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The canalization hypothesis postulates that the rate at which trait variation generates variation in the average individual fitness in a

population determines how buffered traits are against environmental and genetic factors. The ranking of a species on the slow-fast

continuum – the covariation among life-history traits describing species-specific life cycles along a gradient going from a long life,

slow maturity, and low annual reproductive output, to a short life, fast maturity, and high annual reproductive output – strongly

correlates with the relative fitness impact of a given amount of variation in adult survival. Under the canalization hypothesis, long-

lived species are thus expected to display less individual heterogeneity in survival at the onset of adulthood, when reproductive

values peak, than short-lived species. We tested this life-history prediction by analysing long-term time series of individual-based

data in nine species of birds and mammals using capture-recapture models. We found that individual heterogeneity in survival

was higher in species with short-generation time (< 3 years) than in species with long generation time (> 4 years). Our findings

provide the first piece of empirical evidence for the canalization hypothesis at the individual level from the wild.
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Life-history traits such as lifespan and reproductive rates are well

known to covary, forming life-history strategies (Stearns 1976).

In particular, a recurring pattern in cross-species comparative de-

mography is the existence of a slow-fast continuum of life histo-

ries going from long-lived, late-maturing, and slow-reproducing

species to short-lived, early-maturing, and highly fecund species

(see Gaillard et al. 2016 for a recent review). The continuum is

in part linked to variation in body mass, temperature, and devel-

opment time (Harvey and Zammuto 1985; Gillooly et al. 2001)

but still occurs when allometric relationships linking life-history

traits and body mass or size have been accounted for (Stearns

1983; Brown and West 2000; Gaillard et al. 2016), leading to the

idea that the slow-fast continuum of life histories reflects con-

straints or opportunities afforded by particular lifestyles (Brown

and Sibly 2006), in relation to or independently of energy al-

location trade-offs (Kirkwood and Holliday 1979). Irrespective

of the mechanism(s) underlying this slow-fast continuum of life

histories, the ranking of a species along the continuum is known

to correlate with the rate at which given amounts of variation in

life-history traits generates variation in population growth rate

(Pfister 1998). In species close to the slow end of the contin-

uum, called long-lived species in the following, variation in adult

survival gives rise to the most variation in population growth

rate (Caswell 2001). As population growth rate represents the

average fitness of the population (Fisher 1930), individuals of

long-lived species are therefore expected to display risk spread-

ing and risk avoidance tactics, both part of a bet-hedging strategy

aimed at maximizing survival probability (Gaillard and Yoccoz

2003; Koons et al. 2009; Nevoux et al. 2010). These are in turn

expected to buffer phenotypes against perturbations caused by

genetic (Stearns and Kawecki 1994) or environmental (Gaillard

and Yoccoz 2003) factors. Such a buffer effect is usually called a

canalization process (sensu Waddington 1953). We therefore pre-

dict adults in populations of long-lived species to have more sim-

ilar survival probabilities than adults in populations of short-lived

species. A few previous studies have focused on the magnitude

of temporal variation in demographic rates in relation to their de-

mographic impact (following Pfister’s (1998) pioneer analysis).

However, we are not aware of any study linking the demographic

impact of traits to between-individual variance, except studies of

Drosophila melanogaster in the lab (Stearns and Kawecki 1994).

We took advantage of available long-term time series of demo-

graphic data in the wild and of modern statistical methods to test

for the canalization of adult survival at the individual level in the

wild. Under the canalization hypothesis, we expected between-

individual variance in adult survival to decrease from short- to

long-lived species.

Material and Methods
DATASETS

We studied nine species including four mammalian large

herbivores—roe deer (Capreolus capreolus; two populations),

chamois (Rupicapra rupicapra), Alpine ibex (Capra ibex), and

greater kudu (Tragelaphus strepsiceros; two populations)—and

five birds—black-headed gull (Chroicocephalus ridibundus), blue

tit (Cyanistes caeruleus), white-throated dipper (Cinclus cinclus),

snow petrel (Pagodroma nivea), and black-browed albatross (Tha-

lassarche melanophris). All were subjected to detailed long-term

monitoring at the individual level (Table S1 in Supplementary

material A). Individuals were uniquely marked at first capture

and physically recaptured or resighted later in life. Imperfect de-

tection was accommodated using capture-recapture (CR) models

(Lebreton et al. 1992).

INDIVIDUAL VARIATION IN SURVIVAL PROBABILITY

We aim at comparing, across species, the within-species, between-

individual variance in adult survival. To do that we use the concept

of frailty (sensu Vaupel et al. 1979). Frailty corresponds to the

mortality risk of a given individual at a given age relative to

the population average. In this study, we measure frailty via the

variation among individuals in the intercept of the age-survival

curve, that is the variance in the survival probability at the onset

of adulthood (the age at maturity when reproductive values peak).

In other words, a frailty value is assigned to each individual at

the onset of adulthood and is conserved throughout the lifetime

(Supplementary material A, part 3).

