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1 INTRODUCTION

Within the family of models designed to estimate species pres-
ence, known as species distribution models (SDMs), occupancy
models account for imperfect detection. While there are multi-
ple available options to perform SDMs in continuous space, this
is not the case for occupancy models. Wright and Hooten (in
press) propose a very interesting approach to fill this gap. They
propose a novel approach using a clipped Gaussian process to
infer species presence over continuous space, instead of the tra-
ditional site-based occupancy models. Their proposition has sig-
nificant potential, and we examine it further from both practical
and ecological perspectives.

2 MODEL FORMULATION

There are 2 major ecological benefits to the authors’ approach:
the ability to estimate the actual proportion of area occupied (as
opposed to the proportion of sites occupied) and the potential
to address the issue of change-of-support, when the spatial scale
is not aligned between different spatial data sources.

2.1 Continuous-space occupancy inference

The advantage of considering occupancy continuously in space,
as the authors highlight, lies in the ability to estimate the pro-
portion of area that is truly occupied, rather than relying on
the proportion of occupied sites (discrete spatial units that de-
pend on the site sampling process). The latter is inherently bi-
ased upward, because a site is considered occupied if even a
small part of it is occupied. Moving beyond this discretization
allows for a more objective measurement of the quantity of in-
terest and could, for example, make it possible to compare stud-
ies conducted at different spatial resolutions. On a larger scale,
this could help limit overestimation biases in occupied areas, re-
gardless of the discretization scale used (Moat et al., 2018). This
is particularly important because the area of occupancy is one
of the criteria used by the International Union for the Conser-
vation of Nature to establish the Red List of Ecosystems (Ro-
driguez et al,, 2015), and this list is a cornerstone of many biodi-
versity conservation actions, a key foundation for prioritization
and communication efforts.

However, discrete-space representations are not always irrel-
evant. In many cases, discretization is not arbitrary but biolog-
ically meaningful, particularly due to the structuring of habi-
tats and populations. This is especially relevant for species that
are highly specialized in certain habitats, where our ecologi-
cal knowledge allows us to clearly identify and discretize these
habitats. For example, colonial nesting birds are structured as
metapopulations, making spatial discretization not only intuitive
butalso ecologicallyjustified. Colony dynamics follow metapop-
ulation processes, where patch occupancy fluctuates due to lo-
cal extinctions and (re)colonization of suitable habitats (Hanski
and Gilpin, 1991). Dynamic site occupancy models can effec-
tively capture these fluctuations, and in this context, represent-
ing colonies as discrete spatial units is both appropriate and eco-
logically meaningful (Barbraud et al., 2003). Another example
where discretizing space into sites is relevant is for amphibian
species that are highly dependent on permanent ponds identi-
fied in the landscape (eg, Mazerolle et al. (2005)).

2.2 Change-of-support

In statistical ecology, addressing the change-of-support problem
is a recurring challenge. This issue arises from scale mismatches
between different data sources, which can be a temporal and/or
a spatial mismatch. The proposed continuous-space occupancy
model handles spatial scale mismatches: for example, species
occurrences recorded as point locations must be aligned with
the spatial scale of environmental covariates, often available at
coarser resolutions. Additionally, spatial covariates from differ-
ent sources may have inconsistent resolutions, which must also
be accounted for. We believe that change-of-support is an impor-
tant aspect to consider to ensure using reliable methods.

These challenges have become more prominent with the rise
of integrated models, which combine multiple data streams and
introduce spatial and temporal mismatches (Pacificietal.,, 2019).
In particular, integrated SDMs have received considerable atten-
tion in statistical ecology, making the change-of-support issue
increasingly relevant in this field. Occupancy models, a specific
type of SDM that accounts for imperfect detection (Kéry et al.,
2010; Comte and Grenouillet, 2013), face the same challenges,
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meaning solutions developed for SDMs may also apply to occu-
pancy models.
Several types of spatial misalignment can occur:

(1) Area-to-area: Species observations may be recorded at
a coarser or finer resolution than the underlying eco-
logical processes or environmental covariates, requir-
ing upscaling or downscaling to a common resolution.
For example, species distributions or abundances have
been inferred from coarse-resolution observation data
such as fisheries catch declarations or harvest records
(Alglave, 2022; Ferndndez-Lépez et al., 2025). Beyond
species observation data, area-to-area mismatches also
arise when integrating different environmental covari-
ates, as they often vary in spatial resolution and require
standardization.

(2) Area-to-point: Environmental data often have coarser
resolutions than species occurrences. A common case is
land cover data from remote sensing, used to map habi-
tats at broad scales (Niedballa et al., 2015). The resulting
rasters misalign with point-based species records. This
challenge is an ongoing concern in statistical ecology,
as shown by Mourguiart et al. (2024), who compared
methods to address spatial misalignment in SDMs.

(3) Point-to-point: Even when both species and environ-
mental data are point-based, their locations may not
align. This issue concerns spatial precision rather than
scale. While not a change-of-support problem, it is a spa-
tial mismatch, more closely related to missing observa-
tions. It can be addressed through interpolation or im-
putation techniques (Finley et al., 2014).

There are a wide range of statistical methods to integrate data
collected at different spatial scales (Gotway and Young, 2002;
Madsen et al., 2008; Yarali and Rivaz, 2020). The occupancy
model proposed by the authors offers a promising approach
for handling area-to-area and area-to-point mismatches. Their
method not only makes it possible to estimate occupancy con-
tinuously in space but also supports the integration of diverse
spatial covariate data formats, as long as they are available at ev-
ery point in space.

Forinstance, it could enable the use of vector geographic infor-
mation system data, often available in public land-use databases,
without requiring spatial aggregation or summarization metrics
typically needed to upscale such data: If vector data of poly-
gons that represent the forest cover is available, then this ap-
proach makes it possible to determine whether each given point
falls within a forest, rather than relying on aggregated metrics
such as the percentage of forest cover within a site. Conversely,
this method supports the integration of coarse-resolution rasters
available at large scales. However, users should remain cautious,
as the resolution of the covariate raster is likely to influence the
spatial precision of the resulting occupancy estimates, even if the
integration is technically and mathematically feasible.

2.3 Further exploration and practical considerations

The authors propose a short simulation study that highlights the
main advantage of their model: its ability to estimate the propor-

tion of truly occupied area without the bias introduced by esti-
mating the proportion of occupied sites. This is likely the main
motivation behind its development. As potential users, we rec-
ognize the value of this approach and are eager to better under-
stand the model’s behaviour. We understand that addressing all
potential questions about a new model in a single publication is
not feasible and was not the authors’ intent. However, we would
like to see further exploration of the model, for instance, through
additional simulations. Such work could serve as a valuable com-
plementary publication and would certainly provide useful rec-
ommendations to ecologists.

Model assumptions. We would like to better understand the as-
sumptions underlying this model and thus its potential appli-
cations. We assume that the model incorporates the classic as-
sumptions of static single-species site-occupancy models, along
with additional ones introduced by the equations used to tran-
sition to continuous space. For example, how is the closure as-
sumption (animals do not move between sites) handled in this
framework?

Sampling design. Complementary work could improve the
sampling design recommendations for this model. What spa-
tial covariate characteristics are needed to have an appropriate
occupancy inference? What spatial structure diversity is recom-
mended for a good estimation of the spatial covariance function?
How reliable is this model with experimental designs with fewer
observation points, which is often the case in practice?

Modelling choices. What is recommended in practice regarding
the finite number of locations to have a reasonable approxima-
tion (s1, 52, . - . , sp), with the approximation explained by the
authors in equations (6) and (7)? Is it straightforward to de-
fine the buffer size for A;? Should it depend on the species home
range, or the sampling effort? How sensitive are the model out-
puts to these choices?

3 INFERENCE

Bayesian estimation of spatial models comes with a computa-
tional burden that generally increases with the number of obser-
vations. This challenge becomes even more pronounced when
the spatial model includes a hidden layer that must be integrated
out (Kang and Cressie, 2011; Banerjee and Fuentes, 2012). Al-
though Integrated Nested Laplace Approximations (INLA) has
become a widely popular approach for handling spatial random
effects (Lindgren and Rue, 2015), this paper proposes an alter-
native method. The approach relies on approximating certain
integrals using a discrete sum over surrogate points, selecting a
prior to ensure partial conjugacy, and employing the Vecchia ap-
proximation, which draws inspiration from Markov processes.
Specifically, it approximates the conditional distribution zg |
Z1, ..., 2i-1 by z4 | z(q), where ¢(d) C 1,...,d — 1. This
simplification of conditional dependencies results in a sparse
precision matrix, allowing for more efficient posterior sampling.
Practical implementation is also given significant attention by
carefully organizing the D points and proposing an update strat-
egy for spatial terms that marginalizes over the regression param-
eter .

It would be interesting to see a comparison of this Markov ap-
proximation with the INLA approach in term of computational
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efficiency, but also in terms of impact of the different approxima-
tions on the posterior distribution accuracy. As INLA approxi-
mation relies partly on a Gaussian Random Markov field defined
on a mesh, it might not be so different than the approximation of
the conditional distribution.

