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Introduction

Quantitative genetic models (Falconer & Mackay, 1996;

Lynch & Walsh, 1998) allow identification of compo-

nents of variance observed in a phenotypic trait (either

morphological or demographic) by jointly analyzing data

on the trait and on genealogical relationships in a

pedigree. In particular, the ‘animal model’ approach

allows, through the use of generalized linear mixed

models, simultaneous estimation of components of phe-

notypic variance that can be attributed to genetic factors,

environmental factors and other unknown factors

(Kruuk, 2004). Heritability of the phenotypic trait can

then be estimated from the fraction of the variance that

can be attributed to the additive genetic effects.

Although well developed in animal breeding science,

it is only recently that the estimation of heritability

using the animal model framework has been advocated

for wild animal and plant populations as an alternative

to more limited classic regressions between relatives

(Kruuk, 2004). The methodological advances of the

animal model and the increasing use of quantitative

genetics in wild populations has resulted in important

applications for identifying management strategies for

species of conservation concern (Law & Stokes, 2005),

for other conservation biology issues (Coltman et al.,

2003; Stockwell et al., 2003) and to address questions of

a basic nature in evolutionary biology (Kruuk et al.,

2008).

However, there are still problems concerning the

estimation of heritability in natural systems (Merilä et al.,

2001), which Kruuk (2004) suggests ‘can to a certain

extent be overcome by resorting to statistical techniques

that are more elaborate than the ones adopted in a

majority of the investigations in natural settings’. Among
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Abstract

Quantitative genetic analyses have been increasingly used to estimate the

genetic basis of life-history traits in natural populations. Imperfect detection of

individuals is inherent to studies that monitor populations in the wild, yet it is

seldom accounted for by quantitative genetic studies, perhaps leading to

flawed inference. To facilitate the inclusion of imperfect detection of

individuals in such studies, we develop a method to estimate additive genetic

variance and assess heritability for binary traits such as survival, using

capture–recapture (CR) data. Our approach combines mixed-effects CR

models with a threshold model to incorporate discrete data in a standard

‘animal model’ approach. We employ Markov chain Monte Carlo sampling in

a Bayesian framework to estimate model parameters. We illustrate our

approach using data from a wild population of blue tits (Cyanistes caeruleus) and

present the first estimate of heritability of adult survival in the wild. In

agreement with the prediction that selection should deplete additive genetic

variance in fitness, we found that survival had low heritability. Because the

detection process is incorporated, capture–recapture animal models (CRAM)

provide unbiased quantitative genetics analyses of longitudinal data collected

in the wild.
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other problems, it is well known that estimating demo-

graphic parameters in the wild can be biased and

inference can be flawed when the detectability of studied

individuals is not accounted for (Gimenez et al., 2008).

Typically, estimating individual survival, and hence

heritability in survival, can be strongly biased when

individuals are missed during population monitoring.

Methods using traditional models for inferring heritabil-

ity of demographic parameters have been developed

(Cox or parametric model for survival e.g. Ducrocq &

Casella, 1996). However, such methods do not deal with

detection probabilities less than 1 (Cam, 2009). In

contrast, capture–recapture (CR) models allow estima-

tion of demographic parameters when the detection is

imperfect (Lebreton et al., 1992). The basic Cormack–

Jolly–Seber (CJS) model (Lebreton et al., 1992) considers

survival and recapture probabilities as varying over time

but homogeneous among individuals, which is of little

use for estimating individual variability in demographic

parameters. Recently, the CJS model has been extended

to account for individual effects in both survival

and recapture probabilities. Royle (2008) proposed a

state–space model (SSM) formulation of the CJS model,

specifically to incorporate random individual effects (see

Gimenez & Choquet (2010) for an alternative approach).

The SSM framework distinguishes the underlying demo-

graphic process from the observation process (detection),

therefore providing much flexibility for decomposing the

variability in demographic parameters (Gimenez et al.,

2007).

