, and have feedbacks and tipping

points, all of which makes their future development inherently

uncertain and difficult to predict. Indeed, the future is a place

we can never know; we cannot observe it, and we cannot mea-

sure it. Yet, decision-makers are challenged with planning short-
to long-term strategies for preserving biodiversity and the contri-

butions of nature to people2 and, so, we need to anticipate what

the future may hold.

The scientific response to this challenge has been the devel-

opment of scenarios to explore the uncertainty space of plau-

sible, but unknown, futures.3 Scenarios are not predictions, but

are ‘‘a plausible and often simplified description of how the future

may develop based on a coherent and internally consistent set of

assumptions about key driving forces and relationships.’’4 Sce-

narios are commonly underpinned by qualitative descriptions

(narrative storylines) of the underlying direct and indirect drivers

of change, including policy options,3,5 which are often translated

into impacts on biodiversity, ecosystem services, and complex

socio-ecological systems using models in a storyline and simu-

lation approach.3 Hence, scenarios can be qualitative,
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quantitative, or both. As such, scenarios and models are invalu-

able tools in guiding long-term, strategic policies that prompt

management actions and increase public awareness of the

future threats to nature.6

Due to the complexity of socio-ecological systems, but also to

advances in knowledge and observation capacity, models are

being developed with increasing complexity, involving many

processes and feedbacks, and integrating multiple components

of the ecosystem, from the physical environment to human soci-

eties. Examples include, land-use models,7 agent-based

models,8 marine ecosystem models,9,10 models of trophic

levels,11 dynamic vegetation models,12,13 state and transition

landscape models,14 and niche-based models of species

response to climate and land-use change.15 There has been a

strong focus on developing comprehensive modeling tools

from empirical evidence,16,17 but, until now, far less effort has

been dedicated to exploring the uncertainties within these

models, especially when used to quantify scenarios.

Identifying and quantifying future uncertainties may be key in

achieving buy-in from stakeholders, to prompt evidence-based

decision-making, and to shift mindsets on the perception of

the future threats to biodiversity, ecosystems, and ecosystem

services. To increase the influence of scenario and modeling an-

alyses on policy and to trigger appropriate management re-

sponses, the Intergovernmental Science-Policy Platform on

Biodiversity and Ecosystem Services (IPBES) has strongly

encouraged the use of scenarios and models, but warns that

these ‘‘should be applied with care, taking into account uncer-

tainties and unpredictability associated with model-based pro-

jections.’’3 A critical challenge for improving scenarios and

models of socio-ecological systems is to augment the scientific

capacity in quantifying the uncertainty within and among model

projections.18

Here, we review the current state of knowledge about the un-

certainties associated with scenarios and models of socio-

ecological systems within the context of decision-making, by

which we mean the policy decisions made within private or pub-

lic sector organizations. In doing so, we seek to address some of

the key challenges raised by Elsawah et al.19 that relate to uncer-

tainty, such as the role of stakeholder engagement in the co-

development of scenarios, linking scenarios across multiple

geographical, sectoral, and temporal scales, improving the links

between qualitative and quantitative scenarios, addressing sur-

prises, addressing scenario consistency, communicating sce-

narios, and linking scenarios to decision-making. We do not

aim to undertake an exhaustive evaluation of scenarios and

model types. Instead, we use examples from a very wide range

of scenarios and models to illustrate a comprehensive review

of sources of uncertainty. A comprehensive review of sources

of uncertainty in scenarios and models does not require a

comprehensive review of scenarios andmodels. A wider ranging

review can be found in the IPBES3 assessment of scenarios and

models.

We provide an overview of how uncertainty is treated within

socio-ecological systems analysis and how understanding these

uncertainties can enhance confidence in the creation of the next

generation of scenarios andmodels. This is novel in both tackling

a comprehensive review of sources of uncertainty in scenarios

and models, exploring the implications of these uncertainties
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for decision-making and in setting out a number of potential so-

lutions and recommendations for how to deal with these uncer-

tainties.

TYPES OF UNCERTAINTIES

We focus on three categories of uncertainty: scenario uncer-

tainty, model uncertainty, and decision-making uncertainty

(see Table 1) across terrestrial and marine realms. We explore

the whole chain of steps needed to create socio-ecological sce-

narios and models that are useful for decision-makers, from

narrative storylines, the representation of human and biological

processes in models, the estimation of model parameters, and

model initialization and evaluation. Some of these sources of un-

certainty relate to differences in worldviews, some to the limits of

our current knowledge and others to our capacity to represent

processes within models, including the reliability of model input

data across spatial and temporal scales. Figure 1 shows the

types of uncertainty (from Table 1) in the steps from observa-

tional data, model development, the construction of qualitative

storylines and quantitative scenario projections that together

provide input to decision-making.

SCENARIO UNCERTAINTY

Linguistic uncertainty
Linguistic uncertainty has been classified into five distinct types:

vagueness, context dependence, ambiguity, indeterminacy of

theoretical terms, and under-specificity.20 Of these, ambiguity

and vagueness arguably occur most commonly, largely because

scenario terminology is often based on common language

words. Indeed, the word ‘‘scenario’’ itself derives from the lan-

guage of the theater. Yet, different communities can sometimes

attribute different meanings to the same ‘‘precise’’ word, i.e.,

their use is ambiguous. For example, the word ‘‘pathways’’ is

used as a synonym for ‘‘projections’’ or ‘‘trajectories’’ (as in the

shared socio-economic pathways),21 or alternatively it is used

to describe a set of time-dependent actions that are required

to achieve a future vision.2 Using the term in one sense can

lead to confusion if it is interpreted as being used in the other

sense. Vagueness relates to statements with insufficient preci-

sion. For example, ‘‘population growth will increase strongly

over the coming 50 years’’ tells us nothing about what a strong

population growth actually looks like. Is it a doubling of popula-

tion, or tripling, or something else? These different types of lin-

guistic uncertainty commonly occur in narrative storylines, and

they are especially important considerations when communi-

cating the outcomes of scenario processes to decision-makers.

Recent development of information technology provides a

means to minimize linguistic uncertainty by building ontologies,

i.e., an ensemble of formal definitions of concepts and their rela-

tionships within the domain of interest, and their synonyms or

equivalents in closely related domains. While domain-specific

ontologies exist in ecology that facilitate data mining and

sharing,22 to our knowledge, there is no widely accessible

controlled vocabulary or thesaurus standardizing the meaning

of the basic concepts used in scenarios of socio-ecological sys-

tems, as is the case with ontologies related to the Intergovern-

mental Panel on Climate Change (IPCC).23



Table 1. Sources of uncertainty and their description in scenarios and models of socio-ecological systems

Uncertainty sources Description Uncertainty types

Scenario uncertainty The qualitative description of alternative worldviews and

their development into the future and the quantification of

model input parameters that are conditional on these

descriptions.

Linguistic uncertainty. The use of similar terms to mean

different things in different research communities, e.g.,

pathways, ensembles, boundary conditions.

Narratives storyline uncertainty. The limits to imagining

unknown futures (e.g., unknown unknowns). This can

relate, for example, to alternative worldviews or the

uncertainties associated with participatory processes

arising from internal consistency and knowledge

limitations.

Scenario parameter uncertainty. The estimation of

quantitative parameters from narrative storylines that are

subsequently used in models. Scenario parameter

uncertainty follows from the interpretation of quantitative

values from qualitative narratives, e.g., the number of

people in a ‘‘high population growth’’ scenario.

Model uncertainty The representation of processes in models and how this

is done.

Structural (epistemic) uncertainty. The uncertainties

associated with the choice and the representation of

processes in models.

Input data uncertainties. The variability in baseline data

conditions that are used to initialize a model, including

thematic classification, i.e., how classes are defined in, for

example, land-use maps.