4 SUGGESTIONS FOR FUTURE
DEVELOPMENTS

4.1 Clipped occupancy process

An assumption in the current formulation of the model is that
the latent occupancy process is clipped to produce binary pres-
ence/absence estimates. We wonder whether removing the clip-
ping step in the latent continuous occupancy process could be
worth exploring as an adaptation of the authors’ model. Retain-
ing Z(s) to represent the ecological process, instead of clipping
it to 0 or 1 as z(s), could provide a more nuanced measure of
habitat suitability, offering a continuous gradient of occupancy
potential rather than a strict presence/absence classification. Ad-
ditionally, this approach might simplify inference, as the inte-
gral [ " z(s)ds would be replaced by [ " Z(s)ds, which remains
a Gaussian process, preserving its properties and potentially im-
proving computational efficiency.

4.2 Continuous space-time occupancy modeling

Beyond improving the spatial representation of occupancy, a nat-
ural progression is to extend this continuous approach into the
temporal dimension. The authors closed their paper by suggest-
ing the possibility of modeling occupancy in continuous space-
time. Like them, we find this a fascinating research avenue; how-
ever, we also recognize the substantial complexity of construct-
ing such models and the potential challenges in producing ro-
bust, reliable outcomes.

This paper focuses on the continuous-space question in oc-
cupancy modeling, yet continuous-time raises different issues.
Continuous-time models in occupancy often refer to time-to-
first-detection models (Henry et al., 2020; Halstead et al., 2021;
Haines et al,, 2023; Priyadarshani et al., 2024), in which the
species observation data are represented as the time until first
detection, hence a continuous response variable, rather than as
binary detection/non-detection data. Another option to expand
the author’s model would be to analyze time-to-each-detection
data, an approach that gained interest in recent years with the ad-
vent of sensors such as camera traps (Kellner et al., 2022; Haines
et al,, 2023; Rushing, 2023). However, in these examples the
continuous-time component applies only to the detection sub-
model of the hierarchical occupancy model and does not affect
the occupancy state. We found that such approaches may not im-
prove occupancy estimates over discrete-time models in many
cases (Pautrel et al,, 2024). The challenges involved in extending
a continuous-time approach to the occupancy sub-model of the
hierarchical framework share aspects with those we expect when
trying to develop a truly continuous spatio-temporal occupancy
model.

A primary concern arises from animal movement. In classical
discrete-space occupancy models, an assumption is that animals
do not move between discretized space units. This is typically
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achieved by choosing sites larger than the species’ home range.
Continuous-space models generally assume that the occupancy
state is constant over time. When both space and time are mod-
eled as continuous processes, these assumptions no longer hold
because of animal movements in space and time.

Therefore, it seems necessary to account for movement in
some way. Two non-exclusive options are possible. The first,
more complex approach, would be to add a deterministic com-
ponent to the model to explicitly describe movement. The sec-
ond, a simpler extension of the presented model, would keep
movement implicit, while incorporating spatio-temporal varia-
tions in presence. This aligns with dynamic occupancy mod-
els that incorporate colonization-extinction processes. Most dy-
namic occupancy model operate in discrete time, and we can en-
vision how the authors’ model could be adapted to a dynamic
occupancy model in discrete time, for instance, by considering
a colonization-extinction process. However, for inference to be
possible, dynamic models typically rely on the assumption that
sites are discrete in space (MacKenzie et al., 2003).

Given these challenges, ecological diffusion models offer an
appealing alternative. These models, which rely on partial differ-
ential equations to capture diffusion processes, have been used to
understand phenomena such as species dispersal, disease spread,
and invasion dynamics (Cangelosi and Hooten, 2009; Louvrier
et al,, 2020; Zamberletti et al., 2022). For instance, Hefley et al.
(2017) introduced a mechanistic spatiotemporal model within a
hierarchical Bayesian framework as an alternative to regression-
based approaches like SDMs or occupancy models with covari-
ates whose impact on the response variable (eg, species pres-
ence) is estimated via regression. Notably, such approaches ben-
efit from a continuous space and time framework regarding the
implementation efficiency (Hefley et al., 2017), in contrast to
classical regression models, where continuous approaches can
impose a significant computational burden and substantially in-
crease fitting time, as observed in the authors’ study.

4.3 Model implementation and availability

New models inevitably come with trade-offs. For example, in
this case, despite the authors’ optimizations for MCMC infer-
ence, their proposed model takes longer to fit than more classical
discrete-space occupancy models. However, with fitting times of
approximately 3 h for their simulation study and 6 h for their
avian data application, we feel that it should still be manageable
for researchers. While these computational costs may be alimita-
tion, we personally think they do not outweigh the importance of
implementation. Making new models available in accessible soft-
ware would allow practitioners to explore their potential benefits
using their own data and research questions.
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1 INTRODUCTION

Congratulations to Wilson J. Wright and Mevin B. Hooten for
this insightful contribution and thank you to the Biometrics ed-
itors for the opportunity to discuss this paper. Spatial occu-
pancy models are an increasingly common framework used to
model species distributions while accounting for false negatives
in data collection and residual spatial autocorrelation in the eco-
logical process. Spatial autocorrelation is typically accommo-
dated within an occupancy modeling framework through the use
of discrete conditionally autoregressive terms (Johnson et al,,
2013) or with continuous spatial processes (Doser et al., 2022)
despite the observed data being collected within areal units.
Wright and Hooten argue that such misalignment between the
observed data and modeling of spatial structure in the ecological
process can result in inferior inferences regarding the proportion
of area occupied by a species of interest. The authors propose
an elegant solution to this problem based on a clipped Gaus-
sian process (De Oliveira, 2000) and change of support methods
(Cressie, 1996) that they implement using an efficient Markov
chain Monte Carlo (MCMC) algorithm.

In this discussion, we outline an alternative approach to ad-
dress the change of support via a point process occupancy
(PPO) model (Koshkina et al., 2017) that explicitly makes the
connection between local density of individuals and detection
probability (Royle and Nichols, 2003). This model presents
a different viewpoint of what is meant by presence/absence
(Gelfand, 2022). By comparing this approach to the Wright and
Hooten model (hereafter WH model), we hope to more explic-
itly consider the interpretation of “occupancy” and how it can
differ across modeling frameworks.

2 OCCUPANCY MODELING VIA POINT
PROCESSES

Individual animals can be viewed as points distributed across
space, which are naturally represented via point process mod-
els (Hefleyand Hooten, 2016).LetS = (sy, s,, - - - , 5, ) denote
the locations of n individuals within some study area A. The like-

lihood for a spatial point process can be written as
ﬁmﬁ”=e@{—/K@0M4IIM$0L (1)
A i=1

where A (s; @) is an intensity function determining the distribu-
tion of individuals across space that depends on parameters 6.
Two common choices for modeling A(s; @) in ecology are the
nonhomogeneous Poisson process (NHPP) and the log Gaus-
sian Cox process (LGCP; Illian et al., 2008). For the simpler
NHPP, the intensity function A(s; ) is modeled according to

log(A(s; 0)) = x' (s)B, ()

where B represents the effects of a set of spatially referenced co-
variates x(s). The LGCP additionally incorporates a Gaussian
process, w(s) into the log intensity function according to

log(A(s;0)) = x" (s)B + w(s). (3)

The most common form of data collection for occupancy mod-
els is where observers survey a set of areal units j =1, ..., ],
each with area A j, multiple times overk = 1, ..., Kj repeat vis-
its to the site. The integrated intensity function over area A; is

defined by

L:fk@mﬁ 4)
A

Applying results from point process theory, the number of indi-
viduals N; within area A is distributed as

N; ~ Poisson(xj). (5)

Note that standard occupancy models (MacKenzie et al., 2002;
hereafter STO models) require the “closure” assumption, which
is equivalent to saying that the number of individuals within area
A must remain greater than 0 or at 0 over all K; visits. Here,
we consider the more stringent assumption that N; remains con-
stant over each of the K visits in order to directly link the oc-
cupancy data collection process with the point process. This as-
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sumption is equivalent to saying that individuals do not move to
a different area over the time span of the repeat visits.

The occupancy of areal site j, z;, is immediately defined from
(5) such that z; = 1 if and only if N; > 0 and similarly z; =
0 <= Nj; = 0. The probability of the species occupying site
Jy ¥j, is defined as

Y;=P(z;=1)=P(N; > 0)=1—P(N; =0)=1—¢ V.
(6)

By viewing occupancy as a process explicitly defined from a
point process, it is then straightforward to link the detection
probability of the species to the number of individuals present
in the areal site (Royle and Nichols, 2003). Let y; x denote the
observed detection (1) or nondetection (0) of the species of in-
terest at site j during visit k. The observation model for y; ;. can

be defined by

Yik | Nj~ Bernoulli(p*]f,k), (7)
Pa=1- (1= p N, (8)
logit(p; 1) = v/ e, 9)

where p;k is the probability of detecting the species, p; x is
the probability of detecting an individual, and o are effects of
covariates v; . This PPO model effectively extends the PPO
model of Koshkina et al. (2017) to explicitly account for the im-
pacts of local abundance on detection probability (Royle and
Nichols, 2003). The PPO model could be implemented in a
Bayesian framework using Markov chain Monte Carlo and, sim-
ilar to the WH model, leverage Nearest Neighbor Gaussian Pro-
cesses (Datta et al., 2016) if (s; #) is modeled using an LGCP.