Our present purpose is to adapt the SSM framework to

combine CR with animal models (hereafter CRAM), thus

allowing the decomposition of individual variation in

demographic parameters into environmental and genetic

components (as first suggested by O’Hara et al. (2008) in

their Fig. 1). We provide the details of the Bayesian

inference and its implementation through Markov chain

Monte Carlo (MCMC) simulations using the freely

available software package OpenBUGS. We refer to

O’Hara et al. (2008) for a review of the Bayesian

approach for quantitative genetic analyses and to

Sorensen & Gianola (2002) for exhaustive details on its
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Fig. 1 Performance of the capture–recapture

animal model approach – scenario with

r2
a ¼ 0. For each of the 50 simulated data

sets, we displayed the median (circle) and

the 95% credible interval (horizontal solid

line) of the parameter. The actual value of

the parameter is given by the vertical dashed

line. Notation: g is the mean survival on the

probit scale, p is the detection probability, r2
t

is the variance of the yearly random effect,

r2
e is the variance of the nongenetic individ-

ual effect, r2
a is the additive genetic variance

and h2 is the heritability.
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implementation. Finally, we illustrate the utility of our

method by estimating the heritability of survival using

data from a 29-year study of individually marked blue tits

(Cyanistes caeruleus).

A threshold state–space model for
CR–pedigree data

A SSM model can be specified in which there are two

layers, one specifying the dynamic process (the state

model) and another connecting the demographic process

to its observation through the detection of individuals

(the observation model). We focused on a binary trait,

namely survival, and aimed at calculating its heritability.

In standard methods of quantitative genetics, the herita-

bility of a discrete trait is often assessed using so-called

threshold models (Gianola, 1982; Falconer & Mackay,

1996; Lynch & Walsh, 1998). This approach assumes that

there exists a continuous random variable called a latent

variable or liability from which discrete values of the trait

are generated.

Under natural conditions, because individual detect-

ability is often less than one, we need to deal with the

observation process. To account for this issue in the

sampling protocol, we used CR data generally collected

under the form of 1’s and 0’s corresponding to a

detection or not of I individuals over T sampling

occasions.

The state model

We define X as a binary random variable that represents

the demographic process, with Xi,t ¼ 1 if individual i is

alive and available for detection at time t and 0 if it is

dead. The state process in the SSM formulation stipulates

that if individual i is alive at time t ) 1, it survives until

time t with survival probability /i,t)1 or dies with a

probability 1 ) /i,t)1; in other words, Xi,t is distributed as

a Bernoulli random variable with parameter /i,t)1 given

Xi,t)1 ¼ 1 (Gimenez et al., 2007; Royle, 2008).

The observation model

We define Y as a binary random variable standing for the

observation process, with Yi,t ¼ 1 if the individual i is

detected at time t and 0 otherwise. These observations are

generated from the underlying demographic process,

which is partially hidden from the observer, because

when an individual is not detected, it is not possible to

say whether it is alive or not.

If individual i is alive at time t, then it has a probability

pi,t of being encountered and a probability 1 ) pi,t

otherwise; in other words, the link between survival

and the detection of individuals is made through the

observation equation, which states that Yi,t is distributed

as a Bernoulli random variable with parameter pi,t given

Xi,t ¼ 1 (Gimenez et al., 2007; Royle, 2008).

Plugging the animal model in CR models: CRAM

We assume that the random survival process is related to

a continuous underlying latent variable li,t, which, given

Xi,t)1 ¼ 1, is satisfied as:

Xi;t ¼
1 if li;t > j,

0 if li;t � j.

�

for t ¼ fi + 1,…,T, where fi is the first time individual i is

detected and j was a threshold value. We assumed that

the so-called liability li,t was normally distributed with

mean li,t and variance re. For identifiability issues, and

without loss of generality, we fixed re to 1 and j to 0

(Harville & Mee, 1984; Sorensen et al., 1995).

From this construction, usually referred to as a

threshold model (Gianola, 1982), we have /i,t)1 ¼
Pr(Xi,t ¼ 1|Xi,t)1 ¼ 1) ¼ F(li,t) where F is the cumulative

function of a normal distribution with mean 0 and

variance 1. Noting that F)1 is the probit function often

used to analyse binary data, we specified an animal

model on the mean of the liability:

li;t ¼ probitð/i;t�1Þ ¼ gþ bt þ ei þ ai

where g is a constant term for the mean survival on the

probit scale, bt is a random yearly effect (i.e. year specific),

ei is an individual random effect that has no genetic basis

and ai is the genetic value for individual i. Note that

covariates can be incorporated as fixed effects possibly

affecting survival, e.g. climate effects (Grosbois et al.,

2008) or anthropogenic pressures (Véran et al., 2007). We

assumed that the temporal effect bt is normally distributed

with mean zero and variance r2
t , ei normally distributed

with mean 0 and variance r2
e whereas the distribution of

a, the vector of the ai’s, was multivariate normal with

mean 0 and variance–covariance matrix r2
aA, where r2

a is

the additive genetic variance and A the additive genetic

relationship matrix (Sorensen & Gianola, 2002). The

additive genetic relationship matrix A is built up from the

pedigree. For example, for a given individual, Ai,i ¼ 1,

whereas between parents and their offspring, Ai,j ¼ 0.5.

To handle with the complexity of the animal model, we

adopted a procedure proposed by Damgaard (2007) (see

also Waldmann (2009) for an alternative), which com-

bines a reparametrization (Henderson, 1976) and a

recursive algorithm (Quaas, 1989). Heritability was cal-

culated as the ratio of the additive genetic variance to the

total variance:

h2 ¼ r2
a

r2
t þ r2

e þ r2
a þ 1

:

Implementation

Estimating variance components and heritability

The frequentist approach for fitting our model would

require maximizing the likelihood of the data. This is a
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complex issue because of the high-dimensional integral

of the SSM likelihood and the presence of random effects

and latent variables. Therefore, we opted for a Bayesian

approach through MCMC methods, which provide pow-

erful computer-intensive methods for handling complex

models. Bayesian statistical methods are becoming

increasingly popular in evolutionary ecology, in partic-

ular to analyse CR data (Gimenez et al., 2006), as well as

in quantitative genetics, in particular to fit animal models

(Damgaard, 2007) and threshold models (Sorensen et al.,

1995).

In order to completely specify the Bayesian model, we

provided prior distributions for all parameters. All priors

were selected as sufficiently vague in order to induce

little prior knowledge. Specifically, we chose p � U[0,1]

and g � N(0,100). We assigned uniform distributions to

the standard deviation of the random effects,

rt � U[0,10], re � U[0,10] and ra � U[0,10] (Gelman,

2006; Royle, 2008).

The simulations were performed using OpenBUGS

(Thomas et al., 2006) (which performs block-updating),

using the program R (Ihaka & Gentleman, 1996) and pack-

age R2WinBUGS (Sturtz et al., 2005); R was particularly

useful for manipulating the pedigree and post-processing

the MCMC results (see Supporting Information for the R

and OpenBUGS codes).

Simulation study

The ability of our model to estimate the genetic basis of

individual variation in survival was verified using sim-

ulations. We considered two scenarios, without (r2
a ¼ 0)

and with additive genetic variance (r2
a ¼ 0:4). All other

parameters were chosen to mimic the case study on blue

tits (see next section). Specifically, we used p ¼ 0.76,

g ¼ 0.2 (mean survival � 0.6), r2
t ¼ 0:3, r2

e ¼ 0:2 (her-

itability � 0.2). We simulated 50 pedigrees with 50

individuals (25 dams and 25 sires) over 5 generations

(250 individuals in total). In association with the pedi-

grees, we simulated 50 capture–recapture datasets with

10 sampling occasions. Parent group was assumed to be

unobserved. We divided the progeny group into 5

cohorts (every 2 years) of 40 individuals. For five

randomly chosen data sets, we first ran two over-

dispersed parallel MCMC chains to check whether

convergence was reached. As a result, we decided to

use 60 000 iterations with 20 000 burned iterations for

posterior summarization. We then applied our capture–

recapture animal model approach on each data set.

The results are shown in Fig. 1 (without additive

genetic variance) and Fig. 2 (with additive genetic

variance). For each of the two scenarios, our approach

was successful in estimating the various parameters. In

particular, the value of ra was well recovered by our

model (see Fig. 2, bottom-left panel), with only one 95%

credible interval (out of 50) that did not contain the

actual value.

Application to the blue tit data

To illustrate our approach, we used a long-term dataset of

individually marked blue tits (Cyanistes caeruleus) in a

natural population in Pirio, on the island of Corsica

(France). The study site is made of evergreen forest,

composed essentially of Holm Oaks (Quercus ilex). Blue

tits are hole-nesting birds that readily breed in artificial

nest boxes, which facilitates the individual manipulation

required for the marking process (Blondel et al., 2006).