There is a direct, formal link between age-specific survival

probabilities and lifespan (Supplementary material A, part 1). For

this reason, between-individual variation in survival probability,

which we study here, is fundamentally equivalent to between-

individual variation in lifespan, to which evolutionary biologists

are more accustomed, but to which we do not have direct access

in our study populations. The between-individual heterogeneity

in survival probability that we quantify in this study does give

rise to viability selection a.k.a. selective disappearance: within

the population, the proportion of frail individuals decreases with

age. This mechanism is, however, by construct accounted for in

the estimation method (see below and Supplementary material A,

part 3) and therefore does not bias our estimates.
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Figure 1. Between-individual variance estimate VM plotted against generation time (left panel) and body mass (right panel). One-

standard deviation confidence intervals are from a parametric bootstrap with 1000 replicates. Asterisks indicate statistically significant

likelihood-ratio tests (P < 0.05).

Table 1. Individual heterogeneity in survival probability of our study populations.

T (year) e m (kg) VM VR s1 s2 π

Blue tit 2 0.500 0.01 0.0361 (±0.0189) 0.0097 (±0.0064) 0.29 0.83 0.31
White-throated dipper 2.5 0.400 0.06 0.0385 (±0.0230) 0.0382 (±0.0043) 0.34 0.84 0.70
Roe deer (CH) 4.5 0.222 22 9.60 × 10–4 (±8.69 × 10–4) 1.46 × 10–11 (±3.46 × 10–6) 0.93 1.00 0.33
Roe deer (3F) 4.5 0.222 24 7.10 × 10–5 (±2.17 × 10–4) 1.97 × 10–10 (±2.96 × 10–7) 0.97 0.97 1.00
Chamois 6 0.167 31 0.0064 (±0.0059) 1.37 × 10–22 (±4.72 × 10–20) 0.88 0.99 0.10
Greater Kudu (TSH) 6 0.167 170 3.04 × 10–4 (±2.14 × 10–3) 8.07 × 10–8 (±6.55 × 10–6) 0.99 0.99 0.50
Greater Kudu (PK) 6 0.167 170 4.29 × 10–4 (±9.23 × 10–4) 1.40 × 10–7 (±4.65 × 10–5) 0.95 0.95 0.50
Black-headed gull 7 0.143 0.30 3.63 × 10–4 (±1.55 × 10–3) 1.59 × 10–5 (±2.43 × 10–4) 0.84 0.86 0.69
Alpine ibex 8 0.125 40 2.30 × 10–4 (±8.79 × 10–4) 1.21 × 10–4 (±3.85 × 10–5) 0.99 0.99 0.54
Black-browed albatross 19 0.053 4 0.0036 (±0.0073) 1.47 × 10–6 (±4.25 × 10–5) 0.90 0.95 0.13
Snow petrel 25 0.040 0.35 0.0043 (±0.0191) 4.00 × 10–9 (±2.00 × 10–6) 0.98 0.99 0.76

T and m are the generation time and average female body mass in the study populations. e is the inverse of T and measures the impact of a given variation in

recruitment rate on average individual fitness (Charlesworth 2000; Lebreton 2005). VM and VR are the estimated between-individual variances from mixture

and random-effect capture-recapture models, respectively, with standard error from 1000 replicates of the parametric bootstrap between parentheses. Bold

font indicates P-values < 0.05 for the likelihood ratio test of individual heterogeneity. s1, s1, and π are parameter estimates from the CR mixture models

(annual survival at the onset of adulthood for the low survival group, for the high survival group, and proportion of individuals in the low survival group

at first capture).

Another major issue which we account for in our framework

is that, at the population scale, senescence-related declines in sur-

vival probability and between-individual heterogeneity can fully

or partially compensate each other (Vaupel et al. 1979; Service

2000; our Supplementary material A, part 4). So, ignoring senes-

cence or relying on information theory to decide on the occur-

rence of frailty and/or senescence can lead to downward-biased

estimates of individual variance (Supplementary material A, part

4). We systematically accounted for senescence in our estimation

framework to remove this bias. We used the logit-linear model of

ageing, which is often applied to vertebrate populations (Loison

et al. 1999; Bouwhuis et al. 2012).

CAPTURE-RECAPTURE MODELS TO ESTIMATE

INDIVIDUAL HETEROGENEITY IN SURVIVAL

The estimation of frailty in the wild has been the topic of intense

methodological innovation in recent years, all pivoting around

improvements to the Cormack-Jolly-Seber capture-recapture

(CR) model (Pledger et al. 2003; Royle 2008; Pradel 2009;

Gimenez and Choquet 2010). We resorted to two now well-

established methods to estimate individual heterogeneity of un-

specified origin in survival probability: CR models with individual

random effects (Gimenez and Choquet 2010), and CR models with

finite mixtures (Pledger et al. 2003). Briefly, CR random-effect

models are based on the assumption that individual heterogene-

ity in survival follows a Gaussian distribution on the logit scale

(logit-normal), being thereby analogue to widely used general-

ized linear-mixed models. CR mixture models are based on the

assumption that individuals can be categorized into a finite num-

ber of heterogeneity classes (hidden states), that is the underlying

distribution of frailty is approximated by a “histogram-like,” cate-

gorical distribution. The CR mixture models that we implemented

had two components: low and high survival. Both methods (i.e.,

mixture and random effect models) allow separating process (in-

dividual) variance from sampling variance in survival probability.

