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Abstract: In monomorphic species, determination of sex from behavior is prone to errors. The authors

develop capture-recapture survival models that account for uncertainty in the assessment of sex. They ex-

amine parameter redundancy for four basic models with constant or time-dependent survival and encounter

probabilities. They further develop a more refined and more appropriate model for an Audouin’s gull data

set where four distinct behavioral clues have been used. They examine how useful it is to incorporate the

least reliable of the clues and the genetic determination of sex available for only a handful of individuals.

They finally discuss the implications of their findings for the design of field studies.

Title in French: Estimation d’une survie séparée pour chaque sexe quand l’identification

du sexe est incertaine.

Résumé : Dans les espèces monomorphes, la détermination du sexe à partir du comportement est sujette

à erreurs. Les auteurs développent des modèles de capture-recapture qui prennent en compte l’incertitude

dans la détermination du sexe. Ils examinent la redondance en paramètres de quatre modèles de base où

les probabilités de capture et de survie sont constantes ou dépendantes du temps. Ils développent ensuite

un modèle plus raffiné et plus adapté à des données portant sur le goéland d’Audouin où quatre critères

comportementaux distincts ont été utilisés. Ils examinent l’utilité d’incorporer le critère le moins fiable et

la détermination génétique du sexe disponible pour une poignée d’individus. Ils discutent finalement les

implications de leurs découvertes pour la planification des études de terrain.

1. INTRODUCTION

Sex differences in survival, dispersal or movement may have important consequences in demogra-
phy, mating and parental investment patterns (Breitwisch 1989; Gowaty 1993), even for species
where the two sexes have very similar body size and appearance. Thus, a modern study in ecology
cannot ignore a priori this factor. However, naming the sex of an individual may be particularly
tricky for monomorphic species observed in the field (i.e. species in which males and females are
structurally identical). Often the field biologist will rely on behavior to distinguish males from
females. Some behavioral clues like position during copulation are thought to be quite reliable
but other clues like the relative body size in a pair not so much and yet the latter type are easier
to gather. With this kind of approach, it is thus not rare that an animal that has once been
recorded as a male is later referred to as a female. Confidence in the correct determination of sex
will progressively increase with repeated and consistent observations and, eventually, it may be
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decided that there is no reasonable doubt about the true sex of a particular individual. However,
this does not hold for animals seen only a few times and for those with a contradictory record of
given sex. A natural tendency for studying nonetheless sex-specific parameters is then to consider
the sole individuals for which the sex has been determined with reasonable certainty. However, this
approach has shortcomings, especially when the aim is to study survival. First, it may represent a
huge waste of data. For instance, in the field study that has motivated this paper, approximately
80% of the individuals had never been sexed and would thus be discarded. Second, to be sexed
with reasonable certainty an individual must often have gone through several observations and
hence have survived meanwhile. Then, estimation of survival based on the subsample of known-
sex individuals will inevitably be positively biased. Another possibility is to segregate the animals
into three groups: males, females and unknown-sex individuals. The survival of the unknown-sex
individuals can then be constrained to be a weighted average of the survivals of males and females
(Oro & Pradel 2000) with the weights reflecting the proportions of males and females among the
unknown. However, these weights are not easy to determine as the relative proportions will depend
on the sex-ratio but also on the relative catchability of males and females and on the ability to
identify the sex, which may differ between males and females. Thus, while this second method is
preferable, it is still imperfect and anyway does not make full use of the information available.

We know of one example where sex uncertainty was directly incorporated in a survival analysis
(Conroy, Senar, Hines & Domenech 1999). This study dealt with serins Serinus serinus, a species
which is monomorphic only at the juvenile stage. A biometrical measure (wing length) was used to
predict the sex of the captured juveniles and an initial state ’predicted male’ or ’predicted female’
was then assigned to each bird on this basis. If they were ever seen again, their true sex was then
determined and they were assigned the new state ’known male’ or ’known female’. This procedure
allowed the estimation of transition probabilities between the ’predicted sexes’ and the ’known
sexes’ and thus the incorporation of the never recaptured juveniles in the analysis. In this way,
survival could be estimated without bias. This model was cast within the framework of multistate
capture-recapture (hereafter CR) models (Arnason 1972, 1973; Schwarz, Schweigert & Arnason
1993). Unfortunately, this approach does not work for species which remain monomorphic all their
life and this is why we had to develop specific models. We present here a general solution to the
problem of sex uncertainty by introducing explicitly probabilities of errors. In essence, as compared