3 COMPARISON TO THE WH MODEL

The WH model distinctly differs from the PPO model. The PPO
model considers occupancy as solely a discrete concept whose
value implicitly depends upon the size of the area A over which
occupancy is being defined. As the size of A; increases, ¥/; in-
creases toward one. This concept that occupancy probability is
scale-dependent is commonplace in the ecological literature (Ef-
ford and Dawson, 2012). Unlike the STO model ([1] and [2] in
Wright and Hooten), the PPO model outlined here allows for oc-
cupancy to be defined at different scales via the integrated inten-
sity function and the deterministic relationship between occu-
pancy and the underlying point process (Koshkina et al., 2017).

The WH model considers occupancy as a process in contin-
uous space. Analogous to the discussion in Gelfand and Shirota
(2019), the WH model defines occupancy as a Bernoulli trial at
any given location s as opposed to the probability that the num-
ber of individuals within some area around location s is greater
than 0. In this framework, “occupancy” of an areal unit .A would
correspond to a block average of all locations in .4, or equiva-
lently, the proportion of the point locations s € A where occu-
pancy is one. This quantity is what Wright and Hooten use to re-
late detection probability to the continuous occupancy surface
(ie., [S]in Wright and Hooten), cogently arguing that detection

probability should increase as this proportion becomes closer
to one. This is an important realization to consider when ap-
plying this model and interpreting the resulting occupancy sur-
face, particularly given the arguably more common interpreta-
tion of occupancy as being defined only for discrete units (Lele
etal, 2013). To conceptualize this, suppose the expected abun-
dance of individuals increases within areal unit .4; but the in-
creases only occur within a subset of the unit that is already occu-
pied. In this case, occupancy probability as defined by the PPO
model would increase since occupancy probability by definition
increases with expected abundance. However, occupancy proba-
bility as defined by the WH model would remain the same since
the proportion of area occupied does not change.

Despite the differences, the approaches are similar in that they
both attempt to link detection-nondetection data collected at
an areal unit to an ecological process occurring across continu-
ous space. Furthermore, the WH model and PPO model both
explicitly address heterogeneity in detection probability that is
not accounted for in the STO model. In the PPO model, detec-
tion probability of the species within an areal unit increases as the
abundance of the site increases (8). Similarly, in the WH model,
detection probability of the species within an areal unit increases
as the proportion of the site that is occupied increases (i.e., [$] in
Wright and Hooten). A key limitation of the STO model s that it
does not account for abundance-related heterogeneity in detec-
tion probability, which can in certain situations lead to bias (Do-
razio, 2007). Importantly, both the WH model and PPO model
require any covariates on occupancy be available at each spatial
location s in the study region, which may pose a significant limi-
tation for practitioners interested in implementing these frame-
works when important habitat features for the species of interest
are not available via remote sensing products.

4 THE CLOSURE ASSUMPTION

The STO model requires making the assumption that the true
occupancy state of an areal site remains constant over the time
span of the repeat surveys done at the site (ie, the “closure”
assumption). Given that occupancy is defined across contin-
uous space in the WH model, does the WH model require
closure across the entire continuous domain? In other words,
for all s € A, does the model require z(s) to remain constant
across the repeated visits? Or rather does the model require
that only max,c 4z(s) remain constant over the repeated vis-
its? To separately estimate occupancy and detection, we would
expect only the latter to be a necessary assumption. However,
the reliance of detection probability on the block average oc-
cupancy ([S] in Wright and Hooten) across the areal unit in-
dicates that if this block-level average were to change over the
repeat visits, bias may be induced in detection probability and
ultimately the occupancy surface. Similarly, in the PPO model
outlined in Section 2, detection probability is directly related
to abundance in the areal site, and thus any change in abun-
dance (and not just a change from N; = 0 to N; > 0 or vice
versa) would likely render bias in the estimated occupancy prob-
abilities. Note the ecological implications of this “bias” may
simply result in a shift in interpretation of the underlying esti-
mates (Kendall and White, 2009). Nevertheless, further assess-
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ment of violations of the closure assumption on the WH model
could be fruitful in helping identify its use and interpretation by
practitioners.

S CONCLUDING REMARKS

The different interpretations of occupancy between the WH
model and the PPO model outlined here may lead to the ques-
tion of which viewpoint of occupancy is “correct”> We do not
believe this is a useful question and instead argue that both
viewpoints can provide useful information on species distribu-
tions. The most suitable framework for a given application likely
depends on the characteristics of the species of interest and
study design. For example, the WH model provides an intu-
itive way to model plant cover (Wright, 2024), while the PPO
model may be helpful in linking interpretations of animal oc-
cupancy to animal movement, which are often described using
point processes (eg, Fieberg et al,, 2021). Crucially, we believe
it is more important for ecologists using different occupancy
modeling frameworks to clearly define what is meant by “oc-
cupancy” in a given analysis, how the analysis framework influ-
ences this interpretation, and the impacts such a framework and
its assumptions have on the underlying inferences that can be
drawn.

In summary, the continuous spatial occupancy model pre-
sented by Wright and Hooten is an important step forward in
the growing literature on spatially-explicit species distribution
models. We again congratulate the authors for their insight-
ful contribution and look forward to future advances in this
area.
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ABSTRACT

The discussions of our paper consider some assumptions of continuous-space occupancy models, alternative approaches, and directions for

future research. In this short rejoinder, we expand on some of these ideas and provide additional comments.

KEYWORDS: animal movement; change of spatial support; closure assumption; spatial statistics; species distributions.

1 INTRODUCTION

Occupancy modeling has become an invaluable approach for
mapping species distributions, while accounting for imper-
fect detection. In Wright and Hooten (202S5), we consid-
ered species occupancy to be an ecological process with con-
tinuous spatial support. However, the data for occupancy
studies are typically collected over areal survey units (called
“sites”). Our approach accounts for this disconnect by directly
modeling the corresponding change of support (eg, Cressie,
1996; Gelfand et al,, 2001; Gotway and Young, 2002) be-
tween the species occupancy process and observed data. We
showed how ignoring the change of support can bias infer-
ences for the proportion of continuous area occupied by the
species.

We thank the discussants for reading our article and provid-
ing insightful comments, questions, and suggestions. In this re-
joinder, we elaborate on points brought up in the discussion
papers and consider additional directions for future research.
We begin by summarizing the 2 discussion papers: We refer
to Doser and Pacifici (2025) as DP and Pautrel et al. (2025)
as PEG throughout this rejoinder. DP describe an alternative
change of support model that connects species occupancy at
areal survey units to an underlying point process in continu-
ous space. They also discuss how their approach compares to
the continuous-space occupancy model we proposed. PEG dis-
cuss many aspects of our proposed model and suggest a vari-
ety of directions for future research. Their suggestions include
alternative model implementations that could be considered
as well as ideas for continuous space-time occupancy models.
We again want to thank all of the discussants—we appreciate
their contributions to this important topic in spatial occupancy
models.

2 SPECIES OCCUPANCY AND INDIVIDUAL
MOVEMENT

Both DP and PEG make the point that movement of individ-
ual animals is related to species occupancy and can impact in-
ferences from statistical models. In particular, animal movement
is directly tied to the closure assumption in classical occupancy
models (see Section 3). The statistical analysis of animal move-
ment data has risen in popularity (Hooten et al., 2017) and it
is natural to consider these processes when analyzing ecologi-
cal data in space (eg, Glennie et al., 2021; McClintock et al.,
2022). The connection to individual animal movement makes it
more realistic to define species occupancy in continuous space.
Anindividual’s home range is typically defined as the spatial area
where that individual lives and uses to carry out its normal ac-
tivities over a defined period of time (Burt, 1943). This idea
is well-studied in the field of ecology and there are a variety of
methods to estimate individual home ranges using animal move-
ment data (eg, Christ et al., 2008; Wilson et al., 2010, Silva et al.,
2022). While occupancy studies collect species-level data and
notindividual-level data, we can directly connect the home range
idea to species-level occupancy.

Consider a study region S that contains M total individuals
and suppose we know the home range R,, C S for all individ-
valsm =1, ..., M. We consider a point location occupied if it
is within the home range of any individual. Therefore, the total
area within the study region that is occupied by a species is sim-
ply the union of the individual home ranges UR,,,. This idea de-
fines species occupancy for any point location s € S such that
z(s) = 1 if s € UR,, and is O otherwise. This connection to
animal movement reinforces why it is important to define oc-
cupancy in continuous space. With that said, discrete-space oc-
cupancy models are also useful and PEG provide examples of
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where discrete-space occupancy models may be preferred. How-
ever, there are many cases where it is more realistic to model oc-
cupancy in continuous space than in discrete survey units.