Error propagation uncertainty. The amplification (or

dampening) of the transmission of errors across multiple

coupled models. The role of meta-modeling and indirect

effects (such as cross-sectoral interactions).

Decision uncertainty Communicating and translating the results of scenario and

modeling studies into decision-making.

Data interpretation for decision-making. Selective use of

data or information from different sources and their

interpretation.

Analyzing at relevant spatiotemporal scales. The selection

of spatiotemporal scales at which simulated data are

analyzed, and the granularity of derived indicators (e.g.,

level of integration across biodiversity facets, merging

subsets of ecosystem services).

Decision-making tools. The variety of decision-supporting

methods, e.g., multi-criteria decision analysis.
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Narratives storyline uncertainty
The first step in the construction of scenarios is often the devel-

opment of qualitative, narrative storylines.5 These describe

alternative trajectories in the key drivers of change (and their in-

teractions) with a focus on socio-economic change. Socio-eco-

nomic trajectories can also be associated with changes in phys-

ical conditions, such as climate change, where a change in

climate is assumed to be internally consistent with drivers of,

for example, societal consumption patterns and industrializa-

tion.24 The uncertainties associated with the development of

narrative storylines arise from how to create this internal consis-

tency usingmental models,25 aswell as the difficulty of imagining

futures for which there are no historical analogs and representing

a sufficient range of possible futures.26,27 This affects the ‘‘plau-

sibility’’ of narrative storylines in terms of whether the assumed

causal relationships reflect real-world development, or the

worldviews of the storyline developer. A particular case of this

problem are ‘‘black swans,’’ which reflect shocks or surprises

to a system, i.e., events that are unexpected or assumed to

have a low probability of occurring, but which have a high
impact.28 Black swans by their very nature can be difficult to

anticipate or imagine, and are often unprecedented historically.

The most appropriate way of dealing with uncertainties in

storyline development is to clearly state and document the as-

sumptions that underpin a narrative, and to communicate these

assumptions when reporting a scenario study.29

Most narrative storylines focus on the supply side of natural

resource systems (e.g., crop production or fish harvesting),

and say little about the demand side (e.g., consumption patterns,

such as dietary preferences) or the economic and institutional

transformations that implicitly underlie the storylines. Although

many ‘‘stylized’’ scenarios exist for diets, e.g., what would be

the consequences for biodiversity of people becoming vege-

tarian or vegan,30,31 these do not account for the transitions

from where we are today to this assumed future situation.32

Hence, the uncertainties associated with these transitions are

not explicit.

Existing storylines of marine ecosystems largely focus on a

narrow set of direct drivers, such as fishing or climate change,33

or short-term policy interventions (such as protected areas or
One Earth 4, July 23, 2021 969



Figure 1. Sources of uncertainty in scenarios
and models of socio-ecological systems
within the context of decision-making
The circled sources of uncertainty are addressed in
the main text: purple refers to scenario uncertainty,
blue to model uncertainty, and orange to decision
uncertainty.
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management of fishing effort). Moreover, the consideration of in-

direct drivers, such as seafood demand from changes in popu-

lation, consumption patterns or international trade, are not

explicit in most marine storylines. Recent studies increasingly

focus on expanding the scope of uncertainties by developing

storylines that consider multiple drivers and policy interventions,

in particular the interactions between climate change, fishing,

and management.34–36

Terrestrial studies have a longer tradition of evaluating multi-

ple, often cross-scale drivers in developing narrative story-

lines.37 However, uncertainties arise from an overreliance on

climate change as a driver, and not accounting for other drivers

that are critical for socio-ecological systems, such as invasive

alien species, trade in wild species, or air and water pollution.2

Furthermore, uncertainties also arise from failure to account for

indirect, cross-sectoral interactions.37

Participatory approaches, by which narrative storylines are

co-created with stakeholders, add richness and diversity to

storyline development, and strengthen the link between story-

lines and scenario quantification with models,38 but are highly

dependent on the selection of individual stakeholders and the

extent of their explicit and tacit knowledge. Stakeholder map-

ping exercises38 that seek to maximize stakeholder diversity

are one way of resolving this problem. Participatory approaches

are well developed in the marine realm, especially in fisheries

management and marine spatial planning.39,40

Scenario parameter uncertainty
Simulation models can quantify the outcomes of narrative story-

lines for specific indicators. This requires the translation of the

qualitative statements within a storyline into quantitative model

inputs, which in itself has potential to introduce additional uncer-

tainties.5 We draw a distinction here between ‘‘scenario param-

eter uncertainty’’ and ‘‘model parameter uncertainty.’’ Scenario

parameter uncertainty derives from the translation of qualitative

narratives into quantitative values, and so is dependent on the

scenario itself, i.e., the quantitative values vary across scenarios.
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For example, a scenario parameter could

be the number of people in a high,medium,

or low population growth storyline. In gen-

eral, scenario parameters relate to the

socio-economic components of socio-

ecological systems and may themselves

be model inputs. Model parameter uncer-

tainty refers to the estimation of parame-

ters within the functions that represent

modeled processes, e.g., a rate constant

or capacity, and often, but not always,

relate to the biophysical components of

socio-ecological systems. Hence, model
parameter uncertainty depends on the system and the model

of that system, and is independent of a scenario. Scenario

parameter quantification often uses best-guess estimates that

sometimes draw on uncertain, historical analogs. However, the

majority of these studies do not account for the uncertainties

associated with the process of estimating scenario parameters

themselves. A few exceptions to this have defined ‘‘credible’’

parameter ranges,41 or have used conditional probabilistic fu-

tures methods.42

In the conditional probabilistic approach, probability distribution

functions (PDFs) are created for the scenario parameters that are

conditional on the assumptions within a scenario storyline, thus re-

flecting the uncertainty range in the estimation of a scenario param-

eter.42–44 When combined with Monte Carlo sampling across the

PDFs and multiple model simulations this approach is able to

explore the range of scenario outcomes that are contingent on

the uncertainties of scenario parameter inputs, although subjective

assumptions and choicesmade inMonteCarlo sampling can intro-

duce uncertainty in model outcomes.45 Conditional probabilistic

approaches have been used to explore whether scenario param-

eter uncertainty leads to divergent or (more commonly) convergent

outcomes across scenarios.43 Being computationally intensive,

this method is less tractable for models with long run times, which

constrains its application for many large-scale models. However,

run times are also affected by the temporal and spatial resolution

as well as the spatial extent of a model, and computational capac-

ity is becoming increasingly less important.

Apart from these examples of scenario parameter uncertainty

being quantified and communicated, there is little quantification

of the uncertainties arising from different management and pol-

icy actions to achieve stylized scenarios,2 e.g., assumptions of

vegetarianism,31 maximizing long-term fishing catches,46 and

the rate of change in fishing technologies that have been identi-

fied as key drivers of increasingly effective fishing effort that

impacts marine biodiversity.47 Management practices are espe-

cially important when representing adaptation processes within

models in which responses are consistent with time-varying,
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scenario-specific barriers and enablers, e.g., societal values and

governance.48 Overall, there are considerable gaps in current

knowledge about scenario parameter uncertainty.

