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Detecting senescence in wild populations and estimating its strength raise three challenges. First, in the presence of indi-
vidual heterogeneity in survival probability, the proportion of high-survival individuals increases with age. This increase can 
mask a senescence-related decrease in survival probability when the probability is estimated at the population level. To 
accommodate individual heterogeneity we use a mixture model structure (discrete classes of individuals). Second, the study 
individuals can elude the observers in the field, and their detection rate can be heterogeneous. To account for detectability 
issues we use capture–mark–recapture (CMR) methodology, mixture models and data that provide information on indi-
viduals’ detectability. Last, emigration to non-monitored sites can bias survival estimates, because it can occur at the end of 
the individuals’ histories and mimic earlier death. To model emigration we use Markovian transitions to and from an 
unobservable state. These different model structures are merged together using hidden Markov chain CMR models, or 
multievent models. Simulation studies illustrate that reliable evidence for survival senescence can be obtained using highly 
heterogeneous data from non site-faithful individuals. We then design a tailored application for a dataset from a colony of 
black-headed gull Chroicocephalus ridibundus. Survival probabilities do not appear individually variable, but evidence for 
survival senescence becomes significant only when accounting for other sources of heterogeneity. This result suggests that 
not accounting for heterogeneity leads to flawed inference and/or that emigration heterogeneity mimics survival heteroge-
neity and biases senescence estimates.

Senescence, the decline in fitness components with age due 
to internal physiological deterioration (Medawar 1952), has 
been evidenced in several life-history traits in a variety of 
wild vertebrates (Loison et al. 1999, Crespin et al. 2006, 
Nussey et al. 2006) and is thought to be the rule for most (or 
all) vertebrate species (Finch 1990, Jones et al. 2008). Yet, 
several demographic studies of wild populations found no 
decline in individuals’ performance with age (Nichols et al. 
1997, Miller 2001, Pistorius and Bester 2002, Congdon et al. 
2003), fuelling a debate over the validity of their results. 

Among the potential flaws of demographic studies of 
senescence, the non-modelled effect of individual heteroge-
neity is recurrent (Vaupel and Yashin 1985, Cam et al. 2002, 
Zens and Peart 2003, van de Pol and Verhulst 2006). Indi-
vidual heterogeneity can be defined as the occurrence of sys-
tematic variation among individuals in demographic 
parameters. It can originate from genetic differences or dif-
ferences in the conditions experienced during development 
(Fox et al. 2006), variation in individual strategies or quality 
(e.g. covariation between reproductive effort and survival: 
Hamel et al. 2008), sex-bias in dispersal or behaviour or the 
interplay of behavioural differences and study design  
(e.g. social status- or body condition-dependent detectabil-
ity: Whitehead and Wimmer 2005, Regehr et al. 2007,  

Crespin et al. 2008). Individual heterogeneity can lead to 
population-level patterns that are not always representative 
of the actual relationship at the individual level (Vaupel and 
Yashin 1985). In the case of senescence studies, since the 
proportion of individuals with high survival probability will 
tend to increase with age, the age-specific population average 
of survival probability, which is used in most studies of sur-
vival senescence, might not decrease or might even increase 
with age (Vaupel and Yashin 1985; Fig. 1). 

Heterogeneity can be modelled with known individual 
covariates: Regehr et al. (2007) modelled a gender effect 
combined with an effect of the observation method; Fox et 
al. (2006) modelled an effect of the year of birth and family 
structure. Yet, the precise cause of heterogeneity is often not 
identified, or not measured. Two ways to accommodate indi-
vidual variation of unknown origin have been proposed: 
continuous random effects (Cam et al. 2002, Royle 2008) 
and mixture models that consider discrete classes of hetero-
geneity (Pledger et al. 2003, Pradel 2009).  

In addition, it is well known that analysing data on 
marked individuals with models that do not formally esti-
mate detection probabilities together with other demo-
graphic parameters (Lebreton et al. 1992) can bias estimations 
of demographic parameters, including the rate of senescence 
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the use of hidden states (Rouan et al. 2009), and epidemiol-
ogy models can be fitted to data where health status determi-
nation is uncertain or incomplete (Conn and Cooch 2009). 

In this paper we show how this recently developed mod-
elling framework can be used to overcome the types of het-
erogeneity that typically plague senescence studies. Although 
these developments are quite general and can be applied to 
other study situations and taxa, we specifically tailor our 
example to a study of black-headed gulls Chroicocephalus 
ridibundus. This is a species for which survival senescence is 
likely to occur (Pugesek et al. 1995, Cam et al. 2002 in 
related species), but a population in which strong heteroge-
neities are expected (see Study site and population, in the 
method section). After presenting the dataset and the fea-
tures that suggested the need for this new development in 
CMR models, we present this development and provide 
simulations that illustrate their performance. 