Hefley and Hooten (2016 ) presented species distribution pro-
cesses and data in a hierarchical framework. They described
species distributions and their various forms of data (including
occupancy data) in a natural spatio-temporal setting and showed
how they can be modeled using point processes (among other
techniques). The point process model described by DP also con-
nects occupancy to the locations of individual animals and falls
into the class of models described by Hefley and Hooten (2016).
The DP approach takes a “snapshot” perspective of species oc-
cupancy in the sense that it assumes individuals do not move
between areal survey units for the duration of the study. Con-
sequently, their point process model defines species occupancy
at areal units but not at each point location s. These differ-
ences highlight another important characteristic of our proposed
continuous-space occupancy model. Our model defines species
occupancy in such a way that it does not depend on the sites or
how surveys are conducted. Instead, it is solely based on the un-
derlying ecological process describing how individuals use space
in the study region. We agree with PEG that defining occupancy
so that it is independent of the survey units is beneficial and
could be useful for comparing inferences from studies with dif-
ferent sampling designs.

3 CLOSURE ASSUMPTION

In classical occupancy models, the sites are assumed to be closed
and there are many papers that discuss this topic (eg, MacKen-
zie et al., 2002, 2017; Kendall and White, 2009; DiRenzo et al.,
2022; Valente et al., 2024). Both DP and PEG raised questions
about how this assumption should be interpreted in continuous-
space models. The connections between species occupancy and
individual movement are also useful for considering these ques-
tions. First, however, it is important to note that when mapping
distributions of mobile species, standard occupancy models are
typically interpreted as providing inference about species “use”
of sites (MacKenzie et al., 2004; Nichols et al., 2008; Valente
et al., 2024). This reflects the fact that the species may not be
located within a site at every moment in time and therefore not
available for detection. Thus, the terms “occupancy” and “use”
are often used interchangeably.

How inferences are affected by violations of the closure as-
sumption due to the movement of individuals can depend upon
the duration of surveys, timing of surveys, size of home ranges,
and movement speed. For instance, Valente et al. (2024) simu-
lated trajectories of individuals and the corresponding standard
occupancy data. Their results showed that spacing the repeat sur-
veys far apart relative to the movement characteristics of indi-
viduals led to unbiased inferences for seasonal occupancy (use).
This is generally consistent with other research focusing on sce-
narios when the species may be unavailable at a site due to in-
dividual movement (eg, Kendall and White, 2009). Specifically,
if availability at a site is independent across the repeated visits,
availability becomes a component of the detection process and
does not necessarily bias inferences for occupancy (Kendall and
White, 2009; DiRenzo et al., 2022). If the probability of being
available within a site is very low, then effective detection prob-

abilities are low and this can lead to biased inferences (DiRenzo
etal., 2022).

We expect these considerations for standard occupancy mod-
els to be helpful when considering closure in our continuous-
space approach. Following our definition of occupancy in Sec-
tion 2, for mobile species, we are interested in the collective use
UR,, within a study region. For our continuous-space model,
we assume that species occupancy does not change which corre-
sponds to static home ranges for the duration of the study. Dur-
ing some surveys of occupied sites, the species will be unavail-
able for detection due to all individuals being outside the site
boundary. As in standard occupancy models, we expect the avail-
ability to be accommodated by the detection process assuming
that visits are spaced sufficiently far apparent that the locations
of individuals are approximately independent among different
visits. In fact, our proposed detection model related detection
probabilities to the within-site occupancy proportion. A positive
relationship between detection probabilities and within-site oc-
cupancy proportions could be interpreted in the context of in-
dividual availability—an individual is more likely to be available
for detection if a larger portion of its home range R, is included
within the site area 4;. This is a similar concept to the relation-
ship between detectability and abundance described by Royle
and Nichols (2003).

As with standard occupancy models, the closure considera-
tions depend on the characteristics of individual home ranges as
well as study design considerations like timing of surveys, dura-
tion of surveys, and size of sites. We echo PEG that it would be
beneficial to further explore how these considerations affect in-
ferences for continuous-space models. Such studies could specif-
ically explore the impacts of individual movement using analo-
gous simulations to those performed by Valente et al. (2024).
An additional consideration is the functional form of the detec-
tion model in our approach. There could be alternative spec-
ifications that better capture the relationship between detec-
tion and within-site occupancy proportions. Additionally, there
could be other sources of heterogeneity in detection probabil-
ities, such as within-site abundance. The point process model
proposed by DP highlights this idea (see also Royle and Nichols,
2003). In general, assessments of model fit should be conducted
and can help guide how models should be modified to better
meet assumptions. Goodness-of-fit tests (MacKenzie and Bai-
ley, 2004; Wright et al., 2016) and residual diagnostics (Warton
et al,, 2017; Wright et al., 2019) exist for standard occupancy
models—these approaches could be adapted for continuous-
space models. In particular, including spatial variability in detec-
tion probabilities may be another way to account for heterogene-
ity in detection probabilities (Wright et al., 2019). This may be
needed to capture additional variability in detection probabili-
ties that could be related to abundance, for instance.

4 CONCLUSION

It is an exciting time for research in spatial ecology. New data
types and a broadening set of statistical modeling approaches are
being explored and developed that help us learn about the natu-
ral world. As models increase in complexity to achieve more re-
alism using larger and more varied data sets, our computational
needs increase. We are also seeing a shift away from automated

520z Kep 91 uo sesn Areiqr] meT uolue L Aq 0£S6Z18/8504BIN/Z/1 8/210ILE/SOLIOWIOIG/ W0 dNO"0IWBPED.//:SAYY WO} PAPEOJUMOQ



black-box software toward community-sourced open software
for implementing such models. Research teams in spatial ecol-
ogy are becoming more diverse and now often include statisti-
cians and data scientists who are adept at developing code for
fitting statistical models in a way that leverages parallel environ-
ments and cloud computing resources, while using faster and
more stable programming languages.

We’ve noticed a series of expand-contract phases associated
with methodological developments in ecological statistics over
the years. For example, we sought to develop integrated likeli-
hoods to fit early forms of ecological models but then as com-
puting power increased and hierarchical modeling rose in promi-
nence, we saw a wide variety of new model forms proposed
that take advantage of MCMC computing, for example. After
a decade of that, many researchers have started seeking more
compact integrated likelihood forms again so they could stabi-
lize computing and take advantage of newer techniques such as
Hamiltonian Monte Carlo.

We see continuous-space occupancy models as part of an “ex-
pand phase” in the field. Admittedly, in their current form, these
newer models require more computing resources than their pre-
decessors, as both DP and PEG pointed out. We are encouraged
by newer computational techniques and ways to treat the im-
plementation in a sequence of computing stages, for example,
that will facilitate the adoption of these models and allow ecol-
ogists to take advantage of this newer technology to answer im-
portant spatial ecological questions (eg, Hooten et al., 2021; Mc-
Caslin etal.,,2021). For example, such methods are already being
applied to accelerate the implementation of capture-recapture
models (Hooten et al., 2023; 2024) and may also be helpful for
fitting spatial occupancy models in the future.
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ABSTRACT

Occupancy models are used to infer species distributions over large spatial extents while accounting for imperfect detection. Current approaches,
however, are unable to model species occurrence over continuous spatial domains while accounting for the discrete spatial domain of the observed
data. We develop a new class of spatial occupancy models that embeds a change of spatial support between the observed data and occurrence
process. We use a clipped Gaussian process to represent species occurrence in continuous space, which can provide inferences at a finer resolution
than the observed occupancy data. Our approach is beneficial because it allows for more realistic models of species occurrence, can account for
species occurring in only a portion of a surveyed site, and can relate detection probabilities to these within-site occurrence proportions. We
show how our model can be fit using Bayesian methods and develop a computationally efficient MCMC algorithm. In particular, we rely on
a Vecchia approximation to implement the spatial Gaussian process describing species occurrence and develop a surrogate data approach for
jointly updating the spatial terms and spatial covariance parameters. We demonstrate our model using simulated data and compare our approach
to alternative spatial occupancy models. We also use our model to analyze ovenbird occurrence data collected in New Hampshire, USA.

KEYWORDS: Bayesian statistics; change of spatial support; hierarchical model; nearest neighbor Gaussian process; spatial statistics; species

distributions.

1 INTRODUCTION

Mapping the distributions of wildlife species is a fundamental
component of many ecological studies and wildlife monitoring
programs. Occupancy models (Hoeting et al., 2000; MacKenzie
etal.,, 2002; 2018) have become an invaluable approach for mod-
eling species distributions because they account for detection er-
rors that are prevalent in many ecological surveys. This is imper-
ative for obtaining unbiased inferences about species occurrence
and how it relates to predictor variables of interest. Additionally,
occupancy models are widely applied because they can be used
to analyze data from multiple types of surveys, are applicable to
avariety of different taxa, and are particularly useful when moni-
toring species over large spatial extents (MacKenzie et al., 2002;
Noon et al,, 2012).