to previous approaches, instead of summarizing the data previous to the analysis, we model the very

process of sex identification. The models we build in this way generalize the mixture models of
Pledger, Pollock & Norris (2003) by allowing the incorporation of elements of information about
the classes (here the two sexes). They are also more general than the specific models for unknown
sex of Nichols, Kendall, Hines & Spendelow (2004) because these latter do not allow for mistakes.
They actually belong to the class of CR models defined by Pradel (2005) to deal with uncertainty
in the determination of a state of interest. This is the particular case where the state under study
(sex) is static (Pradel 2007).

This work was motivated by the demographic study of an Audouin’s gull Larus audouinii

colony at the Ebro Delta (Spain) (e.g., Oro & Pradel 2000; Cam, Oro, Pradel & Jimenez 2004)
where the birds are sexed upon observation according to four criteria (see Oro, Pradel & Lebreton
1999 for details): position during copulation, begging food during courtship, courtship feeding and
relative body size (the males being on average slightly heavier than the females, see Oro 1998;
Genovart, Oro & Bonhomme 2003). The information can be coded as three basic events: ”the
animal is judged to be a male”, ”the animal is judged to be a female”, ”no judgment is made”.
As this scheme should be relevant to many studies, we start (section 2) by developing a set of four
general models that extend the Cormack-Jolly-Seber CR model and constant-parameter versions
of it (Cormack 1964; Jolly 1965, 1982; Seber 1965) to uncertainty in sex assignment. These models
incorporate probabilities of judgment and probabilities of error and can be further developed if
needed as will be seen in Section 3. They are described in subsection 2.1. Because of the additional
parameters involved, there is a legitimate concern that not all parameters may be identifiable. In
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subsection 2.2, we set off to study redundancy by the method of Catchpole, Morgan and Freeman
(1997, 1998) (review by Gimenez, Viallefont, Choquet, Catchpole & Morgan 2004). However, the
models of subsection 2.1 do not account for likely differences in probability of error with each of
the four criteria used in the Audouin’s gull study, nor do they incorporate such peculiarity of the
study as a trend over time in the attempt to identify the sex of the birds. In Section 3, we construct
a more refined and more specialized model, suited to our data. At the same time, we assess the
effect of dealing or not dealing with different pieces of information: is it useful to gather the least
reliable clue? Should genetic sexing be developed? The last section is a discussion of the interest
of this kind of models and of the implications of our findings in terms of field work.

2. FOUR BASIC MODELS

2.1 Data, assumptions and parameters

The typical data are presented in Table 1. They consist of a series of encounter histories followed
by a frequency number. For instance, the first line in Table 1 refers to 41 individuals that were
encountered for the first time at occasion 6. Their sex could not be determined at that time (code
3) nor at occasion 7 when they were last encountered. All of the birds were originally marked as
chicks on the nest and the data we are using are their resightings as live adults. Thus the protocol
is the same for the first encounter and afterwards.

h #{h}
0000033000 41
0000112133 4
0001011000 2
0033000300 8
0330003313 4
0102220203 1
1001101100 1

Table 1: Excerpt from the Audouin’s gull data coded according to three criteria: 1=judged male;
2=judged female; 3=no judgment made. #{h} is the number of individuals having encounter
history h. The data set has 4025 individuals spread among 917 encounter histories over 10 years
of study.