We used a total of 614 breeding individuals that were

banded, released and recaptured in spring during breed-

ing seasons between 1979 and 2007. We recorded 1366

detection events, from which 41% individuals were

captured only once (initial marking) and 25% twice

(initial marking and a subsequent recapture). A pedigree

was constructed based on nest observations; chicks that

were marked in a nest box were considered as the

progeny of the male and female captured in the same

nest box. Within the 614 observed individuals, 287

individuals have no parents identified, 218 fathers and

215 mothers were recorded. The pedigree counts 327

offspring–parent links, 112 full-sib and 126 half-sib links.

The maximal pedigree depth is 11 generations. In

addition to the observed individuals, 40 dummy individ-

uals were added to retain sib links when constructing the

relationship matrix A. We used the R package PEDAN-

TICS to manipulate the pedigree (Morrissey & Wilson,

2010).

We assessed the fit of the CJS model to the data

using standard goodness of fit techniques (Lebreton

et al., 1992) implemented in program U-CARE

(Choquet et al., 2009). Overall, the model with both

time-dependent survival and recapture probabilities

provided a satisfactory fit to the data (v2
82 ¼ 65:32,

P ¼ 0.91). A preliminary analysis using program

M-SURGE (Choquet et al., 2005) suggested that the

recapture probability could be simplified by considering

it constant over time. Because this test was only valid

for the CJS model, we also used a posterior predictive

assessment to specifically judge the fit of our CRAM to

the observed data (Gelman et al., 1996). The results

showed that our model fitted the data adequately well

(see Supporting Information).

Two MCMC–chains of 15 000 iterations took around

50 min on a PC (1.8 GHz) with 2 GB of RAM. Conver-

gence was assessed using the Gelman and Rubin statistic

which compares the within to the between variability of

chains started at different and dispersed initial values

(Gelman, 1996). Burn-in was set to 5000, and thinning

of each 10th iteration resulted in acceptable mixing and

convergence (Fig. 3).

The posterior distributions are displayed in Fig. 4, and

the resulting summary estimates are presented in

Table 1. Detection probability p was high. Survival

probability was in agreement with what we were

expecting for a small passerine. The additive genetic

4 J. PAPAÏX ET AL.
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variance r2
a was low, resulting in a low heritability h2.

The environmental variance r2
t was moderate, suggest-

ing temporal variation in survival should not be

neglected.

Finally, we compared the results of this CR study with

a naive analysis in which we considered all individuals

as being detected with certainty. In practice, we

assumed that time to death was obtained as the occasion

following that when an individual was last captured. As

expected, the naive analysis led to a downward–biased

survival estimate (posterior mean probit)1(g) ¼ 0.530,

SD ¼ 0.034), because tits that were observed for the last

time before the end of the study were wrongly assumed

as dead by the naive approach, whereas they might

actually have been alive but undetected. While the

additive genetic variance was greater in the naive

analysis (posterior mean r2
a ¼ 0:187; SD ¼ 0:107) and

the estimate of heritability twice as large as in the

CRAM analysis (posterior mean h2 ¼ 0.040, SD ¼
0.037), the inference remained unchanged as heritabil-

ity was negligible.

Discussion

We developed a model to estimate and make statistical

inference about the genetic basis of survival, an impor-

tant component of fitness. We combined CR data and

pedigree information using up-to-date CR and animal

models within a Bayesian framework using MCMC

techniques. In particular, because survival is a binary

trait, we introduced a threshold model that is frequently

used in assessing the heritability of qualitative traits. Our

approach relies on the SSM methodology, which has the

appealing advantage of disentangling the demographic

process under investigation from its observation through

the detection process.