Species distributions are the result of inherently spatial pro-
cesses, and there are multiple approaches for modeling spa-
tial dependence in occupancy data (Gelfand and Shirota, 2019;
Hefley and Hooten, 2016; Latimer et al., 2006). For instance,
spatial dependence in site-level occupancy probabilities can be
modeled using conditionally autoregressive terms (in discrete
space; Johnson et al., 2013; Broms et al., 2014) or with spa-
tial terms (in continuous space) modeled as a Gaussian process
(Ovaskainen et al., 2016; Wright et al., 2021; Doser et al., 2023).
These alternative approaches make different assumptions about
the spatial support of the process of interest—highlighting a
challenge for modeling the spatial structure in occupancy data.

While species occupancy is typically viewed as arising from a
continuous spatial process (Hooten et al., 2003; Efford and Daw-
son, 2012), the observed data are collected during surveys of
areal units (MacKenzie et al., 2002, 2018). Current spatial oc-
cupancy models are unable to account for the change of spatial
support between the occupancy and observation processes.
Change of support methods provide a way to make inferences
for spatial units that have a support that differs from that of the
observed data (Cressie, 1996; Gelfand et al., 2001; Gotway and
Young, 2002). These methods are currently available for con-
tinuous data (Cressie, 1996; Gelfand et al., 2001), count data
(Bradley et al., 2016), and binary data that have been aggregated
to areal units (Walker et al.,, 2021; 2020). Ignoring a change in
spatial support can result in biased predictions (Cressie, 1996)
and biased inferences for regression coefficients (Walker et al,,
2020). Previous studies have used Poisson point processes to
handle changes of support when modeling species distributions
(Koshkina et al., 2017; Pacifici et al., 2019). However, these
methods focus on integrating different types of data, which are
observed at areal units of different sizes (Koshkina et al., 2017;
Pacifici et al., 2019), rather than explicitly modeling species oc-
cupancy in continuous space. We develop a new framework that
treats occupancy as a binary process in continuous space and
learn about this process using data observed at areal survey units.
This provides an approach for modeling a change in spatial sup-
port for a new type of data compared to previous spatial models.
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Our continuous-space occupancy framework is beneficial be-
cause it allows for more realistic spatial models of species oc-
currence while still properly accounting for the discrete spatial
support of the observed data. This provides multiple advantages
compared to previously developed spatial occupancy models.
For example, our approach allows inferences from areal data to
be downscaled, accounting for the fact that areal survey units
may only be partially occupied by a species. The observation
component of our model can relate these within-unit occupancy
proportions to the probability of detecting a species during sur-
veys. This is not possible using standard occupancy models be-
cause occupancy is defined as a binary random variable at the
level of the survey unit. Another benefit of our model is that it
allows for improved inferences about the proportion of area oc-
cupied by a species. While this quantity is often of interest, the
phrase “proportion of area occupied” can be misleading because
modeling species occurrence at the site-level, as done in standard
approaches, only permits inferences about the proportion of sites
occupied (Efford and Dawson, 2012). Our continuous-space oc-
cupancy framework directly addresses this limitation and pro-
vides inferences for the proportion of area occupied in continu-
ous space.

We implement our model using Bayesian methods and de-
velop a computationally efficient Markov chain Monte Carlo
(MCMC) algorithm for fitting our model. We assume that the
binary spatial process for occupancy arises from clipping a latent
continuous field that is modeled using a Gaussian process (De
Oliveira, 2000, 2020). To improve the computational efficiency
of fitting this model over potentially large spatial extents and at
many point locations, we approximate the latent Gaussian pro-
cess using a nearest neighbor Gaussian process (NNGP; Datta
etal,, 2016). The NNGP approximation makes implementation
of spatial models for extremely large datasets possible and helps
facilitate Bayesian computation because the necessary calcula-
tions associated with the spatial terms are much faster (Datta
et al., 2016; Finley et al., 2019). However, MCMC can still be
slow to mix for the spatial terms (Finley et al., 2019) and spa-
tial covariance parameters (Murray and Adams, 2010). To ad-
dress these challenges, we developed an elliptical slice sampler
(Murray et al., 2010) to update the spatial terms after marginal-
izing over the regression coefficients. The conventional elliptical
slice sampler assumes that the spatial covariance parameters are
fixed. We relax this assumption by modifying the surrogate data
slice sampler proposed by Murray and Adams (2010) to be more
compatible with NNGPs. The surrogate data slice sampler up-
dates the spatial terms and spatial covariance parameters jointly.
This approach is sufficiently general that it could be applied to
other spatial models with latent NNGPs.

The remainder is organized as follows. In Section 2, we de-
scribe occupancy data and the standard models used to analyze
these data. Our new model for occupancy in continuous space is
presented in Section 3, and the details of the MCMC algorithm
we used to fit this model appear in Section 4. In Section S, we
illustrate our approach using a simulated example and perform a
simulation study to compare our continuous-space occupancy
model to alternative spatial occupancy models. In Section 6,
we analyze ovenbird occurrence data collected in the Hubbard
Brook Experimental Forest, New Hampshire, USA. Section 7

discusses future directions that build upon this research. Addi-
tional details about our MCMC algorithm, NNGP calculations,
and alternative spatial occupancy models are provided in the
Web Appendices, which are available in the online Supplemen-
tary Material.

2 OCCUPANCY DATA AND STANDARD
ANALYSES

We begin with an overview of the typical data available for con-
ventional occupancy analyses (see also MacKenzie et al., 2002,
2018). Data on species occupancy are collected at areal survey
units called “sites.” Welet A; € S for S C R? denote the region
definingsite i fori = 1, ..., n. Binary detection/non-detection
data are collected at each site i during visits jfor j = 1,...,J;
where J; denotes the total number of visits to site i. In standard
occupancy models, the binary data y;; are modeled as

i ~ {I(yz; 0),

“=0 (1)

Bernoulli(p;;), z=1"

where z; denotes a partially observed binary random variable for
whether the species is present (1) or not (0) at site i, and p;; is
the probability of detecting the species during visit j to site i. The
detection probabilities can be modeled as a function of predictor
variables using a generalized linear model framework. When the
species is not present at a site (ie, z; = 0), we assume that there
are no false positive detections and y;; = 0 for all j with proba-
bility 1. However, this assumption can be relaxed, and there are
approaches for modeling false positive detections (eg, Chambert
etal., 2015; Ruiz-Gutierrez et al., 2016).

Standard approaches also model the occupancy process at the
site-level and therefore assume a discrete spatial domain. That s,
occupancy at each site is modeled as

z; ~ Bernoulli(y;), (2)

where /; denotes the probability of occupancy at site i, which
is modeled as a function of spatial predictor variables. A site is
considered occupied if the species occurs anywhere within the
site area .A;, and we address this in our continuous-space model
in Section 3. Spatial occupancy models allow ; to have addi-
tional spatial structure. This spatial structure can be included
using a conditional autoregressive term (Johnson et al., 2013;
Broms et al., 2014) or with spatial effects modeled using a con-
tinuous Gaussian process based on the locations of the site cen-
troids (Ovaskainen et al., 2016; Wright et al., 2021; Doser et al.,
2023).

The discretization of the spatial domain imposed by defin-
ing sites is generally arbitrary and does not necessarily have an
ecological interpretation. Additionally, occupancy is a process
in continuous space (Efford and Dawson, 2012), and it is pos-
sible for a species to occur in only a portion of a site (eg, Fig-
ure 1). How well standard models can approximate the under-
lying spatial occupancy process depends on the resolution of
the discretization defined by the sites. However, the proportion
of sites occupied will always be higher than the proportion of
the study area that is occupied when considering observations
over a regular grid (eg, Figure 1; see also Efford and Dawson,
2012). We define an alternative approach for analyzing species
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FIGURE 1 Hypothetical example where a regular grid defines sites throughout the study region and species occurrence is shown by the shaded
regions. The occupancy process is defined for continuous space even though the detection data are collected at areal sites that discretize the
spatial domain. In this example, 72.3% of the study region is occupied, but the species occurs in 87.5% of the sites.

occupancy data that models the occupancy process on a continu-
ous spatial domain. The primary challenge for this new approach
is that the observation data are still measured at areal sites and
we must account for the resulting change of support (eg, Cressie,
1996; Gelfand et al., 2001; Gotway and Young, 2002) between
the occupancy process and the observed data.

3 MODEL

We model species occurrence for spatial locations s € § € R?
as a clipped Gaussian process (De Oliveira, 2000, 2020) defined
over continuous space. We let z(s) denote the binary spatial pro-
cess for whether the species occurs (1) at location s or not (0).
Note that we define species occurrence z(s) for any point loca-
tion s, which differs from the site-level occupancy z; that is used
in standard occupancy models (1) and (2). We assume that this
binary spatial process z(s) arises from clipping a latent continu-
ous process Z(s) such that z(s) = 1(Z(s) > 0) and

Z(s) =x(s)'B+n(s). 3)

where x(s) is a vector of spatially indexed predictor variables
with corresponding coefficients 8 and 7)(s) is a spatial Gaussian
process with mean zero and spatial covariance function K,,. We
assume the spatial predictor variables x(s) are available at any
point location s € &, although, if not, they could be modeled as
a separate Gaussian process.