Model uncertainty
Structural uncertainty

Models simplify the representation of the real world in different

ways and so produce different responses to the same scenario

assumptions. These responses depend on how amodel is struc-

tured and parameterized and on the timescale, all of which can

lead to structural model uncertainty. Hence, modeling is the art

of making choices in a given context, and structural uncertainties

reveal the variety of these choices.49,50 The more knowledge we

try to formalize within models through process-based under-

standing, the more uncertainty we may potentially cause or

reveal. One could argue that simple, parsimonious models are

better than complex models for robust forecasting,51,52 but there

is no universal evidence of a relationship between model

complexity and model robustness. Parsimonious models that

are based on observed trends may lead to low uncertainty within

the range of conditions for which they were calibrated, but can

lead to high uncertainty when applied over longer timescales

or in scenarios with large deviations from current trends.53,54

However, focusing on parsimony misses the point about why

we build models. We model to experiment with elements of the

natural world to explore, explain, and understand how they

work.51

Many models of climate, land use, and biodiversity are

increasing in complexity by the addition of components, pro-

cesses, and model coupling.55–57 More complex models may,

arguably, be better at representing system dynamics over longer

time scales or under changing conditions than simpler models.58

For example, oversimplifying biodiversity representation in

vegetation models has long been an impediment to detailed un-

derstanding and robust projections of ecosystem dynamics and

distribution.59,60 This has motivated a finer representation of

species or traits diversity,61–64 which allows better exploration

of the role of the interactions between diversity and ecosystem

functioning in shaping the future of natural systems.65,66 Howev-

er, this does not necessarily lead to less uncertainty, since the

representation of feedbacks and path dependency may lead to

dramatic changes in system behavior, potentially increasing

the range of possible responses and associated uncertainty.

Furthermore, increasing model complexity may also lead to

problems with the traceability of the origins of uncertainty and in-

consistencies between different model components.67 These

problems may be further compounded within models that

include stochastic process representations, leading to internal

variability and multiple model outcomes. However, stochastic

approaches based, for example, on Monte Carlo methods can

be useful in representing uncertainty in model structure.68

Models can support improved understanding of how resource

management can adapt to environmental change and thereby

inform decision-making and policy processes. However, a better

representation of adaptation processes is required in models in

general. For example, substantial differences have been found

between the extensive, available empirical knowledge about so-

cietal adaptation processes and their representation in models

of land and water sectors.69 Only a minority of models take ac-
count of the management choices that underpin adaptation

measures or the constraints (financial, institutional, social, etc.)

that may limit the uptake and effectiveness of adaptation;70 fac-

tors that are likely to be influenced (positively or negatively) by

the scenario setting. The pervasiveness of simplistic, over-opti-

mistic approaches to simulate the role of adaptation in reducing

impacts and vulnerabilities or in exploiting the benefits associ-

ated with climate and socio-economic changes means that

studies may produce findings that cannot meaningfully inform

decision-making about appropriate adaptation strategies.

Incremental model improvement aims to increase a model’s

ability to predict plausible responses to uncertain, environmental

change conditions. The drawback of incremental improvements

is that they can cause ‘‘lock-in’’ of an existing model structure or

ways of doing things.71 Moreover, even incremental changes in

model structure require substantial investment in time and effort.

The exploration of alternative structural specifications in models

is often done for local- to regional-scale studies.72–74 At the

global level, the investment required to build new models may

be substantially larger than maintaining existing models.

Global-scale models often need long-term institutional funding,

thus limiting the number of research groups that have the capac-

ity for such effort. Hence, the diversity of model structures and

modeling paradigms is low in global-scale modeling compared

with regional-scale models.75 For example, many global-scale

economic models still use optimization approaches based on

the assumptions of neoclassical economics that are known to

be limited.76

Better understanding of structural uncertainty is often

achieved by trying to learn from model inter-comparison exer-

cises7,77 (see Box 1) for the comparison of model results with

observed data.78,79 Model inter-comparisons and the closely

related ensemble modeling approach have proven highly bene-

ficial for improving the credibility of climate change projections,

such as through the Coupled Model Inter-comparison Project

(CMIP).80 Similar multi-model efforts, in which different models

that address a similar question are run using a standardized

simulation protocol and the same input data, are only starting

for impact models projecting future terrestrial2,75 and marine

biodiversity (Fish-MIP).33,81

The comparison of model outputs with observational data,106

or benchmarking, can provide pointers toward the conditions

under which a model performs better or worse, as well as

revealing the sources of uncertainty. Diverse sets of observa-

tions are needed to assess both the magnitude and seasonal

and interannual variability of modeled outputs.82 Specialized ex-

periments, such as free-air carbon enrichment studies, herbivore

exclosures, or remotely sensed trait information90–92 can also be

used to test the realism of specific simulated processes. Taken

together, these datasets can be used to test whether models

correctly capture existing relationships between variables (or

incorrectly assume existing relationships, which are not sup-

ported by observations). At least for vegetation models, studies

have begun to systematically explore the use of scoring of model

performance against a range of observations.82 Two further

common approaches to model improvement are: (1) the addition

or re-specification of certain model components and (2) the sim-

ple calibration of model parameters to increase the model fit to

data. Calibration may lead to either overfitting of the model or
One Earth 4, July 23, 2021 971



Box 1. Model benchmarking, inter-comparison projects, and ensembles

Benchmarking is the repeated confrontation of models with a range of observations to establish a track record of model develop-

ments. Observational datasets in themselves are uncertain,82,83 so benchmarking needs transparent information on which obser-

vations were used. Some global models already routinely undergo a systematic confrontation against data when new processes

are added (e.g., for the terrestrial carbon cycle).84–89 Recent approaches allow scoring of model performance against a wide range

of observations for global vegetation models.82 Observational data for benchmarking include multiple-site and remote-sensing

products of, e.g., fraction of absorbed photosynthetically active radiation, gross primary productivity, net primary productivity,

burnt area, river discharge, or atmospheric CO2 concentration. Specialized experiments or datasets, such as free-air carbon

enrichment studies, herbivore exclosures, or remotely sensed trait information90–92 can also be used to test the realism of specific

simulated processes. Diverse data are needed to assess both magnitude and seasonal and interannual variability of modeled pro-

cesses.82 These datasets can be used to test whether models correctly capture existing relationships between variables (or incor-

rectly assume existing relationships, which are not supported by observations). Physics, climate, and biogeochemistry observa-

tions are generally more numerous, systematically measured, and available on different spatiotemporal scales, whereas

biodiversity data are more disparate and contain many gaps (e.g., the GOOS marine initiative),93 so benchmarking is much

more challenging for biodiversity models.

In models of climate, oceans, and ecosystem dynamics, stochastic sensitivity analyses (sometimes called ‘‘perturbed physics ex-

periments’’) are applied (see also section parameter uncertainty) where model-internal parameter values are sampled across a

parameter-space to explicitly and transparently test parameter-value uncertainty.94 These analyses are computationally expen-

sive and, so, have not been sufficiently exploitedwith coupled and integratedmodels. But, a number of studies have demonstrated

their application both in offline models (e.g., related to vegetation or land-use change modeling) and in coupled models (e.g.,

related to carbon cycle-climate feedbacks).42,44,95–98 Results help to identify those parameters to which a model is most sensitive,

but can also inform sensitivity analysis of other models for those values. The outcomes aid the interpretation of, e.g., model en-

sembles as the magnitude of uncertainty seen in a single model’s output from stochastic parameter sensitivity analysis can be

compared with the spread in output within a model ensemble.