We make the following assumptions:

1. Each individual has a unique mark that is neither lost nor misread.

2. Individuals within each sex category are identical.

3. Encounter and survival events are independent between animals and between samples.

4. The true sex of every single individual is a priori unknown.

Because we are studying survival, we condition each time on the first encounter event. With the
above assumptions, the encounter history of an individual first caught at occasion i thus follows a
multinomial distribution. Hence, the likelihood is a product multinomial likelihood. To write the
probability of encounter history h, we apply the law of total probability:

P (h) = P (f)P (h|f) + P (m)P (h|m),

where P (f) and P (m) are the sex proportions among the unmarked encountered, and P (h|f) and
P (h|m) are the conditional probabilities of h for a female and a male respectively. To go further,
we need the following parameters:

3



1. Traditional CR parameters

• φm, φf sex-specific survival rates

• pm, pf sex-specific encounter rates

2. New parameters

• µ, proportion of males in the population

• em, ef sex-specific probabilities to judge the sex of an individual

• xm, xf sex-specific probabilities to make the correct judgment.

It is now possible to write out P (m) as pmµ
pmµ+pf (1−µ) (P (f) = 1 − P (m)). As for the conditional

probabilities of h, let us write them for the example encounter history h = (1 3 2). If this relates
to a male, it has been sexed the first time (probability em) correctly (probability xm). It has then
survived to occasion 2 (probability φm), when it was encountered (probability pm), but not sexed
(probability 1− em). It survived again (φm), was encountered at occasion 3 (pm), and sexed (em)
incorrectly (1−xm). All put together, we obtain P (h|m) = emxmφmpm(1− em)φmpmem(1−xm).
In a similar way, we would get P (h|f) = ef (1−xf )φfpf (1−ef )φfpfefxf . The complete probability
for this encounter history is thus

P (h) =
pmµ

pmµ + pf (1 − µ)
emxmφmpm(1 − em)φmpmem(1 − xm)

+
pf (1 − µ)

pmµ + pf (1 − µ)
ef (1 − xf )φfpf (1 − ef )φfpfefxf . (1)

The probability of each individual encounter history will be obtained in this way and hence the
likelihood of the entire data set which, assuming independence of fates, is the product of them.
With #{h} denoting the number of animals with encounter history h, the likelihood can be written
in compact form:

L =
∏

h

P (h)#{h}.

Maximum Likelihood Estimators (MLE) are derived by maximizing L as a function of the differ-
ent parameters. These estimators are known to have excellent statistical properties such as being
asymptotically unbiased and this is the approach to parameter estimation retained in leading CR
software. However, because the current models do not fall in the category of existing models, we
could not take advantage of this feature and wrote our own maximizing programs in MATLAB
(Hanselman & Littlefield 2000). The code is available upon demand from the first author. Alter-
natively, the model can be fitted as a multi-event model using a free program called E-SURGE
(Choquet, Rouan & Pradel 2007) downloadable from http://www.cefe.cnrs.fr/biom/logiciels.htm.

2.2 Parameter redundancy

The aim of this subsection is to study the impact of the introduction of sex uncertainty on parameter
redundancy. As one can easily realize by browsing through the extensive CR literature, the number
of traditional CR models in use is virtually unlimited as new models can be created by changing the
kind of effects considered on each type of parameters. For instance, parameters may be constant
over time or time-dependent; they may vary by sex, age... It is thus impossible to tell in advance
which parameters are or are not redundant in each possible model. However, it is useful to have
some general guidance as to where problems are likely to occur. In traditional CR, the fully
time-dependent Cormack-Jolly-Seber model (CJS) plays this role. In this model, it is known that
survival over the last time interval is confounded with encounter probability at the last occasion.
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This problem disappears if survival or encounter parameters are hold constant. The introduction of
sex uncertainty may well add new general redundancy problems. The minimal generalization of the
CJS model consists in having the survival and encounter parameters, the ’traditional’ parameters of
subsection 2.1, still time-dependent and in considering that all of the ’new’ parameters are constant
over time. In this subsection, we examine whether this model is parameter-redundant. We also
examine the three models derived by holding survival or encounter probabilities or both constant
over time. In the following, we denote the four models considered by their sole variable part, i.e.
(φt∗s, pt∗s), (φt∗s, ps), (φs, pt∗s), (φs, ps) where s stands for sex and t for time. Superscripts are
used to represent capture occasions; thus p1

m will denote the male encounter probability at occasion
1.