The detection/non-detection data y;; are recorded at sites i =
1,...,nandvisits j = 1, ..., J. We still assume there are no
false positive detections, and thus the species can only be de-
tected if it occupies at least a portion of the site. Therefore, we
model the detection data y;; as

I i-=0,
yij'\’{(y} )

maXse 4, z(s) =0
Bernoulli(p,-j ), (4)

maxge 4, 2(s) = 1,
(p) =wiat vl AL [ i ()
A;

where the probit link function ®(-) denotes the cumulative
distribution function for a standard normal random variable,

w;;j is a vector of predictor variables related to detection, and
|A|~ S A z(s)ds is the proportion of the site area where the
species occurs. The occupancy proportion within a site is related
to the probability of detection with corresponding parameter y.
In general, detection probabilities should increase as the propor-
tion of the site that is occupied increases. The observation pro-
cess of our model is similar to that of the standard occupancy
model defined in Section 2 except that we explicitly define site-
level occupancy as a function of the continuous occupancy pro-
cess, and we allow the detection probability to depend on the
proportion of the site that is occupied. This observation process
also provides more flexibility than standard models because we
do not need to assume that the site regions .4; are mutually dis-
joint (eg, see Section 6).

Our model accounts for the change of support between the ob-
servation and occupancy processes. This allows for inferences
about occupancy to be downscaled to continuous space even
though the observed data are measured at the site-level. In other
words, the observed data are recorded at areal sites, but we
are still able to obtain inferences for occupancy in continuous
space—we do not need to assume the entire site is occupied
when a species is detected there. Modeling occupancy in contin-
uous space is beneficial because it allows for more realistic infer-
ences about this ecological process. Additionally, it allows us to
relate the detection process to the proportion of a site that is oc-
cupied. This relationship is intuitive but cannot be incorporated
into traditional occupancy models.

4 PRIORS AND IMPLEMENTATION

We implement our model using Bayesian methods and assume
normal prior distributions for ¢, ¥, and B. Using a Gibbs sam-
pling approach, these priors facilitate conjugate updates for
many of the parameters (see Web Appendix A). The main chal-
lenges for implementing this model are associated with updating
the latent spatial terms Z(s) and the spatial covariance parame-
ters 6. We describe how we address these challenges and provide
the details for our MCMC algorithm throughout the rest of this
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section and in Web Appendix A. All analyses for our simulated
(Section S) and real data examples (Section 6) were conducted
in R (R Core Team, 2022). We also used the Rcpp (Eddelbuet-
tel and Balamuta, 2018) and RcppArmadi 1 1o packages (Ed-
delbuettel and Sanderson, 2014) to code our MCMC algorithm.

4.1 Numerical quadrature

While our occupancy model is defined for continuous space, we
consider only a finite number of locations to approximate Z(s).
Weletz = (Z(s;), ..., 2z(sp)) define the vector used to imple-
ment this approximation. The locations s; ford =1, ..., Dare
chosen to cover all sites in the study region, and we provide more
details on choosing these locations later in this section. Similarly,
we define design matrix X = (x(s1), ..., x(sp))’ and vector
of spatial terms § = (n(s;), ..., n(sp))’ at the same point lo-
cations. The finite-dimensional occupancy process can now be
modeled as Z = X + 5 where  ~ N(0, X,)) and X, are de-
fined by the spatial covariance function K,,. Additionally, we use
numerical quadrature to approximate the functions of z(s) in

(4) and (5) as

max z(s) ~ max I(z(sy) > 0) (6)
s€A, sg€A;

i

and

Al [ @D Y 1Ge) 20, ()

sdEA,

where D; is the total number of points s; contained in A;. If the
sites define a regular grid over the study region, then we define
point locations s, such that each site contains the same number
of points. The errors associated with both of these approxima-
tions can be made arbitrarily small by making D sufficiently large.

4.2 Nearest neighbor Gaussian process

As with many spatial models, increasing the number of points
D used to approximate the latent spatial process can result in this
model becoming computationally challenging to implement. We
utilize a nearest neighbor Gaussian process (NNGP) to approxi-
mate Z(s ), which results in the finite-dimensional distribution of
7 having a sparse precision matrix (Datta et al., 2016). We pro-
vide a general description of NNGPs in what follows, and more
details about constructing the resulting sparse precision matrix
can be found in Web Appendix B. The NNGP approach relies on
a Vecchia approximation (Vecchia, 1988) of the joint distribu-
tion of a spatial process. Using standard factorization properties,
the joint distribution of the spatial terms from our model can be
written as

[2]= [51][52 |zl]"'|:zD |51,---,ED—1], (8)

where we use [-] to denote a probability density function
(Gelfand and Smith, 1990). The Vecchia approximation defines
the conditional distributions in the factorization (8) to only de-
pend on a set of nearest neighbors selected from the previous
observations. Consequently, we can approximate the joint dis-
tribution of the spatial terms as

D

[’i’] ~ 1_[[’511 |’Zc(d):|9 (9)

d=1

where ¢(d) C {1, ..., d — 1} defines a set of nearest neighbors
among the previous terms (¢(1) is the null set) and z(4) denotes
a vector containing the spatial terms in that set.

The NNGP approximation requires decisions about how the
D points are ordered and how the neighbors c(d) are selected.
We use the “maxmin” ordering proposed by Guinness (2018)
and select the m nearest neighbors based on the spatial dis-
tances to the previous points based on this ordering (Vecchia,
1988; Dattaetal., 2016). The maxmin ordering chooses the next
location to be the one that maximizes the minimum distance
to previous points and can substantially improve the accuracy
of NNGP approximations (Guinness, 2018). Additionally, for
at least some points, this ordering will include neighbors that
have large distances from the point of interest, which can pro-
vide more information about parameters in the spatial covari-
ance function (Stein et al,, 2004). The exact maxmin ordering
can be computationally demanding to calculate, and thus we ap-
proximate this ordering (see Web Appendix B).

4.3 Updating the spatial terms

The NNGP approximation allows for improved computation of
the joint density of the spatial terms that can be utilized in our
MCMC algorithm. However, updating the spatial terms Z can
still be challenging because they are highly correlated and, con-
sequently, MCMC chains can converge very slowly (Datta et al,,
2016; Finley et al., 2019). When the data likelihood is Gaus-
sian, marginalizing over the spatial random terms can improve
the mixing of MCMC (Shi et al,, 2017; Finley et al., 2019). This
approach is not straightforward for our model because the like-
lihood defined in (4) and (S) becomes challenging to evaluate.
We consider an alternative approach that marginalizes over the
coefficients 8 and updates the spatial terms jointly using an ellip-
tical slice sampler (Murray et al., 2010) or a surrogate data slice
sampler (Murray and Adams, 2010).

We describe our MCMC algorithm when the spatial covari-
ance parameters are fixed (ie, X, is known) and then gener-
alize this algorithm to allow the spatial covariance parameters
to be modeled as well. Assuming the prior distribution g ~
N(pg, Xp), integrating B from (3) implies

7~ NXpg, XIpX' 4+ %,), (10)

for the finite-dimensional locations. We denote the mean and
variance in (10) by ptz and Xz, respectively. The marginal dis-
tribution for Z is approximated using the NNGP approach de-
scribed in Section 4.2 and Web Appendix B. Conditional on the
other parameters in the model, these spatial terms can be up-
dated from the full-conditional distribution

where [y | Z, -] denotes the observed data likelihood condi-
tional on the spatial terms and all other parameters in the model.
The form of (11) can be sampled from using an elliptical slice
sampler (Murray et al,, 2010) because the prior [Z] is multivari-
ate normal. Elliptical slice sampling is appealing for models using
alatent Gaussian process because there are no restrictions on the
form of the likelihood, it is easy to implement, and does not re-
quire tuning (Murray et al., 2010). Conditional onz, we sample
B from its full-conditional distribution.
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When the spatial covariance parameters 6 are not fixed, we up-
date them and the spatial terms Z jointly using a modified ver-
sion of the surrogate data slice sampler developed by Murray and
Adams (2010). A joint update for these parameters is important
because they are highly correlated in the posterior distribution,
and conditional updates result in poor mixing of the MCMC
chains (Murray and Adams, 2010). The surrogate data slice sam-
plerintroduces auxiliary parameters into the model that allow for
a series of convenient Gibbs updates for z and 6. Directly apply-
ing the approach from Murray and Adams (2010) would intro-
duce surrogate data for every spatial location s;. We found that
this was not conducive to using the NNGP approach for the spa-
tial terms and instead introduce surrogate data for only a subset
of the spatial locations. This allows us to retain the computation-
ally efficient calculations facilitated by the NN GP when applying
the surrogate data slice sampler.