The currently most widely used approaches to quantify model uncertainty in climate change, land-use change, exploitation, and

ecosystem modeling are inter-comparisons and model ensembles.7,99–102 Ensemble modeling has proven highly beneficial for

improving the credibility of climate change projections with international model inter-comparison efforts such as the Coupled

Model Inter-comparison Project (CMIP).80 It is only starting for impact models projecting future terrestrial2,75 and marine biodiver-

sity (Fish-MIP).9,103 In model inter-comparisons, different models that address a similar question are run using a standardized

simulation protocol and the same input data. Output comparison helps to identify whether models agree or disagree in the simu-

lated time series or spatial patterns. In some cases, an ensemblemean is used based on the notion that the average across a range

of models would ‘‘average-out’’ some of the structural and parameter-related uncertainties and yield more robust results.15,94,104

However, the comparison between individual models and the ‘‘ensemble mean’’ might unintentionally also lead to themodel being

‘‘re-tuned’’ to fit better to the average model response. Furthermore, ‘‘families’’ of similar models (or with similar development her-

itage) tend to bias themean, as they are each given the sameweight as a genuinely different model. So far, most ensemble studies

do not identify and exclude (or give different weight to)models that fail to fulfill certain quality-assurance criteria (based on scores in

a benchmarking exercise). This has started, however, to be the case for the terrestrial models used in the annual global carbon

budget calculation.105 In view of the often still untested model structural and parameter uncertainties, deriving probabilistic esti-

mates of uncertainty from model ensembles must be viewed critically.94
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to issues relating to equifinality. In overfitting, a calibrated model

may represent a specific place and time very well, but it sacri-

fices generality when applied to other places and times. The

comparison between individual models and an ‘‘ensemble

mean’’ might unintentionally also lead to the model being ‘‘re-

tuned’’ to fit better to the average model response.

Equifinality occurs when different functional or process repre-

sentations in a model lead to the same outcome.107–109 This re-

duces the range of the modeled outputs, but at the same time

may conceal structural uncertainty, since it can be difficult to

track whichmechanisms within amodel lead to the equifinal out-

comes. The effect of equifinality can be evaluated by comparing

the overall model outcomes against independent datasets,58 but

also by comparing different process representations within the

model itself. This is important when assumptions are made, for

example, in how to model the management choices that under-

pin land-use change.110 While different approaches to repre-
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senting management choices may, in the short term, lead to

similar land-use outcomes, they may wrongly represent longer-

term adaptation and behavior under resource constraints. In

this case, empirical data on management choices may be

more useful in validating the model process than validating the

short-term model outcomes.

In a review of land-use models, little over half were validated

independently, and many conflated calibration with valida-

tion.70,111 Although this can be explained to some extent by

the limited availability of consistent empirical datasets for

different time periods, it still increases the risk of overfitting in

many model applications. In other words, a model both trained

and validated on historical data may not accurately project the

full range of outcomes in a non-stationary future. However, cali-

bration to improvemodel fit can, in part, compensate for the sub-

jective decisions made by modelers concerning the selection of

observed input datasets (e.g., which meteorological, economic,
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or demographic variables), alternative process algorithms (e.g.,

reference evapotranspiration), and initial conditions (e.g., land-

use classes and their distribution).112,113 Nevertheless, the con-

sequences of these choices may still be unclear when the model

is perturbed beyond the historical conditions represented in the

calibration data, leading to potentially large uncertainty in the

magnitude and direction of impacts.113

Input data uncertainty
It is difficult to decouple model structural uncertainty frommodel

input data uncertainty, since models with a different structure

commonly use different input data.7,104 Models of socio-ecolog-

ical systems are data demanding for parameterization, calibra-

tion, and initialization of simulations, including large demands

for baseline data. Uncertainties in the use of data can emerge

frommeasurement errors, data scarcity, or a mismatch between

the resolution and scope of the available data, and the needs of

the model. These uncertainties are amplified when models

include additional processes, represent processes at finer

spatial scales, or expand the spatial and temporal scope of sim-

ulations. For example, data availability has been assessed for

several mechanisms known to play a key role in mediating spe-

cies responses to climate change, such as physiological pro-

cesses, evolutionary potential, and species interactions.114

Even for the best-studied species, data were at best incomplete

if not entirely absent. In recent years, the scientific community

has gone to great lengths to increase access to biodiversity

data through the development of networks of high-quality moni-

toring systems (observation systems, instrumented sites, and

remote-sensing sensors),115–118 data repositories (e.g., GBIF.

org; obis.org), or citizen science programmes.119–121

For correlative species distribution models,122,123 the lack of

accuracy and comprehensiveness of the species data and of

the relevance and completeness of the predictors can critically

impact the relevance of the fitted niche models and hence of

the resulting outcomes.124,125 Data deficiencies and biases in

this specific approach include samples of species’ occurrences

that are too small or do not include absences, or have missing

covariates; the latter being known to introduce significant spatial

correlation in the errors of the analysis.126–129

Trait-based approaches have been developed to leverage

limited data and allowmodel prediction for a broad range of spe-

cies, including poorly studied ones. Traits are individual features

that inform individual performance.130 Both correlative and pro-

cess-based models have used trait parameters to simulate

higher-level processes. This includes population growth rate or

range shifts in plant,64,131–133 fish,134–136 or reptile and

amphibian communities.137 Trait data availability is increasing

rapidly (e.g., open digital repository;138,139 www.fishbase.org),

but it remains highly variable across taxonomic groups and

geographic areas. It is also strongly correlated with the ease in

measuring traits: so-called ‘‘soft’’ structural traits have been

more often measured than ‘‘hard’’ physiological traits, although

the latter often provide key information on species responses

to non-present analog conditions, such as tolerance to

drought or higher temperatures.140–142 In addition, functional

ecologists often report species mean trait values, resulting in a

lack of assessment of intraspecific trait variability142 despite

increasing evidence for its role in species adaptation and coex-
istence.143–146 These are both crucial in establishing biodiversity

projections.147

Uncertainties related to initial conditions are less well studied

in socio-ecological models,148 although they have been identi-

fied as important in some studies. For example, variability in

the data used to represent initial land-use conditions between

different models of land-use change contributed a substantial

part to the variation across future land-use projections7 with

distinct spatial differences in the level of uncertainty.104 Differ-

ences in initial data can arise from different definitions of the

same land cover type and different data acquisition ap-

proaches.7,104 Similarly, errors in the initialization of forest struc-

ture in large-scale simulations of vegetation models can result

from limited sampling and coarse resolution (for example, of

large-scale, remote-sensing products), and have been found to

propagate in subsequent model prediction uncertainty.73,149,150

Several methods are available to address input data uncer-

tainties. Hierarchical modeling techniques and other statistical

methods can address different sources of uncertainty explicitly

in modeling frameworks.146,151,152 Sensitivity and uncertainty

analyses43,153,154 can help identify and prioritize the need to

reduce parameter uncertainty given limited time and resources

and hence guide the empirical effort of data collection through

iterative cycles of data-model fusion.16,155,156 In stochastic

sensitivity analyses (sometimes called ‘‘perturbed physics ex-

periments’’; see Box 1) model-internal parameter values are

sampled across parameter-space to explicitly and transparently

test parameter-value uncertainty.94 These analyses are compu-

tationally expensive and, so, have not been sufficiently exploited

with coupled and integrated models. But, a number of studies

have demonstrated their application both in offline models

(e.g., related to vegetation or land-use change modeling) and

in coupled models (e.g., related to carbon cycle-climate feed-

backs).42,44,95–98 Results help to identify and rank those param-

eters to which a model output is most sensitive, but can also

inform sensitivity analysis of other models for those values. The

outcomes aid the interpretation of, e.g., model ensembles as

the magnitude of uncertainty seen in a single model’s output

from stochastic parameter sensitivity analysis can be compared

with the spread in output within a model ensemble.