Catchpole, Morgan and Freeman (1997, 1998) have developed a formal method (hereafter the
CMF method) for studying parameter redundancy in models belonging to the exponential family
of probability distributions. This method can be applied to the multinomial distribution of animals
over the observable encounter histories. It indicates which parameters are directly identifiable and
provides identifiable functions of the redundant parameters (see Catchpole and Morgan (1997) and
Catchpole, Morgan and Freeman (1998) for details). All the calculations being formal, we carried
them out with MAPLE (Gimenez, Choquet & Lebreton 2003). Because the number of capture
histories 4k − 1 increases rapidly with the number of time steps k, we could apply the procedure
only for k = 3, but this is sufficient as the results obtained are easily demonstrated to hold in
general.

A first conclusion (see Table 2) is that improving the realism of the models by adding new
constant nuisance parameters to account for sex uncertainty does not restrict the ability to estimate
the parameters of interest, i.e. the survival probabilities. Indeed, the only restriction we observe
in the estimation of survival relates to the fully time-dependent model and this restriction is the
same that was already present in the corresponding fully time-dependent CJS model. Actually, the
new model improves over the CJS model applied to each sex separately in allowing the estimation
of the ratio of survivals of males and females at the last occasion. We believe that this result
is due to the assumption of a constant sex-ratio in the population. The other case of parameter
redundancy concerns the initial encounter probabilities, p1

m and p1
f (absent from the CJS model).

When encounter probabilities are time-dependent (models (φt∗s, pt∗s) and (φs, pt∗s)), only the ratio
p1

f

p1
m

i.e. the relative catchability of males and females at the initial occasion is estimable. This is

easily understood from the likelihood. The initial encounter probabilities appear in it only in the
terms Pt(m) and Pt(f), and there only through their ratio. For instance, Pt(m) can be rewritten

Pt(m) =
pt

mµ

pt
mµ + pt

f (1 − µ)
=

µ

µ +
pt

f

pt
m

(1 − µ)
.

2.3 Dual solutions

A redundant parameter is also one that can take all of a continuous range of values while the
likelihood remains at its maximum. For a given data set, this can be seen by drawing the profile
likelihood curve, i.e. the curve of the maximum value that the likelihood can assume for each
value of the parameter under scrutiny: for a redundant parameter, the profile likelihood presents a
characteristically flat area at its top (see Gimenez et al. 2004). The shape of the profile likelihood
is interesting more generally. For instance, when the profile likelihood decreases rapidly away from
the optimal value of the parameter, this parameter is estimable with great precision. Away from its
maximum, the profile likelihood may exhibit local maxima. If one of these happens to be exactly
on the same level as the ’absolute’ maximum, then this is an instance of non-identifiability without
redundancy: two entirely different values of the parameter maximize the likelihood equally well
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Table 2: Identification of estimable quantities in 4 models incorporating probabilities of error.
Superscripts are for time steps. Only 3 occasions were considered. φ2 and p3 are thus the last
survival and last encounter parameters respectively.

Model #par Model rank non estimable parameters estimable functions
(φs, ps) 9 9 none —

(φt∗s, ps) 11 11 none —

(φs, pt∗s) 13 12 p1
m, p1

f

p1

f

p1
m

(φt∗s, pt∗s) 15 13 p1
m, p3

m, p1
f , p3

f , φ2
m, φ2

f

p1

f

p1
m

,
φ2

f

φ2
m

, φ2
mp3

m, φ2
fp3

f

Table 3: Maximum-likelihood estimates for each of the four models. For time-dependent para-
meters, the median is given. Each model has also a dual solution with probabilities of errors
>50%.