The analysis of the blue tit data showed that heritabil-

ity of survival was low. Following the classical interpre-

tation of Fisher’s fundamental theorem of natural

selection, this is an expected result because traits strongly

associated with fitness should be weakly heritable

(Fisher, 1958). Yet, estimates of the heritability of

longevity in the wild are scarce and, with regard to the
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Fig. 2 Performance of the capture–recapture

animal model approach – scenario with

r2
a ¼ 0:4. For each of the 50 simulated data

sets, we displayed the median (circle) and

the 95% credible interval (horizontal solid

line) of the parameter. The actual value of

the parameter is given by the vertical dashed

line. Notation: g is the mean survival on the

probit scale, p is the detection probability, r2
t

is the variance of the yearly random effect,

r2
e is the variance of the nongenetic individ-

ual effect, r2
a is the additive genetic variance

and h2 is the heritability.
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depletion of genetic variation for fitness traits, are

inconsistent (e.g. Kruuk et al., 2000; Coltman et al.,

2005). Besides, heritability of adult survival in the wild

has simply not been estimated until now, to our

knowledge. Hence, we present here the first estimate of

heritability of survival between breeding seasons in a
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to fit the capture–recapture animal model

(CRAM) to the blue tit data. Two chains of
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of each 10th iteration, and 5000 iterations as

a burn–in, resulting in 1000 iterations for

each chain (one in red ⁄ dark grey, the other

in light grey) used to summarize the poster-

ior results. Notation: g is the mean survival

on the probit scale, r2
t is the variance of the

yearly random effect, r2
e is the variance of
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a is the

additive genetic variance and p is the
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Fig. 4 Posterior density distributions for

parameters of the capture–recapture animal

model (CRAM) used for the blue tit data.

Notation: g is the mean survival on the probit

scale, probit)1(g) is the mean survival after

back-transformation, r2
t is the variance of the

yearly random effect, r2
e is the variance of

the nongenetic individual effect, r2
a is the

additive genetic variance and h2 is the

heritability.
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wild vertebrate using a model accounting for the detec-

tion process. Although using a naive analysis assuming

perfect detection did not change the inference, this was

probably because of a relatively high detection probabil-

ity, constant through time. This will not be always the

case, and, because it is difficult to give guidelines about

when the issue of detectability less than one could be

ignored and a naive analysis could be conducted, we

recommend that joint analysis of CR and pedigree data be

undertaken using our new CRAM methodology.

To formally assess the relevance of including an additive

genetic variance term, an individual nongenetic effect or

both in the model, a model selection procedure could be

undertaken. Adapting a method developed by Kuo &

Mallick (1998), Royle (2008) recently implemented a way

to compute the posterior model probability of a model. In

our context, this requires introducing two indicator

variables, say we and wa, both having Bernoulli (0.5) prior

distributions, and premultiplying the random effects ei

and ai, respectively, in the expression probit(/i,t)1) (see

Plugging the animal model in CR models: CRAM). For

example, if wa ¼ 1, then the genetic additive effect is

present in the model, whereas if wa ¼ 0, it is not.

Therefore, a model with we ¼ 1 and wa ¼ 1 corresponds

to probit(/i,t)1) ¼ g + bt + ei + ai (both effects). The pos-

terior model probability is calculated from the MCMC

histories, using the ratio between the number of iterations

giving a particular model over the total number of

iterations. In the blue tit data analysis, the simplest model

was by far the most visited by the MCMC chains (posterior

probability ¼ 96%), indicating that neither individual

random effect was needed as suggested by the estimates of

variance components. The Bayesian framework offers

several alternative approaches that are reviewed in

O’Hara & Sillanpää (2009).

For the sake of illustration, we focused on a relatively

simple model, although our approach can be fruitfully

adapted to address questions involving more complex

analyses. We see at least two promising extensions that

are the object of our ongoing research. First, our present

focus was on survival, but the CRAM framework could

easily handle other parameters such as dispersal or age at

first reproduction. It would require extending the SSM to

multinomial data (Gimenez et al., 2007) and the liability

approach to several thresholds (Sorensen et al., 1995).

Second, additive genetic variance and heritability are

known to vary in natural populations. In particular,

changes with age make quantitative genetics tools par-

ticularly relevant for investigating senescence in natural

populations. CRAM can be extended to incorporate a

relationship between the additive genetic contribution

and age using a ‘random regression’ model (Meyer, 1998;

Averill et al., 2006).

With the accumulation of longitudinal data on natural

populations of most taxa and the constant improvement

of methods for assignment of genetic relationships among

individuals, an important goal of evolutionary ecology is

to predict evolutionary change in the face of natural or

anthropogenic influences in wild populations. Our new

approach, combining up-to-date quantitative genetic

tools and recent methods for the analysis of longitudinal

data with imperfect detection, provides reliable quanti-

tative genetic estimates for both applied and basic

research.
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