To define our surrogate data slice sampler, we partition the spa-

tial terms such that

~_ (7 0\ (Xn Xp

z=|~ | ~N s s 12
where we have simplified the notation by assuming pz = 0,
which implies that iz = 0, and omitting the Z subscripts from
the partitioned covariance matrix. The partitions are chosen
such that Z; has relatively few locations—these are the locations
where we introduce surrogate data. We expand this model with

auxiliary variables vy, v, and g that are assumed to be marginally
distributed

121 0 10 0
v, | N 0 s 01 0 B (13)
g 0 00 211 + Eg

where X, is a user-specified covariance matrix corresponding to
surrogate data g. Conditional on these auxiliary variables, we set

71 =m; + Ly, (14)
Z, =my + Lyv,, (15)
where
m =%, (Z,+%,) g (16)
LL =%, - %, (Z,+ %) Zy, (17)
m, = %, X (m; + L), (18)
LL, =%, — %, 'Zp. (19)

Routine calculations show that this construction of the auxiliary
variables induces the same marginal distribution for (zj, 2, ) as
that in (12). This construction also defines a joint normal dis-
tribution for (vy, v, g, 21, Z,). Thus, we obtain a sample from
our target posterior distribution using a Gibbs sampler for this
parameter expanded model.

Conditional on the detection-level parameters, the pos-
terior distribution of the parameter expanded model is
[vi,v2,8.71,%,, 0 | y]. The first step of our Gibbs sampler
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updates the auxiliary parameters from
[VI, vV, g | Y9;l”i29 0]
= [g|;1’0:|["1,"2 |g’;17;2’ 0]7 (20)

where (g | Z1, 73, 0) 4 (g 171,0) ~ N(z;, X) is as shown in
Web Appendix A. The distribution of (v1, v, | g,7%1, 7, ) is
degenerate as implied by (14) and (15). The second step of the
Gibbs sampler is to update the spatial terms and covariance pa-
rameters from

[;1’;27 0 | Y7 vla v25 g]

= [0|y, vl,vz,g]['il,iz | vl,VZ,g,a], (21)
where [Z1,7; | V1, v, g, 0] is also degenerate by (14) and
(15). Updating the spatial covariance parameters from [0 |
Y, V1, V2, g] can be performed efficiently using a slice sampler
because @ will generally contain only a few parameters (Neal,
2003). As suggested by Murray and Adams (2010), in our full
MCMC algorithm, we perform the surrogate data slice sampling
step every 10 iterations (simulated data examples) to reduce
computation time. For the remaining iterations, we fix @ and up-
date the spatial terms using elliptical slice sampling.

Our surrogate data slice sampling algorithm uses the NNGP
approximation when updating v, and z,. In general, we can repa-
rameterize our model by introducing a vector of independent
standard normal random variables v and redefining the spatial
terms as Z = Lv, where L is a factorization of Xz (and therefore
depends on @) such that LL’ = ¥z. Using standard NNGP re-
sults, L™! is readily available, and efficient algorithms exist for
calculating Z by solving the sparse system L™'Z = v (Saha and
Datta, 2018; Datta, 2022). Givenz;, (15) defines z, using mean
m, and variance L,L} which are equivalent to the conditional
mean E(Z, | Z; ) and variance Var(Z, | Z; ), respectively. Thus, in
the second Gibbs step of the surrogate data slice sampler, Z, can
be found using the same iterative algorithm for solving L'z = v
when using an NNGP approximation (see Web Appendix B for
more details). Similarly, we can reverse this algorithm to find v,
conditional on vy, Z], and Z; in the first Gibbs step. Introducing
the surrogate data forZ; does not allow for the same NNGP cal-
culations to be used. However, by choosing the dimension of the
surrogate data to be sufficiently small, we can perform the requi-
site calculations in (14), (16), and (17) exactly. That is, we do

not need to rely on the sparsity of il_ll ~ X, when updating
;1 or v;.

Tuning is required for the surrogate data slice sampler. First,
the number of points to introduce surrogate data must be cho-
sen. In general, we choose Z; to include one point per site or grid
cell used to order the points as described in Section 4.2. The sec-
ond choice is the specification of the surrogate data covariance
X.,. We specify this covariance to be a diagonal matrix with el-
ements O'; 4 tuned to be approximately twice the posterior vari-
ance of the corresponding spatial term z; .

S SIMULATIONS

5.1 Simulated example

We start by demonstrating our model using a simulated data ex-
ample. We simulated occupancy in continuous space as a clipped
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FIGURE 2 Simulated data example with occupancy related to one spatial covariate and an additional covariate related to detection
probabilities. The number of observed detections out of three visits is shown in (A) for the sampled sites. After fitting our model, the posterior
probability of occupancy (B) is well-aligned with the true underlying occupancy (C).

Gaussian process with a single spatial covariate and a spatial
term that had a Gaussian covariance function. We considered
a 40 x 20 unit rectangular study area and defined sites using a
1 x 1 unit regular grid over the region. Occupancy data were
simulated at 200 randomly selected sites out of the 800 total sites
over the region with three visits per site (Figure 2A). We also
simulated a visit-level covariate from a Uniform(—1, 1) distribu-
tion. Data were generated based on parameters § = (—0.5,2)’,

o = (—2,1),andy = 3.Because y is positive, detection prob-
abilities within a site increase as the proportion of the site that
was occupied by the species increases.

We fit our continuous-space occupancy model to these sim-
ulated data using 200 000 iterations to tune the surrogate data
slice sampler, followed by 200 000 iterations for posterior in-
ference. The 95% marginal credible intervals captured values
of the parameters used to generate these data. Our focus is on
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TABLE 1 For the proportion of area occupied and proportion of sites occupied, the empirical bias
of posterior means and the coverage of 95% Cls for different spatial occupancy models based on

analyses of 100 simulated datasets.

Proportion of area occupied

Proportion of sites occupied

Model Bias Coverage Bias Coverage
Areal 0.143 0% —0.268 0%
Centroid 0.156 0% —0.255 3%
Continuous-space —0.002 94% —0.010 92%

Data were simulated under our continuous-space occupancy model. We compared our model to two other approaches that both
ignore the change of spatial support. The first approach (“Areal”) models the occupancy process at the areal sites used to collect
data. The second approach (“Centroid”) ignores the defined sites and treats all data as point-level observations corresponding

to the site centroids.

inferences for mapping occupancy and summarize the posterior
probability of occupancy for spatial locations throughout the
region considered. We calculate the marginal posterior proba-
bility of occupancy for spatial location s as P(z(s) = 1 | y) ~
T! Zthl z(s)® where z(s)(®) denotes the sampled value for
the binary spatial process zon MCMC iteration t and T is the to-
tal number of iterations. Overall, the map of the posterior proba-
bilities of occupancy recovers the underlying occupancy process
well for this simulated example (Figures 2B and C).

In general, this example illustrates how we can recover an occu-
pancy process in continuous space using data observed at areal
sites. The downscaling of inferences is possible because (i) the
spatial structure in the occupancy process, (ii) the spatial predic-
tor variable, and (iii) the relationship between detection proba-
bilities and the proportion of a site that is occupied. All of these
provide information at a finer resolution than the areal sites.

We also used this example to compare the performance of our
surrogate data slice sampler to a Metropolis-Hastings (MH) up-
date for the spatial range parameter p. This MH update condi-
tions on'z when updating p, which can lead to slow MCMC mix-
ing because these parameters are highly correlated (Murray and
Adams, 2010). This issue is exacerbated as the dimension of Z
increases. In our simulated example, the surrogate data slice sam-
pler resulted in an effective sample size for p that was 150 times
higher compared to using the MH update.

5.2 Comparisons to other models

We also performed simulations to compare our continuous-
space occupancy model to other spatial occupancy models. Data
were generated using the same parameter values as specified in
Section 5.1. We defined sites using a 1 x 1 unit regular grid and
considered a study area that was 20 X 15 units in size. Data were
generated for three visits at each of the 300 sites within this re-
gion. We considered a smaller region and surveys at all sites to
simplify the computation in this simulation study.

We generated 100 different datasets and fit three different spa-
tial occupancy models to each. We first fit our continuous-space
occupancy model that matches the data-generating process. The
first alternative approach models the occupancy process at the
areal sites and includes spatial structure among sites using an in-
trinsic conditional autoregressive model (Johnson et al., 2013).
The second alternative approach ignores the areal support of
the survey data and treats each site as a point location at the
site centroid. Spatial dependence in occupancy is included in
the second alternative model using a clipped Gaussian process

to make it comparable to our continuous-space model. Neither
of these alternative approaches accounts for the change of spa-
tial support between the occupancy process and the observed
data. Consequently, these alternative approaches are unable to
model how the within-site occurrence proportions lead to spa-
tial heterogeneity in detection probabilities. Additional details
for these alternative models and their implementation are in
Web Appendix C.