Model

encounter
probability

(p)
survival (φ)

probability of
judgment (e)

probability
to be right

(x)

proportion
of males (µ)

m f m f m f m f (m)
(φs, ps) 0.61 0.72 0.88 0.95 0.02 0.79 0.53 0.56 0.86

(φt∗s, ps) 0.60 0.72 0.89 0.97 0.02 0.79 0.53 0.56 0.87
(φs, pt∗s) 0.61 0.74 0.87 0.95 0.02 0.79 0.53 0.56 0.88

(φt∗s, pt∗s) 0.61 0.76 0.86 0.97 0.02 0.79 0.53 0.56 0.88

but not the values in-between. This situation cannot be detected by the CMF method. Thus,
we examined the profile likelihood curves of the model with traditional parameters hold constant
(φs, ps) applied to the Audouin’s gull data already mentioned (Table 1). The parameters were
maintained within range by logit transformations. For practical reasons, instead of drawing the
profile likelihoods, we drew the profile deviances (D = −2 log L) and hence observed the minima
rather than the maxima (Fig. 1).

A striking feature of model (φs, ps) is the existence for each scalar parameter of two distinct
values where the deviance is minimized. These values organize into two sets that represent two
alternative solutions. This result is in fact data-independent and holds as well for the three other
models of this section: (φt∗s, pt∗s), (φt∗s, ps) and (φs, pt∗s) (see the Appendix for a theoretical
demonstration). The deep reason for this fundamental duality comes down to this: given that the
true sex of any individual is never known, it is equally acceptable, from the model point of view,
to consider that an animal estimated many times to be, say, a male is indeed a male and that most
judgments were correct, or that it is a female and most judgments were wrong. Yet, one solution
produces probabilities of error above 50%, which is probably not acceptable from the practitioner’s
point of view. More precisely, one solution is derived from the other by exchanging the survival,
encounter and judgment probabilities of males and females, replacing xm with 1− xf and xf with
1 − xm and finally reversing the sex-ratio (see Appendix). As a consequence, the profile deviance
curves of sex-specific parameters are the same for males and females. In the case of the Audouin’s
gull data, they present two close minima (Fig. 1). The profile deviance curve of the proportion of
males is symmetrical around 0.5 with two minima, which happen to be very distant with our data,
at 0.14 and 0.86, and, incidentally, utterly unrealistic from a biological point of view.
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Figure 1: Profile-deviance curves of the parameters of model (φs, ps) applied to the Audouin’s gull
data set. For each parameter, the deviance (y-axis) presents two distinct minima. The curves for
p, φ and e are the same for males and females.
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Table 4: Codes used to take into account the unequal reliability of each of the 4 criteria used to
assess the sex of Audouin’s gulls upon observation at the Ebro delta colony (Spain).

judged from to be not judged
m f

copulation 1 5 9
begging food 2 6
courtship feeding 3 7
body size 4 8

3. A MORE REALISTIC MODEL FOR THE AUDOUIN’S GULL DATA

The four models introduced in the previous section, when fitted to the Audouin’s gull data, produce
very unreasonable if similar estimates: very high proportions of males that are almost never judged
and probabilities of error close to 50% (Table 3). However, these models do not incorporate several
known important features of the study. In this section, we illustrate the flexibility of our approach
by building a more realistic model incorporating our knowledge of the biology and of the way the
field work had been conducted.

To start, there was no good reason to believe that the error attached to each of the 4 criteria
used (copulation, begging food, courtship feeding and relative body size) was the same. Copulation
for instance was suspected to be the most reliable and relative body size, the most error-prone. We
thus decided to distinguish the different criteria and recoded the data accordingly (see Table 4).
With the notation of Table 4, a possible reexpression for the capture history h=(1,3,2) discussed
in Section 2.1 is h=(3,9,6). This would correspond to a bird been classified as a male on its first
capture based on its courtship feeding display, not classified on his second capture, and classified as
a female on his third capture according to its begging for food behaviour. When an individual was
observed several times during the same season, priority was given to the criteria in the following
order : copulation, courtship feeding, begging food and relative body size. All along the study, sex
determination has been a secondary activity but it has been conducted on stringent criteria. This
is reflected in the very few obvious mistakes (sexing is consistent over time for a given individual),
and in the roughly 80% of never-sexed individuals in the data set. Yet, during the course of the
study, sexing has gained ground; especially the criterion ’relative body size’, initially used very
sparingly, has become more common by the end of the study. These features were incorporated in
a model denoted (φs, pt, µ, eT , m4T , m1, m2, x1, x2, x3, x4) with the following characteristics:

• pt, encounter probability: time but not sex-dependent.