Data assimilation techniques can bridge the gap between data

availability and model requirements. In particular, inverse

modeling, such as approximate Bayesian computation use a

wide range of data to refine values of input parameters.157–160

With these methods, parameter distributions provided by the

available data (prior parameter estimate) are iteratively adjusted

(posterior parameter estimate) by comparing simulation outputs

with observed data at different scales, e.g., element fluxes

derived from eddy-flux measurements,161 tree size distribution

derived from inventory data,162 or remote-sensing products.163

A promising avenue in terms of data assimilation is the spec-

trometry imagery of functional diversity,90,164 which, at least for

terrestrial ecosystems, can help to bridge the gap between

biodiversity data available from field surveys and the amount of

data required to better control for uncertainty in continental-

and global-scale models. This raises new technical challenges

in terms of data standardization (corrections and inter-calibra-

tion of remote-sensing images) and methods for data extrac-

tion.165 It also raises the issue that the input data themselves
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often derive from modeled products. For example, in modeling

the terrestrial C-cycle, the same level of uncertainty is possible

for several DGVMs forced by the same climate scenario (based

on a single emissions scenario and climatemodel), as for a single

DGVM forced by inputs from several climate scenarios (with

different emissions and climate models).166

Error propagation uncertainty
Uncertainties from error propagation arise in coupledmodel sys-

tems when the inputs to one model (e.g., a model of climate im-

pacts on ecosystems) derive from the outputs of another model

(e.g., a climate model). In some cases, several models are

coupled together leading to serious error propagation especially

at the end of the chain of coupled models.167,168 Error propaga-

tion becomes even more important when there are dynamic

feedbacks between models.

Coupled models are common in integrated assessment,

which seeks to explore the interactions between, as well as

within, different socio-ecological systems.56 Integrated assess-

ment models (IAMs) focus, for example, on the connections be-

tween the economy, the energy system, and land cover

change169 at global-scale levels. However, regional IAMs have

also demonstrated the importance of adopting a cross-sectoral

approach for impact assessments.37 Indeed, the impacts of

climate change as reported by the IPCC may be over- or under-

estimated because they fail to account for cross-sectoral inter-

actions.37 A source of uncertainty in coupled models is when

simplified, meta-models replace complex models to facilitate

data flows across systems.37,153 However, these uncertainties

may be acceptable since the indirect effects of one sector on

another sector are often more important than the changes within

a single sector itself.37 Similar issues arise for models that do not

consider cross-scale impacts, since one scale level is highly

dependent on the boundary conditions defined by a higher-scale

level.76

Different methods can evaluate the uncertainties arising from

error propagation, with qualitative methods being of particular

utility. Dunford et al.168 combined formal numerical approaches,

modeler interviews, and network analysis to provide a holistic

uncertainty assessment of a regional integrated assessment

model that considered both quantifiable and unquantifiable un-

certainty. Maps of modeler confidence (the counterpart of

uncertainty) were created from fuzzy-set methods and network

analysis to show that validation statistics are not the only factor

driving modeler confidence. Several other factors, such as the

quality and availability of validation data, themeta-modeling pro-

cess, trust between modelers, derivation methods, and prag-

matic factors, such as time, resources, skills, and experience

were also found to be important.168

For most simple models (e.g., linear Gaussian models), the

variance of the prediction associated with error propagation

can be computed analytically, paying attention to the depen-

dence between variables and the associated covariance.170 In

the majority of cases, modeling involves complex models that

are non-linear and non-Gaussian for which variance computa-

tion is analytically intractable. In such cases, error propagation

can be evaluated through simulation using, for example, Monte

Carlo methods.171 A Monte Carlo-based approach to evaluate

the propagation of uncertainties in a regional integrated assess-
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ment model, showed that, rather than the uncertainties ‘‘explod-

ing’’ in importance, there was convergence across a range of

contrasting scenarios.43 This implies that if fully understood, un-

certainties arising from error propagation can be managed suc-

cessfully. However, the assessment of error propagation

through simulation is computationally demanding and, in gen-

eral, only applicable to models with rapid run times.

Model output-input chains and feedbacks can become com-

plex and lead to unacceptable levels of uncertainty for deci-

sion-making.168 Where possible, major sources of uncertainties

(data, model, parameters) should be identified a priori to allow

propagating errors with a minimum number of simulations.

Comprehensive sensitivity analysis is also useful in identifying

emergent uncertainties.153 Structured sensitivity analysis (also

referred to as scenario-neutral approaches and impact-

response surfaces) is valuable in evaluating whether the emer-

gent behavior in coupled models as a response to simple

perturbations is consistent with understanding or influenced by

error propagation, although sensitivity analysis as a method

has been criticized.172 Hierarchical Bayesianmodels can be use-

ful tools to incorporate and propagate errors from multiple sour-

ces (data, parameters, models), through the computation of the

predictive posterior distribution.173

UNCERTAINTIES IN DECISION-MAKING AND DECISION
METHODS

Intrinsic uncertainties in decision-making
Uncertainty pertaining to environmental processes and ecolog-

ical theory is interesting from an academic perspective, but it

becomes a practical issue when it impinges on the ability of man-

agers, planners, and policy makers to make relevant science-

based decisions to achieve societal objectives.

Despite multiple uncertainties, decisions are still made about

natural resource management. However, the decision-making

process is itself messy and difficult to predict, depending as it

does on the context, on the individuals involved (with their

conscious and unconscious biases), on the breadth of values

attributed to nature (including non-quantifiable ones), on the effi-

cient exchange of knowledge between science and policy, and

on time lags in policy implementation.174 Decision-making is

often disorganized and politicized, and has to deal with many

trade-offs, as well as co-benefits, making it difficult to generalize

about how uncertainty in scenarios andmodels affects decision-

making processes. There is a significant body of work in decision

theory and operations research on dealing with epistemic uncer-

tainty in decision-making. However, further understanding is still

needed on the relationship between science and the social and

political processes of decision-making, and this is an important

area of future research in environmental management.

What can be stated is that different degrees of uncertainties

and levels of controllability may be more effectively managed

by different strategies and approaches.3 Controllability here re-

fers to the degree of control that a decision-maker has over

the system being managed. Controllability tends to be higher

when decision horizons are shorter, when the decision-maker

has direct and sole jurisdiction over the places and/or resources

being managed, or when stakeholders do not vary widely in their

aspirations for the outcomes of management. Controllability
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covaries with uncertainties over temporal and spatial scales. It

tends to be higher at local and national scales relative to regional

and global scales.175When the system is highly controllable, and

uncertainties about the future are low, it may bemost effective to

implement optimal control tactics. Optimal control tactics gener-

ally involve ‘‘predict-then-act,’’ such as determining catch or

fishing quotas.176 In situations where controllability is low and

uncertainty is high, robustness analysis177 in support of scenario

planning178 may be favored.179

In this section, we further discuss how uncertainties in

scenarios and models can contribute to decision-making uncer-

tainty, as well as the tools that are available to address these un-

certainties and their limitations.

How uncertainties are communicated to decision-
makers
How uncertainties are accounted for in decision-making is

strongly dependent on how these uncertainties are communi-

cated to decision-makers. In international science-policy pro-

cesses, such as IPCC or IPBES, formalized uncertainty language

is used to communicate levels of confidence in the assessment

of scientific evidence,180 including results from scenarios and

models. This approach is generally qualitative, although at-

tempts have also been made to use quantitative probabilistic

statements. Whether this approach is effective in communi-

cating uncertainty to policy communities is debatable,181

although some benefit to decision-makers is likely since govern-

ment-approved assessment reports continue to use uncertainty

language.

How uncertainties are accounted for in decision-making is

also strongly dependent on how these uncertainties manifest

into the different indicators that are provided to decision-

makers, e.g., Living Planet Index,182 species richness,183 extinc-

tion risk,184 and monetary value of ecosystem services.185

Communicating alternative scenario outcomes thus requires

appropriate indicators that are understandable and meaningful

to decision-makers, and above all responsive to different drivers

in an expected way, i.e., with low uncertainty. Within the same

scenario or model, the way the output variables are transformed,

integrated, and combined into indicators does not result in the

same level of uncertainty,186 or in the same strength of the

signal-to-noise ratio.185 The granularity of an indicator can be

key (from population, to multispecies, to whole community level

for example), as well as the choice of the spatial and temporal

scales at which it is integrated. The portfolio statistical concept

developed in economics and used by analogy in ecology, ex-

plains why dynamics may be extremely volatile at small scales

(and high biodiversity granularity, e.g., population biomass),

but less variable at more aggregated scales (and low biodiversity

granularity, e.g., community biomass).187 International initia-

tives, such as the Group on Earth Observations Biodiversity

Observation Network (https://geobon.org), the Global Ocean

Observing System (www.goosocean.org), and the Biodiversity

Indicators Partnership (www.bipindicators.net), have proposed

a number of indicators and essential biodiversity variables to

characterize changes in biodiversity status under global change.