In CR random-effect models, we used the delta method to rescale

the logit-scale of between-individual variance onto the identity

scale. We denoted the resulting metric VR. In CR mixture models,
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we used a stratified sampling formula (eq. S2 in Supplementary

material A). We denoted the resulting metric VM. The two metrics

VR and VM measure the same quantity (individual heterogeneity

in survival probability at the onset of adulthood) but use differ-

ent underlying models and so are expected to differ, depending

on the relative fit of the two models. The relative performance

of the two methods (random and mixture models) was assessed

using model deviances and further investigated with extensive

simulations (Supplementary material A, part 5).

All CR models were fitted using program E-SURGE

(Choquet et al. 2009). Detailed accounts of the analytical pro-

tocols we used can be found in Péron et al. (2010) for CR mixture

models and Gimenez and Choquet (2010) for CR random ef-

fect models. Additional elements to reproduce our CR analyses

are provided in Supplementary material A (part 3). In particular,

whether or not the study populations exhibited individual hetero-

geneity in capture probability was assessed prior to this study in

each population, and the result of that assessment was carried over

in our models. The statistical significance of between-individual

variance was assessed using likelihood ratio tests designed to ac-

commodate the fact that the null hypothesis “zero variance” is

at the boundary of the parameter space (variance being always

positive; see Gimenez and Choquet 2010 for the technical details

of the test). We also assessed whether the bounded nature of sur-

vival probability itself, that is the fact that it must vary between

zero and one, acted as a constraint. Under the binomial assump-

tion, we computed the maximum variance value for mean sur-

vival probabilities varying between zero and one. We found that

observed between-individual variance was always much smaller

than the maximum possible variance under the binomial assump-

tion. Therefore, the boundary constraint was unlikely to affect the

results of our interspecific comparison (Supplementary material

A, part 2).

INTERSPECIFIC COMPARISON

After obtaining estimates of between-individual variance in sur-

vival at the onset of adulthood for all of our eleven study popula-

tions, we regressed species-specific variance estimates against the

position of the species on the slow-fast life-history continuum, to

support or infirm the canalization hypothesis. We used generation

time, the weighted mean age of females when they give birth, to

rank species on the continuum (Gaillard et al. 2005). Generation

time presents the interesting property that it is directly linked to

the elasticities of demographic traits, that is the relative impact

of a proportional change in trait values on the population growth

rate (Charlesworth 2000; Lebreton 2005). In addition, given the

crucial role of allometric relationships in shaping the ranking

of species along the slow-fast continuum of life histories, we

replicated the same regression but including the average female

body mass of our study populations as predictor.

To estimate the standard error of the regression parameters,

we performed a parametric bootstrap by resampling 1000 times in

the approximate multivariate normal distribution of the species-

specific CR models, that is taking the sampling variance and

covariance of the population-specific vital rates estimates into

account (this was also used to compute standard error on VM

and VR estimates). Due to the relatively small number of species,

we did not consider phylogenetic inertia (Sæther et al. 2013).

However, we incorporated a fixed class effect (bird/mammal) in

the above regression. These analyses were performed with R.

RESULTS
As a general rule, the random-effect CR model fitted data less

well than the mixture CR model (deviance in Supplementary ma-

terial B and simulation in Supplementary material A, part 5).

The amount of individual heterogeneity in survival at the onset

of adulthood decreased with increasing generation time (Fig. 1;

log–log regression slope: –2.20 ± bootstrap SE 0.90; correla-

tion coefficient: –0.22 ± 0.16) and with increasing body mass

(Fig. 1; log–log regression slope: –1.06 ± bootstrap SE 0.45; cor-

relation coefficient: –0.21 ± 0.15). However, these relationships

were mostly caused by the contrast between two short-lived, small

species (blue tit and white-throated dipper; Table 1) and all the

other, longer lived, heavier species. Indeed, although most of the

populations we studied did not exhibit any detectable individual

heterogeneity in survival, our findings actually show that indi-

vidual heterogeneity in survival at the onset of adulthood does

decline from fast- to slow-living species, in line with the canal-

ization hypothesis.

DISCUSSION
Using 11 long-term time series of individual-based demographic

data, we found that individual heterogeneity in survival at the

onset of adulthood was low and mostly undetectable in long-lived

species, whereas it was marked in short-lived species. In long-

lived species, the same variation in adult survival that we found

in short-lived species would have had a much greater impact

on average individual fitness than in short-lived species (Pfister

1998). Our finding thus corroborates the hypothesis that traits

whose variation has the greatest potential effect on fitness are the

most canalized. Reduced variation in adult survival has previously

been reported in large mammalian herbivores and large seabirds,

but using temporal, not individual, variation (Gaillard and Yoccoz

2003; Nevoux et al. 2010). Although few studies have quantified

individual heterogeneity in adult survival in the wild, those that did

so far support our findings. A bird species with a generation time

of two years exhibited detectable individual heterogeneity (Knape

et al. 2011), whereas a bird species with a generation time of
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25 years exhibited almost none (Barbraud et al. 2013). Our result

is not tautological, in the sense that it is not due to the bounded

space in which survival probability varies between zero and one

(Supplementary material A, part 2), nor is it affected by the bias

that senescence would have generated in variance estimates if

not accounted for (Service 2000). Rather, and even though we

cannot disentangle the relative contributions of environmental

and genetic factors, our finding aligns with the recent analysis by

Caswell (2014) of the between-individual variation in lifespan.