• φs, survival rate: possibly sex-dependent but constant over time.

• µ, proportion of males in the population: held constant.

• eT , probability to attempt to judge the sex upon encounter: time-dependent with a logit-
linear trend over time (T ). Note that because birds are always judged in pairs there is no
sex-dependency.

• m4T , frequency of the criterion ’relative body size’ (m4) among the different criteria: time-
dependent with a logit-linear trend over time.

• m1, frequency of use of the criterion ’copulation’ among the behavioural criteria (i.e. exclud-
ing ’body size’): held constant.

• m2 and m3: same as m1 for ’begging food’ and ’courtship feeding’ respectively (one of m1,
m2 or m3 is redundant).
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Table 5: Results of model (φs, pt, µ, eT , m4T , m1, m2, x1, x2, x3, x4) applied to the Audouin’s
gull data set with different amount of information. Analysis A uses all 4 criteria and the genetic
determination of the sex of 24 birds; Analyses B and C do not use the genetic determination of
sex; Analysis C does not use the judgments based on body size. Standard errors are given between
parentheses. With less information (from left to right), precision decreases. For analyses B and C,
we have retained the dual solution that yields proportions of error <50%.

Analysis A B C
proportion of males 0.53 (0.027) 0.53 (0.029) 0.55 (0.034)

female survival 0.91 (0.013) 0.91 (0.014) 0.93 (0.024)
male survival 0.86 (0.013) 0.86 (0.014) 0.84 (0.025)

error copulation 0.06 (0.041) 0.06 (0.041) 0.08 (0.055)
error begging food 0.05 (0.029) 0.06 (0.031) 0.09 (0.077)

error courtship feeding 0.00 (0.161) 0.00 (0.155) 0.00 (0.286)
error body size 0.11 (0.064) 0.09 (0.074) NA

• xi, probability to be right when using criterion i (i = 1, . . . 4): held constant.

This model has 23 parameters including 1 intercept and 1 slope for e and 1 intercept and 1 slope
for m4 and 10 capture probabilities.

In addition, a limited number of birds, 24, had been sexed genetically (Genovart, Oro & Bon-
homme 2003; Genovart, Oro, Ruiz, Griffiths, Monaghan & Nager 2003). We fitted the previous
model using (analysis A) and not using (analysis B) this limited information. When we used it,
P (m) in the capture history of the genetically sexed individuals was set to 1 or 0 as appropriate.
On the other hand, we considered the effects of not using the presumably less reliable criterion,
’body size’. To do that, the corresponding observations were recoded as a ’no judgment’ obser-
vation. When doing this latter analysis (analysis C), the genetic determination of sex was not
used. Thus, we have a gradient of decreasing amount of information from analysis A to analysis
C (Table 5).

All three analyses yield estimates in agreement with what is known of the biology of the species.
For instance, survival estimates are very close to those estimated previously by CR on the study
site (Oro, Pradel & Lebreton 1999; Cam, Oro, Pradel & Jimenez 2004). We also note that, as
anticipated, body size is the least reliable clue but the copulation criterion does not come out as
the obvious best method. The results with and without genetic sexing are very similar (first 2
columns of Table 5). However, the known sex of only 24 birds suffices to break the tie between
the dual solutions: while analyses B and C still have two solutions (only the reasonable one is
presented in Table 5), analysis A has only one, as can be seen on the profile deviance curves
relative to the proportion of males (Fig. 2). In other, not shown models, where sex-ratio is initially
not identifiable, the additional information brought about by the 24 birds renders this and other
parameters identifiable. As for the criterion ’body size’, even though mistakes are made on average
once in every 10 judgments and only 15.70% of the judgments made use of this criterion, dropping it
results in a disproportionate loss of precision (compare the standard errors in the last two columns
of Table 5).