However, the selection of indicators has been donemostly under

the criteria of measurability and accessibility at the global

scale,116,118 but the performance of indicators in capturing
changes and associated uncertainty have rarely been tested in

a systematic way.188,189

It is not possible to say whether communicating to decision-

makers the uncertainties in scenarios and models of socio-

ecological systems actually changes decision-making in practice

or not. There is no objectivemeasure of the ‘‘success’’ of commu-

nicating uncertainties, nor is there a counterfactual to explain

whether alternative decisions would have been made in the

absence of knowledge about uncertainties.

How decision-making tools address uncertainties
A great number and variety of tools exist to support decision-

makers in dealing with various kinds of uncertainty when making

decisions.6 A key role of decision support tools is to provide a

framework that allows decision-makers and stakeholders to

separate deliberations about what represents a desired outcome

(competing objectives and preferences that arise from differing

values) fromdeliberations about the facts of thematter; the prob-

ability that a particular course of action will result in a particular

outcome. Therefore, it can be useful to think about different de-

cision support tools in terms of how they deal with competing

values and uncertainty (see Figure 2).

Decision support tools vary in terms of how they deal with

spatial scale and extent, cultural and administrative

complexity, multiple stakeholders, and competing values and

uncertainty.6 In Figure 2, we outline a small sample of the deci-

sion support approaches that deal with uncertainty to varying

degrees with the aim of highlighting the breadth of opportu-

nities for addressing competing values and models using exist-

ing decision support approaches, and these approaches are

summarized in Table S1.

Despite the widespread development of decision support

tools, the capacity of these tools to support objective deci-

sion-making may often be limited, especially where high levels

of complexity and uncertainty make interpretability difficult. For

example, when uncertain trade-offs between different

ecosystem services are at stake, tools designed to support de-

cisions are usually required to impose artificial boundaries or

quantifications, and to limit and render comparable the broad,

diverse range of services in question.190–193 This implicitly in-

volves the same value-based judgment under uncertainty that

a decision-maker would be faced with in the absence of such

a tool, but often obscures its subjective nature. More system-

atic biases also exist. Knowledge about socio-ecological sys-

tems is growing so rapidly and on so many fronts that it is

very difficult to capture accurately. Social science knowledge

in particular is consistently neglected, perhaps because most

tool developers are natural scientists.194,195 This also contrib-

utes to the neglect of cultural services, and their uncertainties,

in ecosystem services assessments.196 Even tools that

sacrifice coverage are likely to prove to be too complex and un-

certain to be used and understood by stakeholders as originally

intended.190

Decision support tools therefore run the risk of obscuring

uncertainty and subjectivity rather than helping to overcome

it. This can be revealed, and to some extent overcome, where

tools are used in participatory settings that allow for interroga-

tion of assumptions, representation, and outcomes by a range

of stakeholders.197 Comprehensive uncertainty evaluation can
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Figure 2. A sample of decision tools to
support decision-making in the presence of
competing values and uncertainty
See Table S1 for tool summaries and key refer-
ences. Optimization approaches (orange) are a
broad family of approaches that utilize either simple
(cost benefit) or more sophisticated (info-gap)
mathematical formulations that maximize an
objective function. Multi-objective approaches
(green) focus more on characterizing the competing
values and preferences of decision stakeholders
through more deliberative, or sometimes hybrid
deliberative/quantitative processes. Integrated ap-
proaches (blue) tend to bring a suite of deliberative
and quantitative tools together into a framework
that seeks good decisions (e.g., Adaptive Man-
agement and Structured Decision-Making).
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play an important role in this process,198 but is not itself suf-

ficient. Rather, improved and more comprehensive methods

of accounting for subjectivity and uncertainty within nominally

objective decision processes remain a priority.199

DISCUSSION: WAYS FORWARD

It is important to recognize the many sources of uncertainties that

exist in scenarios and models of socio-ecological systems. It is

also important to avoid these uncertainties becoming a disincen-

tive for action when facing environmental challenges, within either

the science or decision-making domains. Importantly, decision-

makers should not use uncertainty as an excuse for inaction.

There is no panacea for dealing with uncertainty, but a portfolio

of approaches may provide an opportunity to better understand

and cope with uncertainty. This portfolio might include a range

of methods fromModel Inter-comparison Projects (MIPs), valida-

tion against independent data, error propagation analysis, to

learning from uncertainty to guide model improvement. Table 2

provides a summary of the approaches to addressing uncertainty

that are discussed throughout this article. Figure 3 also provides a

visual representation of these approaches with referencing to Ta-

ble 2. Together, these provide a checklist of the types of actions

that can be implemented when dealing with uncertainties of sce-

narios and models of socio-ecological systems within the context

of supporting decision-making.

A number of ways of dealing with uncertainty are still not

routinely applied in scenario modeling and this is becoming

increasingly unacceptable. For instance, statistical parameter

uncertainty analysis may not be possible for all parameters for

all models, but it can be done at least for a subset of model pa-

rameters. Likewise, the confrontation of models with data is

inadequately done. In many cases, there may be insufficient

data to do this properly, but using this as an excuse to do nothing

at all is simply wrong. In situations where data are lacking, one

should start with qualitative "common sense" tests, such as by
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Turner et al.,200 who identified future pro-

jected rates of change in bioenergy

adoption to be three times faster than the

historical precedent for the most rapidly

changing land use.

Likewise, creating better scenarios of

uncertain futures would benefit from
consideration of a wider range of socio-economic and natural

system drivers going beyond a focus on climate change alone.2

This includes, for instance, drivers of biodiversity loss, such as

biomass extraction, invasive alien species, and pollution.2

Many scenarios are also weak at relating indirect drivers (i.e.,

the underlying socio-economic-political causes of change) to

direct drivers. We need to move beyond the representation of

stylized scenarios of, for example, consumption patterns, to sce-

narios and models that account for the role of human behavioral

processes in affecting ecological change. This includes better

representation of how policy and conservation initiatives affect

people with the knock-on effects this has for ecosystems.201

This is critical in better evaluating the considerable role of hu-

mans in causing ecological degradation, and in informing the

decision processes that can do something about it through

restoration and effective ecosystem management.202

Within this review, we have focused on models and scenarios

of socio-ecological systems. However, it is clear from the litera-

ture that there is a bias toward the ‘‘ecological’’ aspects rather

than the ‘‘social’’ aspects of such systems, such that many

modeling approaches do not adequately capture the full range

of interacting human and natural processes. We view this as a

major research gap in current modeling and scenario exercises,

and suggest that further development in this field would benefit

from a greater focus on the social phenomena that are critical

in understanding the functioning of nature on a human-domi-

nated planet.

Uncertainty is often seen as the problem, while instead it could

be interpreted as a ‘‘space’’ to manage socio-ecological sys-

tems in more desirable directions. Uncertainty also helps to

target future effort in model development and to identify areas

that lack understanding and, so, are priorities for future research.