Methods

Study site and population

Black-headed gulls Chroicocephalus ridibundus are long-
lived Charadriiform birds (maximum longevity recorded in 
our study area is 30 years) and breed colonially, often on 
vegetated ponds. The data come from a long-term monitor-
ing program of black-headed gulls breeding in La Ronze 
(noted LR) pond, a large (more than 4000 pairs in recent 
years) colony located in the Forez basin, at Craintilleux, 
central France (45°35′N, 4°14′E). In this population, detec-
tion is known to vary between individuals because nests are 
built within vegetation or at its edge and because a large 
proportion of the re-sightings are made on the nests 
( Prévot-Julliard et al. 1998). Note that some re-sightings are 
made on other perches so that all birds are potentially 
detectable even if their nests are not visible. Additionally, 
preliminary results in the same population indicated that 
dispersal rates were individually variable, in particular 
because of differences between males and females (Grosbois 
2001), as is commonplace in birds (Greenwood 1980). Yet, 

(Gimenez et al. 2008). Individual heterogeneity in detection 
rate also biases survival estimates downwards if not accounted 
for (Pradel et al. 1997, Prévot-Julliard et al. 1998) and it 
violates the fundamental assumption of parameter homoge-
neity in CMR models (Lebreton et al. 1992), which can lead 
to flawed inference (Burnham and Anderson 2002).

Last, temporary emigration to non-monitored sites, such 
that individuals missing during several capture occasions 
might still be alive elsewhere (Burnham 1993, Fujiwara and 
Caswell 2002), evidently impacts on the estimation of ‘true’ 
(as opposed to ‘local’) survival probability. If emigration 
probability is subject to individual heterogeneity, patterns 
similar to heterogeneity in survival might appear in the data. 
Consequently, heterogeneity in temporary emigration can 
affect the detection of survival senescence as well. In short, 
we identified three features of population studies (individual 
heterogeneity, imperfect detectability, temporary emigration 
out of the study area) which, when not included in the pop-
ulation models, can bias estimates of senescence and/or cause 
a lack of fit that leads to flawed inference.

Multievent models have been introduced as a unified 
framework by Pradel (2005). They extend multistate models, 
in which individuals move between states or die and can at 
each occasion be detected or not, by considering that the 
state of an individual is imperfectly determined when it is 
observed. Their structure rests on the more general frame-
work of hidden Markov chain models (McDonald and  
Zucchini 1997). The introduction of this model structure in 
the field of CMR data analysis was initially motivated by 
capture heterogeneity as reviewed by Pledger (2000). The 
use of hidden Markov chains in cases not related to individ-
ual heterogeneity was to our knowledge initiated by Nichols 
et al. (2004). These authors modelled a situation where males 
and females had different survival probabilities, but could 
not always be separated in the field because of reduced sexual 
dimorphism. Since then, following the development of the 
software E-SURGE (Choquet et al. 2009a) numerous appli-
cations have been proposed (Pradel 2009). Among others, 
the implementation of memory models (where demographic 
parameters depend on the states occupied during the two 
preceding time steps) is made more straightforward through 
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Figure 1. Example heterogeneous population where the average survival rate is not representative of the true ageing processes. This example 
population consists of 10% of ‘initially robust’ individuals and 90% of ‘initially weak’ individuals, each subpopulation experiencing the 
same slow decrease in survival with age. (a) age variation in the true survival rate for the two subpopulations (grey lines) and in the average 
survival rate for the population (black line). (b) age variation in the proportion of robust individuals.
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the individual occupies at the current sampling occasion (see 
below and Supplementary material Appendix 1 for state 
description). The relationship between states and events is 
thus probabilistic (Pradel 2005). 

All models were fully described by first considering the 
vector of probabilities of initial presence in the various states 
(II-vector), then linking states at successive sampling occa-
sions by the matrix of survival/transition probabilities 
(Φ-matrix), exactly like in multistate models, while the 
events were linked to states by the matrix of event probabili-
ties (B-matrix). For convenience we separated Φ in two steps 
(S-matrix for survival probabilities and Ψ-matrix for disper-
sal probabilities), and B (P-matrix for detection probabilities 
and R-matrix for probabilities to confirm breeding status 
when detected). Full details on the model structure and 
examples of these matrices are presented in Supplementary 
material Appendix 1.