Caswell (2014) found that individual heterogeneity accounted

for less than 10% of the between-individual variation observed

in lifespan of Humans (generation time >25 years), whereas it

accounted for between 46 and 83% of the individual variation in

lifespan of short-lived laboratory-bred invertebrate species with

generation times shorter than a year.

In conclusion, we provide a first systematic assessment of

individual heterogeneity in adult survival along the slow-fast con-

tinuum of vertebrate life histories. That only the shortest lived

species with generation times shorter than three years exhibited

detectable and substantial individual heterogeneity in survival at

the onset of adulthood corroborates the canalization hypothesis.
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Appendix A: Material and Methods complements 

Part 1: Analytical demonstration of the direct link between age-specific 

survival probability and lifespan 

That there is a link between age-specific survival rates and lifespan is intuitive, but the actual shape 

of that link is not trivial and has been the topic of a rich literature (Vaupel 1986; Olcay 1995; 

Finkelstein 2002).  

The following material is not new but has to our knowledge rarely if ever been presented in a step 

by step way for a non-demographer audience, despite its importance for evolutionary biology. 

The framework is built upon the Gompertz model of ageing, which is the reference in human 

demography. This model assumes an exponential rate of ageing: x years after the onset of 

senescence, the mortality hazard rate is modeled as: 

(1) 𝜇(𝑥) = 𝑎0𝑒
𝑏𝑥 

 

The probability for an individual to reach age x, usually called the survival function, is defined as: 

(2) 
𝑙(𝑥) = exp(−∫ 𝜇(𝑣)𝑑𝑣

𝑥

0

) 

 

Importantly, the survival function is different from age-specific survival probability, which is, with 

x in years: 

(2bis) 
𝑠(𝑥) =

𝑙(𝑥 + 1)

𝑙(𝑥)
 

 

 Life expectancy at the onset of senescence is in turn defined as: 

(3) 
𝑒(0) = ∫ 𝑙(𝑣)𝑑𝑣

∞

0

 

 

Combining (1) and (2) we get: 

(4) 𝑙(𝑣) = exp(
𝑎0
𝑏
) exp(−

𝑎0
𝑏
exp(−𝑏𝑣)) 

 

Making the variable change 𝑢 =
𝑎0

𝑏
exp(−𝑏𝑣) and substituting (4) into (3), we get: 



2 

(5) 
𝑒(0) = exp (

𝑎0
𝑏
)
1

𝑏
∫

exp(−𝑢)

𝑢
𝑑𝑢

∞

𝑎0
𝑏

 

 

The integral in (5) is convertible into a computable series expansion (Abramowitz and Stegun. 

1965, p.229) 

(6) 
𝐸1(𝑧) = ∫

exp(−𝑢)

𝑢
𝑑𝑢

∞

𝑧

= −𝛾 − ln(𝑧) −∑
(−𝑧)𝑛

𝑛 ∙ 𝑛!

∞

𝑛=1

 

 

where 𝛾 ≈ 0.577 is Euler’s constant (from number theory). 

It derives from (5) that life expectancy at the onset of senescence decreases with both baseline 

mortality and the rate of senescence. 

 

In our study the Gompertz model is replaced by the logit-linear model which is more convenient 

in capture-recapture analyses. This model is defined in discrete time (𝑥 = 1, 2, 3…) by the 

following equation describing the annual survival probability: 

 (7) 
𝑠(𝑥) =

𝑙(𝑥 + 1)

𝑙(𝑥)
=

1

1 + exp(−(𝛼 + 𝛽𝑥))
 

 

The logit-linear model is a close approximation of the Gompertz model, meaning that for most sets 

of values (𝑎0; 𝑏) there is a set (𝛼; 𝛽) that yields a reasonably close fit of (7) to the Gompertz curve. 

In other words, 1 − 𝛼and − 𝛽 are functional equivalent to the mathematically better-characterized 

𝑎0and𝑏. 
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Part 2: On the variance of a probability  

Probabilities vary between 0 and 1, and this mechanistically creates a cap to what their variance 

can be. The closer to boundaries 0 or 1, the less variable a probability can be. In Fig. A2 below, we 

represent the maximum possible variance (black line), as well as the maximum variance for a Beta 

distribution with various α parameters, as a function of the distribution mean value. The black 

circles indicate the estimate for our 11 study population, showing that all but 1 (Alpine ibex, which 

has a survival probability of one at the onset of senescence) are well below the maximum possible 

variance. This confirms that the canalisation process we report is not due to the mechanistic link 

between average survival probability and the maximum variance in survival probability. 
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Part 3: Datasets and analysis details 

Dataset presentation 

Table A1: Information about the long-term datasets used in this study. “Spl. size” corresponds to 

the number of known-age adults that were monitored since their first occurrence as mature adults 

in the study area. “Max. age” is the maximum age recorded for the species in its study area. “Gen. 

time” is the mean age of females when giving birth (computed using age at first reproduction and 

baseline survival rate). “Ref.” is the article(s) in which data collection is described. 