However, structural uncertainty needs to go beyond the

improvement ofmodel components and details, by re-evaluating

the fundamental principles and assumptions of a model struc-

ture. Furthermore, part of the total uncertainty in the future of



Table 2. Potential solutions and recommendations to address uncertainty in models and scenarios of socio-ecological systems for different sources of uncertainty

For these sources of uncertainty

Scenario uncertainty Model uncertainty Decision-making uncertainty

Potential solutions and recommendations Storyline Linguistic Parameter Structural Input Error propagation Tools Communication Interpretation

1. Stakeholder mapping exercises to

address uncertainty in participatory

processes

U

2. Explicitly state and document the

assumptions that underpin a scenario

narrative, and communicate these

assumptions when reporting a

scenario study

U U

3. Building ontologies U

4. Defining credible scenario parameter

ranges or using conditional probabilistic

methods

U

5. Considering a wider range of socio-

economic and natural system drivers that

go beyond a focus on single drivers alone,

e.g., climate change

U

6. Model inter-comparison exercises and

model ensembles

U U

7. Developing coupled socio-ecological

systems models that identify and represent

important feedbacks to support the

inclusion of feedbacks in scenarios

U U

8. Model benchmarking (see Box 1) U

9. Validation against independent data,

including the confrontation of models with

empirical data

U

10. Going beyond the improvement of

model components and details, by re-

evaluating the fundamental principles and

assumptions of a model structure

U

11. Developing scenarios and models that

better account for the role of human

behavioral processes in affecting ecological

change

U

12. Learning from uncertainty to guide

model improvement

U

13. Qualitative "common sense" tests,

where independent validation data are

lacking

U U

(Continued on next page)
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Table 2. Continued

For these sources of uncertainty

Scenario uncertainty Model uncertainty Decision-making uncertainty

Potential solutions and recommendations Storyline Linguistic Parameter Structural Input Error propagation Tools Communication Interpretation

14. Hierarchical statistical modeling

techniques and other methods, such as

sensitivity and uncertainty analyses

U U

15. Increasing data access, e.g.,

developing high-quality monitoring systems

(observations, instrumented sites, and

remote-sensing sensors), data repositories,

or citizen science

U

16. Data assimilation techniques, such as

inverse modeling, e.g., approximate

Bayesian computation

U

17. Error propagation analysis through, for

example, qualitative methods, formal

numerical approaches, modeler interviews,

and network analysis

U

18. Simulation using, for example, Monte

Carlo methods

U

19. Application of decision support tools to

policy questions

U U

20. International initiatives to standardize

indicators and make them available

U

21. Systematic testing of the performance

of indicators in capturing socio-ecological

changes and associated uncertainty

U

22. Defining appropriate indicators that are

clear, concise, and responsive to different

drivers

U

23. Improved and more comprehensive

methods of accounting for subjectivity and

uncertainty within nominally objective

decision processes

U

24. Co-creation and decision support in a

participatory setting that allows for

interrogation of assumptions,

representation, and outcomes by a range of

stakeholders

U U

See Table 1 and the visual presentation in Figure 3. This list does not preclude other relationships between solutions and uncertainty sources that may be feasible.
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Figure 3. Visual summary of the types of uncertainties in scenarios and models of socio-ecological systems and ways of addressing them
The uncertainties are categorized as scenario, model, and decision uncertainties (see Table 1). More details about the numbered methods for addressing un-
certainties are provided in Table S1. The color coding refers to the sources of uncertainty (see Table 1), with the gradient-shaded boxes indicating methods that
apply to more than one uncertainty source.

ll
Review
socio-ecological systems actually derives from current and

future decisions and, thus, from a decision-maker or citizen point

of view, represents less of an ‘‘uncertainty’’ than our ‘‘societal

leeway’’ or choices. Disentangling and documenting the different

sources of uncertainties in socio-ecological systems is critical in

allowing the design and initiation of informed and efficient ac-

tions. Many things about the future will always be uncertain,

but we may wish to avoid the foolish and the fanatical by adopt-

ing the wisdom of doubt. Data and knowledge about socio-

ecological systems are increasing rapidly, and knowledge

improvement is often concomitant with awareness raising about

system complexity. This leads to the paradox that, as technical

knowledge increases, what we ignore is increasingly more

important than what we know.

Uncertainty in science should not imply uncertainty in making

decisions that respond to environmental problems.203 Ironically,

scientists see the quantification of uncertainty as underpinning

scientific rigor, whereas others see it as a sign of weakness in

the underlying science.204 Too often, such a fallacy has become
a flawed means of discouraging the endorsement of policies

against environmental problems, such as climate change or

biodiversity. Knowledge of uncertainty should inspire action

rather than indifference and guide decision-making, rather than

prevent it.203
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
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L., Peñuelas, J., and Thonicke, K. (2015). Leaf and stem economics
spectra drive diversity of functional plant traits in a dynamic global vege-
tation model. Glob. Change Biol. 21, 2711–2725. https://doi.org/10.
1111/gcb.12870.

62. Pavlick, R., Drewry, D.T., Bohn, K., Reu, B., and Kleidon, A. (2013). The
Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a
diverse approach to representing terrestrial biogeography and biogeo-
chemistry based on plant functional trade-offs. Biogeosciences 10,
4137–4177. https://doi.org/10.5194/bg-10-4137-2013.
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lating satellite-based canopy height within an ecosystem model to esti-
mate aboveground forest biomass. Geophys. Res. Lett. 44, 6823–
6832. https://doi.org/10.1002/2017GL074150.

74. Naudts, K., Ryder, J., McGrath, M.J., Otto, J., Chen, Y., Valade, A., Bel-
lasen, V., Berhongaray, G., Bönisch, G., Campioli, M., et al. (2015). A
vertically discretised canopy description for ORCHIDEE (SVN r2290)
and the modifications to the energy, water and carbon fluxes. Geoscien-
tific Model. Dev. 8, 2035–2065.
One Earth 4, July 23, 2021 981

http://refhub.elsevier.com/S2590-3322(21)00345-6/sref35
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref35
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref35
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref35
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref35
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref36
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref36
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref36
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref36
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref36
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref37
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref37
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref37
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref38
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref38
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref38
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref38
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref38
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref39
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref39
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref39
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref39
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref40
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref40
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref40
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref41
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref41
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref41
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref42
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref42
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref42
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref43
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref43
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref43
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref43
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref44
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref44
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref44
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref44
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref45
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref45
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref45
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref46
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref46
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref46
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref46
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref47
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref47
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref47
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref48
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref48
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref48
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref49
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref49
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref50
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref50
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref50
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref51
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref51
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref51
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref51
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref52
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref52
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref52
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref52
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref53
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref53
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref53
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref53
https://doi.org/10.1002/ecs2.2616
https://doi.org/10.1002/ecs2.2616
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref55
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref55
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref55
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref55
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref56
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref56
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref56
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref56
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref57
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref57
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref57
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref57
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref58
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref58
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref58
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref58
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref59
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref59
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref60
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref60
https://doi.org/10.1111/gcb.12870
https://doi.org/10.1111/gcb.12870
https://doi.org/10.5194/bg-10-4137-2013
https://doi.org/10.1002/ecm.1271
https://doi.org/10.1002/ecm.1271
https://doi.org/10.1111/j.1466-8238.2011.00717.x
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref65
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref65
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref65
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref65
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref66
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref66
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref66
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref67
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref67
https://doi.org/10.1002/ecs2.2730
https://doi.org/10.1007/s10113-018-1328-4
https://doi.org/10.1007/s10113-018-1328-4
https://doi.org/10.1002/wcc.448
https://doi.org/10.1002/wcc.448
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref71
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref71
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref71
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref72
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref72
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref72
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref72
https://doi.org/10.1002/2017GL074150
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref74
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref74
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref74
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref74
http://refhub.elsevier.com/S2590-3322(21)00345-6/sref74


ll
Review
75. Kim, H., Rosa, I.M.D., Alkemade, R., Leadley, P., Hurtt, G., Popp, A., An-
thoni, P., Arneth, A., Baisero, D., Caton, E., et al. (2018). A protocol for an
intercomparison of biodiversity and ecosystem services models using
harmonized land-use and climate scenarios. Geosciences Model. Dev.
11, 4537–4562. https://doi.org/10.5194/gmd-11-4537-2018.