We compared the different models by considering the bias
of the posterior means and coverage of the 95% credible in-
tervals (CIs) for both the proportion of area occupied and the
proportion of sites occupied (see Web Appendix C for details
on calculating these quantities). Both of the alternative models
were biased and had minimal coverage for the proportion of area
occupied and the proportion of sites occupied (Table 1). Our
continuous-space occupancy model was unbiased and had high
coverage for the proportion of area occupied. Our approach also
provided unbiased inferences for the proportion of sites occu-
pied and had high coverage (Table 1). Both of the alternative ap-
proaches were positively biased for the proportion of area occu-
pied because they fail to account for the change of spatial sup-
port. However, even considering the proportion of sites occu-
pied resulted in biased inferences from these models—due to
unaccounted for heterogeneity in detection probabilities result-
ing from the species only occurring in a portion of a site.

6 AVIAN DATA APPLICATION

We analyzed detection/non-detection data for ovenbirds (Seiu-
rus aurocapilla) collected during the summer of 2015 in the Hub-
bard Brook Experimental Forest, New Hampshire, USA. These
data are part of ongoing bird surveys within the experimental
forest (Rodenhouse and Sillet, 2019) and are available in the
spOccupancy R package (Doser et al,, 2022). These data in-
clude two visit-level predictor variables—time of day and survey
date—to model detection probabilities. We obtained elevation
data for the study region using the elevatr R package (Hol-
lister et al., 2023) to use as a spatial predictor variable for occu-
pancy. All predictor variables were standardized to have mean 0
and standard deviation of 1. The code we used to fit our model
to these data is available in the online Supplementary Material.
The Hubbard Brook Experimental Forest is located in a val-
ley in the White Mountains (Figure 3A). The detection/non-
detection data were obtained from 10 min point count surveys of
circular sites with 100 meter radii (Figure 3 B). Most sites were
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(Seiurus aurocapilla) at 100 m radius plots (B). Most sites had 3 visits, but some had only 1 or 2 total visits. After fitting our continuous-space
occupancy model, the posterior mean of the spatial effects (C) and the posterior probability of ovenbird occupancy (D) within the study region.

visited 3 times, but a few sites only had 1 or 2 visits. Note that
some of the site areas overlap (Figure 3B) and that the sites do
not form a regular grid over the study region. Standard occu-
pancy models cannot account for the overlapping sites in these
surveys. Typically, this feature of the data would need to be ig-
nored (by treating sites as point locations) or by excluding data
from some of the sites that overlap. Our continuous space oc-
cupancy model, on the other hand, is able to include all the ob-
served data and naturally accommodate the overlapping sites
when making inferences about species occurrence.

We fit our model to these data using three chains with 400 000
MCMOC iterations each. The chains were fit in parallel, and on
a high performance desktop computer our model took approxi-
mately 6 h to run. The iterations from the first half of each chain
were discarded as burn-in after using them to tune the surrogate

data variances, and the final 200 000 iterations from each chain
were saved for inferences. We thinned the iterations by 10 to re-
duce the amount of memory required to save the results. In this
example, we assumed an exponential spatial covariance function
sothat K(s;, sy) = exp{—(||s; — s/||)/p} where p is the spatial
range parameter. Note that we fixed the variance of this covari-
ance function to be 1 for identifiability of the clipped Gaussian
process (De Oliveira, 2000, 2020). We found that using a Gaus-
sian spatial covariance function resulted in similar inferences.
This is expected because the smoothness parameter is not iden-
tifiable for clipped Gaussian processes (De Oliveira, 2000). We
ultimately used the exponential spatial covariance function be-
cause it is more convenient computationally. We checked model
convergence using traceplots for all parameters and summarized
posterior inferences using posterior means and 95% Cls.
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There was no evidence that detection probabilities varied with
the predictor variables date (c;: posterior mean = —0.03 and
95% CI = (—0.12, 0.06)) or time of day (c: posterior mean
= —0.03 and 95% CI = (—0.13, 0.06)). There was strong evi-
dence that detection probabilities increased as the proportion of
the site that was occupied increased (y: posterior mean = 1.74,
95% CI = (1.19, 2.43)). Consequently, the posterior mean de-
tection probability at sites with 15% occurrence was 0.29 (95%
CI from 0.11 to 0.45), while that for sites with 85% occurrence
was 0.73 (95% CI from 0.66 to 0.81). This suggests there is sub-
stantial heterogeneity in the detection probabilities due to the
variability of within-site species occurrence.

Our analysis also provided strong evidence that ovenbird oc-
currence was negatively related to elevation (;: posterior mean
= —0.68, 95% CI = (—1.00, —0.39)). We obtained posterior
inferences on the probability of ovenbird occurrence across the
study region, including for areas that were not surveyed. There
was evidence of additional spatial variability that was not due to
elevation (Figure 3C). We also were able to map the distribution
of the species in this region based on the posterior probability of
ovenbird occupancy (Figure 3D).

7 DISCUSSION

We developed a new spatial occupancy model for wildlife
species. While standard surveys for wildlife species collect
detection/non-detection data over areal survey sites, species oc-
cupancy is a process that can be defined in continuous space
(Efford and Dawson, 2012). Our approach is the first to treat
species occurrence in continuous space while accounting for the
change of support required for analyzing the areal survey data.
Additionally, our model accounts for imperfect detection and al-
lows for heterogeneity in detection probabilities related to the
proportion of the site that is occupied. This detection process
is similar to that in other occupancy models that incorporate a
detection-abundance relationship (Royle and Nichols, 2003) or
heterogeneity in detection probabilities using a mixture model
(Royle, 2006). Our real data analysis provided strong evidence
that detection probabilities of ovenbirds increased as the propor-
tion of the site area that is occupied increased. Failing to account
for this variability in detection probabilities can lead to biased
inferences even when considering the proportion of sites occu-
pied, as shown in our simulation study. Other sources of variabil-
ity in detection probabilities, such as the radius used for point
counts, can be incorporated in our model as well.

Standard approaches rely on a discrete approximation of
species occupancy in continuous space. This approximation can
be improved as the size of the sites decreases. In other words,
standard occupancy models would have small bias for the pro-
portion of area occupied when the sites are small relative to the
scale of spatial variation in species occupancy. However, sur-
veying sufficiently small sites to adequately reduce bias may be
challenging because detection probabilities decrease as site area
decreases (MacKenzie et al., 2018). Studies commonly define
sites so that each has an area that is similar to that of the home
range of an individual animal. This leads to substantial variability
in within-site species occurrence and, consequently, inferences
could be improved by considering our continuous-space model.
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The biggest limitation of our model is the increased compu-
tational burden compared to standard spatial occupancy mod-
els. In our simulation study we used D = 36300 spatial grid
points to implement our model, and run times were approxi-
mately 3 h. The alternative spatial occupancy models are imple-
mented at 300 spatial sites and can be fit in only a few minutes for
these simulated data. Using a nearest neighbor approximation in-
creased the computational efficiency of our spatial model and
made Bayesian inferences using MCMC feasible. Additionally,
we modified the surrogate data slice sampler developed by Mur-
ray and Adams (2010) to better accommodate NNGPs. Our ver-
sion of the sampler introduces surrogate data for only a portion
of the spatial locations and is able harness the computational ad-
vantages provided by NNGPs for the remaining spatial locations.
While our approach was motivated by our continuous-space oc-
cupancy model, the surrogate data slice sampler is applicable to
any model that includes a latent spatial Gaussian process. This
is because all steps update parameters from multivariate normal
distributions, resulting from the Gaussian process prior, except
when updating the covariance parameters using slice sampling.
The slice sampling step is general and can be applied to any as-
sumed data likelihood. Overall, the surrogate data slice sampler
provides an eflicient approach for jointly updating spatial terms
and spatial covariance parameters when using a latent NNGP.

We defined the spatial terms in (3) using a generic covariance
function. In some applications, it will be useful to assume occu-
pancy is a multiscale process and model the spatial terms as

n(s) =3 na(s), (22)

Nm(s) ~ GP(0, K, ), (23)

where the n,, form = 1, ..., M are assumed to be independent
of one another and their corresponding spatial covariance func-
tions K, have different parameters, including different range pa-
rameters. The independence assumption implies that the over-
all covariance function K, is equal to Zi\le K, This allows
the spatial dependence in the species occupancy process to vary
across different spatial scales. Such a multiscale model in con-
tinuous space differs from current multiscale occupancy models
(eg, Nichols et al., 2008), and future research could compare in-
ferences from these different approaches.

Other variations to standard occupancy models exist that ac-
count for multiple species, multiple seasons, and false positive
detections (Bailey et al.,, 2014). These ideas could also be in-
corporated into our continuous-space occupancy model. For in-
stance, it would be straightforward to construct a model for mul-
tiple seasons by assuming each season is a discrete-time snap-
shot of species occupancy in continuous space. An alternative
would be to consider using a clipped Gaussian process for mod-
eling species occupancy in continuous space-time. Care would
be needed to ensure detection probabilities are identifiable given
the available survey data. This could require concurrent visits
to a site or visits close together in time relative to the effective
range of temporal covariance function (analogous to the closure
assumptions of standard models). Modeling occupancy in con-
tinuous space-time could allow for improved insights into how
species occurrence changes over time.
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