Abbr.     Study area Spl. 

size 

Max 

age 

Gen. 

time 

Ref. 

Mammals (ungulates) 

GK-

TSH 

Greater 

Kudu 

Tragelaphus 

strepsiceros 

Tshokwane, Kruger 

N.P., South Africa 

118 15 6 (Owen-smith 

1990) 

GK-

PKP 

Greater 

Kudu 

Tragelaphus 

strepsiceros 

Pretorius Kop, 

Kruger N.P., South 

Africa 

188 15 6  

RD-

CH 

Roe Deer Capreolus 

capreolus 

Chizé, France 1200 16 4.5 (Gaillard et al. 

1993) 

RD-

3F 

Roe Deer Capreolus 

capreolus 

Trois-Fontaine, 

France 

1402 17 4.5  

CH Chamois Rupicapra 

rupicapra 

Bauges, France  313 22 6 (Loison et al. 

1999) 

AI Alpine ibex Capra ibex Belledonne, France 432 20 8 (Toïgo et al. 

2007) 

Birds 

BT Blue Tit Cyanistes caeruleus Pirio, Corsica 1225 9 2 (Blondel et al. 

2006) 

WTD White-

throated 

Dipper 

Cinclus cinclus Northeastern 

France 

1047 9 2.5 (Marzolin et al. 

2011) 

BHG Black-

headed Gull 

Chroicocephalus 

ridibundus 

La Ronze pond, 

France 

1556 30 7 (Lebreton 1987; 

Péron et al. 

2010) 

BBA Black-

browed 

Albatross 

Thalassarche 

melanophrys 

Kerguelen Island 476 40 19 (Nevoux et al. 

2010) 

SP Snow Petrel Pagodroma nivea Terre Adélie, 

Antarctica 

188 47 25 (Barbraud et al. 

2000) 
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Data selection 

We restricted our analyses to known-age individuals that were either marked soon after birth, or 

for which age at marking could be reliably estimated using plumage features or horn growth annuli.  

For large mammals, white-throated dipper, and blue tit, we only used data from the females that 

are readily separated from male from phenotype. In others (black-headed gull, snow petrel, and 

black-browed albatross), we used all available individual data. This could have led to increased 

individual heterogeneity in survival probability, but 1) in weakly dimorphic species (black-headed 

gull, black-browed albatross) the difference in survival probability among sexes is expected to be 

low and 2) for snow petrel, earlier studies found no differences in survival between sexes (Barbraud 

et al. 2000). Lastly, although individuals of many species were marked at, or close to, birth, the 

dataset was restricted to include only the data from individuals of breeding age.  We did this because 

we wished to standardize our datasets and methodology across species, and immature black-

browed albatrosses, snow petrels, and black-headed gulls were not available for recapture.  

Model of age-specific survival 

Age-specific survival probability 𝜑𝑎 was modelled using the logit-linear model, which provides a 

close approximation to the Gompertz model often used to model actuarial senescence in vertebrate 

populations (Loison et al. 1999; Marzolin et al. 2011; Bouwhuis et al. 2012):  

log (
𝜑𝑎

1 − 𝜑𝑎
) = logit(𝜑𝑎) = 𝛼 + 𝛽 ∙ 𝑎 

Eq. S1 

where α is the intercept and β the slope of the age effect on the logit scale. We used 𝛼 as our metric 

for baseline mortality and β as our metric for the rate of actuarial senescence (note that β is negative 

when senescence occurs). A particular methodological point is that the age at first occurrence in 

the dataset varied among individuals within a species.  We corrected for this using the methods 

described in Appendix 1 in (Péron et al. 2010). The statistical significance of individual 

heterogeneity and senescence was, however, assessed using the standard errors of their respective 

estimates in one-sided z-tests (rather than Akaike Information Criterion, see below). We used 

program E-SURGE (Choquet et al. 2009a) to build and fit CR models to the data. 

Computation of between-individual variance from CR mixture model parameters 

In CR mixture models, between-individual variance was estimated as a derived quantity by 

adapting the between-sample variance formula of Cochran (p.68) (Cochran 1977): 

𝑉𝑀 =
1

𝐶
∑𝜋𝑐(𝜑𝑐 − �̅�)2
𝐶

𝑐=1

 

Eq. S2 

where C is the number of heterogeneity classes (here C = 2), 𝜋𝑐  is the proportion of individuals in 

class c at their first capture, 𝜑𝑐 is the survival of individuals in class c at the median age at first 

reproduction and �̅� is the average survival at the median age at first reproduction across 

heterogeneity classes (weighted by 𝜋𝑐). 
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For the chamois and white-throated dipper, the selected model included age- and time-effects on 

π, so the variance estimate corresponded to the average over years for individuals at the median 

age at first reproduction. For all other datasets the selected model had constant π. 