4. DISCUSSION

A main concern when we started building these models was the risk of parameter redundancy.
The models would have been useless if no parameter of interest was estimable. This fear had been
voiced in particular by Nichols et al. (2004) when they examined the situation where the sex is
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Figure 2: Improvement in the shape of the deviance brought about by a limited amount of external
information shown on the profile deviance of model (φs, pt, µ, eT , m4T , m1, m2, x1, x2, x3, x4)
applied to the Audouin’s gull data set and relative to the proportion of males µ. The genetic
sexing of 24 individuals renders the profile deviance steeper at its bottom where it retains just one
minimum (Analysis A; continuous line) as compared to when the genetic information is not used
(Analysis B; dotted line). There is a narrow ridge between the 2 dual solutions in Analysis B.
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not always assessed but, when it is, this is done without error. Our results show on the contrary
that it is quite possible to run models incorporating probabilities of error and nonetheless gain
knowledge about such important biological parameters as survival rates. Although these models
have in general two mathematical solutions due to a label switching problem (Redner & Walker
1984, see Appendix), one is so unreasonable that it should not be difficult to sort out which one is
to be retained.

A more serious difficulty is numerical. These models, and more generally the multievent mod-
els (Pradel 2005) to which they belong—but also the now classical multistate models—present
local minima to which the optimization algorithm occasionally converges. The profile deviance
curves may help diagnose the problem (Gimenez, Choquet, Lamor, Scofield, Fletcher, Lebreton &
Pradel 2005) and improved algorithms may be sought (see, in particular, section 6.2 in Choquet,
Reboulet, Pradel, Gimenez & Lebreton 2005), but it is also possible to guard against local minima
by augmenting the information available. Often, such information already exists, but could not be
exploited in the traditional CR models. One of the major aims of the newly developed models was
indeed to alleviate and valorize the field work by comprehending and exploiting a wider range of
data.

In this paper, we have examined two ways of gathering additional information: using less
efficient clues and sexing genetically some animals. Genetic sexing is of course paramount for
the determination of sex, but for practical reasons it cannot usually be performed on every single
individual. In our example, genetically sexing very few birds proved sufficient to greatly improve
the shape of the deviance and hence the efficiency of the optimization algorithm. We also observed
that it eliminated the wrong one of the two dual solutions. Finally, genetic sexing occasionally
rendered identifiable new parameters in parameter-redundant models. It should also be noticed
that genetic sexing is only one approach to specifying the a priori probability to be a male, P (m),
for some individuals. Other, not necessarily 0−1 predictors of sex frequently available in old studies,
like biometrical measures, can be incorporated in the model in the same way (P (m) can be set to
some intermediate value between 0 and 1). This approach of incorporating external information
has been used by Fujiwara and Caswell (2002) although in a way that, past the first encounter,
may not be correct: the conditioning in their stage-assignment matrix, P (stage|measure), is the
reverse of what is needed, P (measure|stage), in the calculation of the likelihood (see Pradel 2005
for a formal demonstration). As for the use of less efficient clues, our example proved that they
may be valuable beyond what seems at first sight attainable based on their frequency of use and
efficiency (percentage of error). We thus encourage people to gather such clues especially if they are
not time consuming (Redman, Lewis, Griffiths, Wanless & Hamer 2002). After three or four visits,
it will always be possible to assess the quality of the prospective clues as well as the improvement
brought about by such and such identification method in terms of gained precision. If different
methods for sex identification are in competition, it is then possible to decide objectively, from
the informed assessment of their relative costs and benefits, which ones to favor and which ones to
discard.

APPENDIX

The aim of this appendix is to establish the existence of two distinct dual solutions to the max-
imization of the likelihood of model (φs, ps) presented in subsection 2.1, as well as some related
properties of its profile deviance curves. Why this happens is rooted in the law of total probabilities
applied to an arbitrary encounter history h.