76. Rounsevell, M.D.A., Arneth, A., Alexander, P., Brown, D.G., de Noblet-
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167. Cheung, W.W.L., Frölicher, T.L., Asch, R.G., Jones, M.C., Pinsky, M.L.,
Reygondeau, G., Rodgers, K.B., Rykaczewski, R.R., Sarmiento, J.L.,
Stock, C., et al. (2016). Building confidence in projections of the re-
sponses of living marine resources to climate change. ICES J. Mar.
Sci. 73, 1283–1296.

168. Dunford, R., Harrison, P.A., and Rounsevell, M.D.A. (2015). Exploring
scenario and model uncertainty in cross-sectoral integrated assessment
approaches to climate change impacts. Climatic Change 132, 417–432.

169. Patt, A.G., van Vuuren, D.P., Berkhout, F., Aaheim, A., Hof, A.F., Isaac,
M., and Mechler, R. (2010). Adaptation in integrated assessment
modeling: where do we stand? Climatic Change 99, 383–402.

170. Lo, E. (2005). Gaussian error propagation applied to ecological data:
post-ice-storm-downed woody biomass. Ecol. Monogr. 75, 451–466.
https://doi.org/10.1890/05-0030.

171. Hilborn, R., andMangel, M. (1997). The Ecological Detective: Confronting
Models with Data (Princeton University Press), p. 336.
984 One Earth 4, July 23, 2021
172. Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N.,
Li, S., andWu, Q. (2019). Why so many published sensitivity analyses are
false: a systematic review of sensitivity analysis practices. Environ.
Model. Softw. 114, 29–39.

173. Clark, J.S. (2005). Why environmental scientists are becoming Bayes-
ians. Ecol. Lett. 8, 2–14. https://doi.org/10.1111/j.1461-0248.2004.
00702.x.

174. Brown, C., Alexander, P., Arneth, A., Holman, I., and Rounsevell, M.D.A.
(2019). Achievement of Paris climate goals unlikely due to time lags in the
land system. Nat. Clim. Change 9, 203–208. https://doi.org/10.1038/
s41558-019-0400-5.

175. Low, S., and Sch€afer, S. (2020). Is bio-energy carbon capture and stor-
age (BECCS) feasible? The contested authority of integrated assessment
modeling. Energy Res. Soc. Sci. 60, 101326.

176. Holland, D.S. (2010). Management Strategy Evaluation andManagement
Procedures: Tools for Rebuilding and Sustaining Fisheries (OECD Pub-
lishing). OECD Food, Agriculture and Fisheries Working Papers, no.
25. https://doi.org/10.1787/5kmd77jhvkjf-en.

177. Regan, H.M., Ben-Haim, Y., Langford, B., Wilson, W.G., Lundberg, P.,
Andelman, S.J., and Burgman, M.A. (2005). Robust decision-making un-
der severe uncertainty for conservation management. Ecol. Appl. 15,
1471–1477.

178. Peterson, G.D., Cumming, G.S., and Carpenter, S.R. (2003). Scenario
planning: a tool for conservation in an uncertain world. Conservation
Biol. 17, 358–366.

179. Allen, C.R., Angeler, D.G., Fontaine, J.J., Garmestani, A.S., Hart, N.M.,
Pope, K.L., and Twidwell, D. (2017). Adaptive management of rangeland
systems. In Rangeland Systems: Processes, Management and Chal-
lenges, D.D. Briske, ed. (Springer), pp. 373–394.

180. Helgeson, C., Bradley, R., and Hill, B. (2018). Combining probability with
qualitative degree-of-certainty metrics in assessment. Climatic Change
149, 517–525.

181. Bradley, R., Helgeson, C., and Hill, B. (2017). Climate change assess-
ments: confidence, probability, and decision. Philos. Sci. 84, 500–522.

182. Visconti, P., Bakkenes, M., Baisero, D., Brooks, T., Butchart, S.H.M.,
Joppa, L., Alkemade, R., Di Marco, M., Santini, L., Hoffmann, M., et al.
(2016). Projecting global biodiversity indicators under future develop-
ment scenarios. Conservation Lett. 9, 5–13.

183. Beckmann, M., Gerstner, K., Akin-Fajiye, M., Ceauşu, S., Kambach, S.,
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Table S1. Description of different decision support tools as presented in Figure 2.

Cost-benefit analysis

(CBA), or benefit-

cost analysis1

Applicable if all expected consequences of a decision are assigned a monetary value.

Uncertainty can be partially addressed by computing expected benefit cost ratios that

explicitly incorporate probabilities of benefits and costs, providing bounds around

cost-benefit ratios, and analysing the sensitivity of the CBA ranking of options by

systematically varying costs and benefits of each option within plausible bounds and

exploring how these uncertainties impact on the ranking of options.

Multi criteria

decision analysis

(MCDA)2

Analyses trade-offs between decision options according to multiple objectives

(criteria) by explicitly separating the tasks of causal judgment and value judgment.

Outranking Designed for complex choice problems with multiple criteria and multiple participants.

Out-ranking indicates the degree of dominance of one alternative over another. The

outranking methods enable the utilisation of incomplete value information and

judgments about the likelihood of outcomes.

Stochastic dynamic

programming (SDP)3

finds optimal sequences of decisions under uncertainty. It is particularly useful in

sequential decision problem to identify the optimal decision to take now, knowing that

future decisions will adapt to future conditions. For that reason, SDP has been used in

several Adaptive Management decision problems. Whilst these methods will work

well within the uncertainty of a single scenario, there are doubts about whether they

can meaningfully find an optimal solution across multiple, uncertain scenarios. For

example, it has been argued that “optimal adaptation is not a good representation of

the past, and probably is not a good representation of the future, because social and

political constraints get in the way”4; constraints that are likely to be significant across

the scenario space5.

Structured Decision

Making (SDM)6

An integrative decision-making framework that sets out a deliberative process for

identifying acceptable trade-offs in complex decision problems. SDM is considered



integrative because it often embeds other relatively simple tools such as MCDA in

stakeholder consultation processes that may utilise sophisticated, model-based

predictions of benefit of different decision options.

Management

strategy evaluation

(MSE)7

A modelling framework for assessing by simulation the consequences of several

management strategies and providing a ranking of them according to their ability to

reach management objectives. Its efficiency to link model-based knowledge to

decision-making relies on co-produced objectives, uncertainty, interpretation of

outputs and ranking scenarios.

Delphi technique8 Used in decision support in political environments when decisions affect strong

factions with opposing preferences. It emphasizes anonymity of judgments during

multiple rounds of deliberation and elicitation.

Info-gap decision

theory9

A methodology for supporting model-based decisions under severe uncertainty. It

seeks to maximize robustness and opportuneness (upside of uncertainty) of decisions

using three key components; an uncertainty model, a system model and an objective

function (called a ‘performance requirement’). Info-gap is interesting in that it is

specifically focussed on uncertainty in decision making and hence the uncertainty

modelling aspects of the framework are particularly strongly developed.

Scenario Planning10 A tool for exploring possible, probable and/or preferable futures, and identifying

strategies or options that are robust to a range of possible situations. Unlike

forecasting, which aims to accurately predict future events, the focus of scenario

planning is to explore possible futures that may arise under different conditions and

what those different futures might mean for current decisions.
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