Other modelling choices 

In addition to the above, some further modelling choices had to be made to reflect both the previous 

knowledge acquired on each species and field procedures, as well as to reduce the number of 

models that we fit to the data.  First, based on previous CR analyses, authors contributing datasets 

provided an appropriate model structure for recapture probabilities and for survival during the first 

years of adult life.  Then, we tested the goodness-of-fit (GOF) of the time-dependent CR model 

(Cormack-Jolly-Seber model).  Lack of fit could originate from transience (i.e., excess of 

individuals that were never seen again after their first encounter; (Pradel et al. 1997)) or trap-

dependence (i.e., excess or lack of individuals seen at time t; (Pradel 1993)).  Depending on the 

results pertaining to each GOF test, the starting model included a trap-dependence effect, a 

transience effect, and/or individual heterogeneity in detection probability.  The latter was 

considered when both sources of lack-of-fit were detected and field experience suggested this was 

occurring (e.g., (Péron et al. 2010)).  All GOF tests were conducted using U-CARE (Choquet et al. 

2009b).   

We then went on selecting the structure of the π-parameters (proportion of the different 

heterogeneity classes at first capture).  Originally, when Pledger et al. (Pledger et al. 2003) 

introduced mixture models to reduce the variance-bias trade-off in the estimation of a parameter of 

biological interest, π-parameters were interpreted as “nuisance parameters”.  However, under our 

working hypothesis that the frequency of high survival individuals increases with age within a 

cohort, we cannot ignore the biological meaning of the π-parameters: π is expected to vary with 

age as viability selection operates within each cohort.  In addition, cohort effects (i.e., long-lasting 

effects of conditions encountered during early life; (Albon et al. 1987)) could lead π to vary among 

years. We thus fitted models including either age- or time-dependence of the frequency distribution 

of individual heterogeneity at the first capture. The preferred structure for π was selected using AIC 

(corrected for small sample size). For each dataset we present results from the model with no 

heterogeneity, from the mixture model with preferred structure for π, and for the random effect 

model. 
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Part 4: Shortcomings of using the information theoretic approach to detect 

class heterogeneity in survival in presence of senescence 

It has been repeatedly shown that individual heterogeneity and age-related declines in survival 

probability (senescence) interplay at the population level (Vaupel et al. 1979; Service 2000), so that 

neglecting one of these biological processes when assessing the other can lead to major biases. As 

a preliminary analysis, we therefore performed a simulation study comparing the deviance of 

models with senescence only, heterogeneity only, both, or none of these features.  

We ran simulations with a linear decline in survival probability within each of two classes of 

individuals (Fig. A3a below). Eighty per cent of individuals started with a survival probability of 

one declining linearly to 0.85 at age 20. The remaining 20% started with a survival probability of 

0.8 declining to 0.65 at age 20. Under these conditions, a sample size of 2000 individuals 

guaranteed a 50% chance only that the correct model was selected; for a sample size of 500 

individuals, which is still larger than most real life datasets, the wrong model was almost always 

selected. In other words, when the individual-level decline in survival probability with age is 

compensated at the population level by heterogeneity in baseline survival, then the AIC of the 

model with neither heterogeneity nor senescence will almost always be equivalent or lower than 

that of the model with both heterogeneity and senescence (Fig. A3b).  

In conclusion, we recommend to a priori include individual heterogeneity in survival probability 

in all attempts to estimate individual heterogeneity in survival or survival senescence or both, rather 

than relying on AIC to decide on the presence of heterogeneity (Vaida and Blanchard 2005). The 

use of AIC to select other features than heterogeneity or senescence is still supported and was used 

as usual in this study. 

We also noted that in c.10% of simulations, even the model with heterogeneity failed to capture the 

correct values of between-individual variance and rate of senescence. In these cases, the model 

converged towards a solution close to the model with neither heterogeneity nor senescence (i.e., 

with a rate of senescence close to zero and almost no difference among heterogeneity classes). This 

illustrates the challenge of making inference about senescence in small datasets where few 

individuals reach senescent ages. This is reflected in the 95% confidence intervals of Fig. A3c. 
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Fig. A3: (a) Simulated scenario with 80% high and 20% low baseline survival (bold lines), and 

senescence. The thin line represents the average survival probability at the population level as a 

function of age. (b) AIC difference between the model with neither heterogeneity nor senescence 

and the model including both. Positive values indicate replicates where the wrong model (no 

heterogeneity and no senescence) would have been selected. The dotted line represents the median 

AIC difference. (c) Median and 95% confidence interval (shaded areas) of the estimated age-

specific survival from 100 replicates. Bold line: estimates from the model matching the way data 

were simulated. Thin lines: estimates from the model with neither heterogeneity nor senescence. 

Upper panels: scenario with 2000 individuals sampled. Lower panels: scenario with 500 

individuals sampled. 
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Part 5: Shortcomings of using the logit normal random effect model 

We aim here to challenge the logit-normal random effect model by fitting it to a dataset with a 

strongly multimodal distribution of individual differences.  

We fitted a random effect model to the same simulated datasets as above, which had been simulated 

using a mixture model (two classes of individuals with low or high survival). Random effect models 

were fitted using the Gauss-Hermite quadrature with 10 nodes, and the linear effect of age on 

survival was modelled on the logit scale (while when simulating data, the decrease in survival with 

age was linear on the natural scale).  