P (h) = P (f)P (h|f) + P (m)P (h|m)

In this formula, the conditional probability P (h|f) is a function of the sole parameters φf , pf , ef , xf .
This function depends on the particular encounter history h. Let us write

P (h|f) = gh(φf , pf , ef , xf ). (2)

11



The probability of the same history conditional on the animal being this time a male is obtained
by using the male parameters instead of the female ones. However, when a judgment was right for
a female, it is wrong for a male (and vice-versa) so that xf should be replaced with 1 − xm (see
the example of section 2.1 leading to equation 1 if this is not immediately clear). Thus,

P (h|m) = gh(φm, pm, em, 1 − xm). (3)

The unconditional probabilities P (m) and P (f) are respectively

pmµ

pmµ + pf (1 − µ)
and

pf (1 − µ)

pmµ + pf (1 − µ)
. (4)

The transformation Θ: [0, 1]9 7→ [0, 1]9

(θ1, . . . θ9) 7→ (θ2, θ1, θ4, θ3, 1 − θ5, θ7, θ6, 1 − θ9, 1 − θ8)

plays a key role. We first establish

Lemma 1. The probability of any encounter history, seen as a function of the parameter vector

(φm, φf , pm, pf , µ, em, ef , xm, xf ), is invariant under Θ.

∀h, P (h) ◦ Θ = P (h)

.
Proof. When the parameters are changed in the following way:

(φm, φf , pm, pf , µ, em, ef , xm, xf )
Θ
7−→ (φf , φm, pf , pm, 1 − µ, ef , em, 1 − xf , 1 − xm),

P (f) becomes
pmµ

pmµ + pf (1 − µ)
= P (m); [from (4)]

P (m) becomes
pf (1 − µ)

pmµ + pf (1 − µ)
= P (f); [from (4)]

P (h|f) becomes gh(φm, pm, em, 1 − xm) = P (h|m); [from (2) and (3)]

P (h|m) becomes gh(φf , pf , ef , xf ) = P (h|f); [from (2) and (3)]

so that, eventually, P (h) itself is unchanged. A consequence of this lemma is that the likeli-
hood and the deviance are equally unchanged under Θ. Consequently, if the parameter vector
(φ̂m, φ̂f , p̂m, p̂f , µ̂, êm, êf , x̂m, x̂f ) maximizes the likelihood, its transform by Θ, (φ̂f , φ̂m, p̂f , p̂m, 1−
µ̂, êf , êm, 1 − x̂f , 1 − x̂m), maximizes it too. Hence, the theorem:

Theorem 1. The likelihood of model (φs, ps) is maximized at two generally distinct points one of

which is the transform of the other by the unipotent mapping Θ.

We now examine some ensuing properties of the profile deviance curves. Let D be the de-
viance of model (φs, ps). D : [0, 1]9 7→ [0,+∞], is a function of the 9 probability parameters:
φm, φf , pm, pf , µ, em, ef , xm, xf , which has the property that D ◦ Θ = D. If

Ea
i =

{

θ ∈ [0, 1]9, θi = a
}

,

the profile deviance function for parameter i is

Pi(a)
def
= min

Ea
i

D = min
Ea

i

(D ◦ Θ) = min
Θ(Ea

i )
D.

12



Given that:

Θ(Ea
1 ) = Ea

2 , Θ(Ea
2 ) = Ea

1 ,

Θ(Ea
3 ) = Ea

4 , Θ(Ea
4 ) = Ea

3 ,

Θ(Ea
5 ) = E1−a

5 ,

Θ(Ea
6 ) = Ea

7 , Θ(Ea
7 ) = Ea

6 ,

Θ(Ea
8 ) = E1−a

9 , Θ(Ea
9 ) = E1−a

8 ,

then,

P1(a) = min
Ea

2

D = P2(a),

P3(a) = min
Ea

4

D = P4(a),

P5(a) = min
E

1−a
5

D = P5(1 − a),

P6(a) = min
Ea

7

D = P7(a),

P8(a) = min
E

1−a
9

D = P9(1 − a).

Thus, the profile deviances of the survival (parameters 1 and 2), encounter (parameters 3 and 4)
and judgment probabilities (parameters 6 and 7) are the same for both sexes. The profile deviance
of the probability of error for the males (parameter 8) is the symmetrical with respect to a=0.5
of that for the females (parameter 9), and the profile deviance curve of the proportion of males
(parameter 5) is symmetrical with respect to a=0.5.
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