The estimated slope of senescence and between-individual variance estimated from the random 

effect model were consistently near zero (average estimate slope on the logit scale: -0.006; average 

estimated variance on the logit scale: 2.7E-0.5).  

This indicated that the random effect model failed to detect senescence and heterogeneity, although 

the model used to simulate the data had both features.  

Fig. A4 further illustrates the fact that under the scenario we simulated, the random effect model 

only captured the population-average survival probability, but not the underlying heterogeneity and 

ageing processes. 

Fig. A4: Actual values of age-specific survival 

probability (grey lines: in the two mixture levels; black 

line: population average) and values estimated from the 

random effect model with logit-linear effect of survival 

(red line; dotted lines are the one standard deviation 

confidence interval over 100 replicates). 
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Appendix B 

Model selection in each of the study populations 
 
H denotes the presence of survival heterogeneity, al denotes the logit-linear effect of age, ac denotes the full age effect (one parameter per age-class), t 
denotes the effect of year, + and * denotes additive and interacting effects, and a dot denotes that survival is independent of age. np denotes the 
number of model parameters, Dev is the deviance, pi denotes the π-parameters (the proportion of each heterogeneity class at first capture), and 
ΔAICc is the difference in information criterion between the focal and preferred model. 
The difference in the number of model parameters depends on the number of age-classes (duration of the study), how variable was age at first entry 
in the dataset, the existence of transience, the parameterization of detection probability (time-effect, trap-dependence), and the age at the onset of 
senescence. 
In the particular case of the BHG dataset we also incorporated individual heterogeneity in detection and emigration probability because 
heterogeneity in these parameters had been shown to prevent the detection of senescence. 
 
 

Kudu TSH 
      

Black-headed gull 
     

Mode
l # 

Sub-
model 

for 
survival 

Sub-
model 
for π  

np Dev AICc ΔAICc 
 

Model # 

Sub-
model 

for 
surviva

l 

Sub-
model 
for π  

np Dev AICc ΔAICc 

1 . 
 

14 1348.89 1377.79 20.51 
 

1 . 
 

36 7799.44 7871.44 0 

2 ac 
 

28 1308.56 1366.59 9.31 
 

2 ac 
 

63 7785.36 7911.36 39.92 

3 al  
15 1326.69 1357.28 0 

 
3 al  

44 7795.47 7883.47 12.03 

4 H . 14 1352.9 1381.42 24.14 
 

4 H . 45 7790.32 7880.32 8.88 

5 H+ac . 30 1299.97 1362.3 5.02 
 

5 H+ac . 67 7764.40 7898.40 26.96 



6 H+al . 17 1326.69 1361.45 4.17 
 

6 H+al . 47 7781.31 7875.31 3.87 

7 H+al ac 25 1319.10 1370.72 13.44 
 

7 H+al ac 83 7753.60 7926.09 54.65 

8 H+al ac+t 
34 1307.62 1378.61 

21.33 
 

8 H+al ac+t 
13
2 

7656.30 7937.01 65.57 

9 H+al T 26 1309.70 1363.46 6.18 
 

9 H+al t 93 7744.08 7938.25 66.81 

10 R+al  
16 1326.69 1359.36 2.08 

 
10 R+al  

42 7797.90 7881.90 10.46 

               
Kudu PKP 

      
Blue tit 

      

Mode
l # 

Sub-
model 

for 
survival 

Sub-
model 
for π  

np Dev AICc ΔAICc 
 

Model # 

Sub-
model 

for 
surviva

l 

Sub-
model 
for π  

np Dev AICc ΔAICc 

1 . 
 

14 2014.92 2043.26 26.87 
 

1 . 
 

33 1836.89 1902.89 10.70 

2 ac  
28 1964.75 2022.08 5.69 

 
2 ac  

67 1818.92 1952.92 60.73 

3 al  
15 1986.00 2016.39 0 

 
3 al  

34 1826.93 1894.93 2.73 

4 H . 16 2014.92 2048.34 31.95 
 

4 H . 5 1899.11 1909.11 16.92 

5 H+ac . 30 1964.75 2026.27 9.88 
 

5 H+ac . 69 1816.54 1954.54 62.34 

6 H+al . 17 1986.00 2020.50 4.11 
 

6 H+al . 36 1820.20 1892.20 0 

7 H+al ac 25 1969.33 2020.39 4.00 
 

7 H+al ac 37 1820.53 1896.96 4.76 

8 H+al ac+t 34 1954.37 2024.32 7.93 
 

8 H+al ac+t 64 1773.05 1908.41 16.22 

9 H+al T 26 1977.65 2030.79 14.40 
 

9 H+al t 60 1777.30 1903.75 11.55 

10 R+al  
16 1986.00 2018.44 2.05 

 
10 R+al  

35 1826.93 1896.93 4.73 

               
Roe deer Chizé 

      
Black-browed albatross 

    



Mode
l # 

Sub-
model 

for 
survival 

Sub-
model 
for π  

np Dev AICc ΔAICc 
 

Model # 

Sub-
model 

for 
surviva

l 

Sub-
model 
for π  

np Dev AICc ΔAICc 

1 . 
 

58 4255.59 4375.64 103.87 
 

1 . 
 30 3710.16 3771.03 1.81 

2 ac 
 

89 4123.18 4310.83 39.07 
 

2 ac 
 66 3673.94 3810.17 40.95 

3 al  
61 4149.26 4275.74 3.98 

 
3 al  31 3706.29 3769.22 0 

4 H . 60 4255.59 4379.93 108.16 
 

4 H . 32 3710.16 3775.15 5.93 

5 H+ac . 91 4117.37 4309.48 37.71 
 

5 H+ac . 68 3673.96 3814.45 45.23 

6 H+al . 63 4140.98 4271.77 0 
 

6 H+al . 33 3706.29 3773.34 4.12 

7 H+al ac 65 4149.25 4284.35 12.59 
 

7 H+al ac 43 3690.49 3778.27 9.06 

8 H+al ac+t 96 4083.11 4286.38 14.62 
 

8 H+al ac+t 67 3637.68 3776.04 6.82 

9 H+al t 95 4085.49 4286.53 14.76 
 

9 H+al t 57 3669.23 3786.38 17.16 

10 R+al  
62 4149.26 4277.89 6.13 

 
10 R+al  

32 3709.17 3774.16 4.95 

               
Roe deer Trois-Fontaines 

     
Snow petrel 

     

Mode
l # 

Sub-
model 

for 
survival 

Sub-
model 
for π  

np Dev AICc ΔAICc 
 

Model # 

Sub-
model 

for 
surviva

l 

Sub-
model 
for π  

np Dev AICc ΔAICc 

1 . 
 

60 4513.71 4637.86 195.30 
 

1 . 
 

39 1729.15 1810.76 1.01 

2 ac  
86 4293.41 4480.65 38.08 

 
2 ac  

74 1724.94 1886.30 76.55 

3 al  
63 4311.98 4442.56 0 

 
3 al  

40 1725.96 1809.75 0 

4 H . 62 4513.71 4642.15 199.58 
 

4 H . 40 1729.09 1812.88 3.13 



5 H+ac . 
10
9 

4285.66 4517.65 75.09 
 

5 H+ac . 76 1694.68 1860.80 51.05 

6 H+al . 65 4311.98 4446.86 4.30 
 

6 H+al . 42 1725.88 1812.87 3.12 

7 H+al ac 66 4311.88 4448.91 6.35 
 

7 H+al ac 52 1776.01 1886.47 76.72 

8 H+al ac+t 99 4243.56 4453.05 10.48 
 

8 H+al ac+t 79 1709.37 1882.68 72.93 

9 H+al t 98 4248.84 4456.09 13.53 
 

9 H+al t 66 1740.13 1882.68 72.93 

10 R+al  
64 4311.98 4444.71 2.15 

 
10 R+al   41 1725.96 1811.89 2.14 

               
Alpine ibex 

      
Chamois 

     

Mode
l # 

Sub-
model 

for 
survival 

Sub-
model 
for π  

np Dev AICc ΔAICc 
 

Model # 

Sub-
model 

for 
surviva

l 

Sub-
model 
for π  

np Dev AICc ΔAICc 

1 . 
 

24 1125.58 1175.05 31.21 
 

1 . 
 7 2368.99 2382.99 57.16 

2 ac  
46 1062.74 1160.21 16.36 

 
2 ac  30 2301.31 2362.81 36.98 

3 al  
26 1090.12 1143.85 0 

 
3 al  10 2315.21 2335.38 9.55 

4 H . 27 1121.68 1177.55 33.70 
 

4 H . 10 2359.84 2380.01 54.18 

5 H+ac . 61 1062.74 1194.49 50.64 
 

5 H+ac . 33 2300.29 2368.10 42.27 

6 H+al . 28 1090.12 1148.12 4.28 
 

6 H+al . 12 2311.91 2336.16 10.33 

7 H+al ac 40 1067.95 1152.06 8.21 
 

7 H+al ac 19 2308.15 2346.75 20.92 

8 H+al ac+t 60 1048.46 1177.88 34.03 
 

8 H+al ac+t 36 2251.67 2325.83 0 

9 H+al t 48 1064.52 1166.48 22.64 
 

9 H+al t 29 2268.34 2327.74 1.91 

10 R+al  
27 1090.12 1145.99 2.14 

 
10 R+al  

11 2314.33 2336.54 10.71 

               
White-throated dipper             



Mode
l # 

Sub-
model 

for 
survival 

Sub-
model 
for π  

np Dev AICc ΔAICc 

1 . 
 

33 3114.57 3182.53 26.71 

2 ac 
 

42 3078.02 3165.21 9.39 

3 al  
34 3090.41 3160.51 4.69 

4 H . 35 3101.28 3173.49 17.67 

5 H+ac . 45 3075.15 3168.81 12.99 

6 H+al . 
36 3081.4

2 
3155.82 0 

7 H+al ac 
38 3077.7

8 
3156.38 0.56 

8 H+al ac+t 64 3037.74 3183.23 27.41 

9 H+al t 69 3040.46 3187.19 31.37 

10 R+al  
36 3087.81 3162.14 6.32 

 
 