Individual heterogeneity 
Discrete classes of individuals were built to accommodate 
heterogeneity, each class being associated with a distinct 
value of the parameter(s) (Pradel 2009); these classes were 
the actual states of the multievent model. For a simple 
example, in a model with a two-class heterogeneity struc-
ture for survival probability and no possibility to emigrate 
(model {φ(h2), p(.)} of Pledger et al. 2003), there will be a 
state ‘low survival’ and a state ‘high survival’. In this model, 
the probability of the five first events in the first example 
history is:
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Superscripts H and L refer to high and low survival classes 
respectively; subscripts refer to time-dependence. π, s, p stand 
respectively for the probabilities of initial state, survival and 
detection. The situation is similar to having two possible 
paths at first observation: one low-survival and one high-sur-
vival path (Fig. 2). The ‘low survival’ path has the greatest 
probability in ‘short’ histories like ‘1101000000000’ and the 
lowest in ‘long’ histories like ‘1000001000001’ (Fig. 2).

In a more complex model, there are a larger number of 
possibilities when individuals are not encountered. In the 
presence of several kinds of heterogeneity (survival, emigra-
tion and detection), an individual can be in the low or the 
high-value class for each type of heterogeneity. There is up 
to eight ‘classes of heterogeneity’ (Supplementary material 
Appendix 1 part 4) in the models, which greatly compli-
cates the computation of history probabilities. The need for 
an algorithm to calculate history probabilities should there-
fore be apparent. We used program E-SURGE 1.1.1 
( Choquet et al. 2009a) to obtain maximum likelihood esti-
mates of the parameters and perform model selection.  
A more rigorous and general development of the likelihood 
using matrix notation is presented in Supplementary mate-
rial Appendix 1. 

for both detection and emigration, we only had very partial 
information on the characteristics of the birds in the field. 
Detectability cannot be assessed for nests which are not vis-
ible of course and can’t be evaluated for birds seen on other 
perches. Furthermore, black-headed gulls are only weakly 
sexually dimorphic, which precludes sexing of most birds in 
the field. It was thus clear that accounting for unknown or 
unmeasured sources of variation between individuals would 
be very useful if we were to assess survival senescence in this 
population.

Previous work in the same population indicated that  
time effects on survival probabilities were reduced or absent 
(Prévot-Julliard et al. 1998, Grosbois 2001). We were thus 
confident that, despite most observations of old individuals 
occurred at the end of the time series, unaccounted time 
effects could not confound age effects.

Data collection

Chicks were ringed before fledging with stainless steel rings. 
The use of stainless rings is particularly appropriate for the 
study of senescence since they almost do not wear with  
age (in all occasions when a known-age adult was physically 
recaptured at age 14, the code was perfectly readable  
and the ring could not be removed even with the use  
of pliers).

Observations of ringed adults were conducted using a 
floating blind from which metal ring codes could be read 
with a telescope (Lebreton 1987). At each observation of a 
ringed adult, we recorded whether it attended a nest or was 
feeding chicks, which would confirm its status as breeder. 
Now, an individual nesting in an accessible location had a 
high probability to be confirmed as breeder, whereas an indi-
vidual breeding in a less accessible part of the colony was 
more often observed on roosts or other perches and was 
more likely to end up with an unconfirmed breeding status. 
The confirmation of breeding status thus potentially yielded 
information on the detection probability.

We analyzed the survival of 1556 stainless-ringed adults, 
for a period of 28 years (from 1978 to 2006), starting from 
their first re-observation in LR, which occurred from age two 
to age 23 (mean 5.5, SD 4.1). The large range of age at first 
resighting is partly due to the fact that black-headed gulls are 
not present on the colony before starting to reproduce 
between two and six year-old (Clobert et al. 1994), partly 
due to the non-exhaustiveness of detection and partly due to 
the fact that some birds start breeding on other colonies  
and disperse toward LR after several breeding attempts 
(Péron et al. unpubl.). The data were coded with one digit 
per year: ‘0’ (not observed), ‘1’ (confirmed breeder) or ‘2’ 
(non-confirmed breeder).

Model description

Multievent models for the study of black-headed gull 
senescence
As introduced above, our approach was based upon multi-
event CMR models (Pradel 2005). The observer records 
‘events’ (here ‘not seen’, ‘confirmed breeder’, ‘non-confirmed 
breeder’) that carry uncertain information on the state that 
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Colonies that were not searched for marked individuals were 
grouped in a single non-observable ‘site’ denoted ‘alive else-
where’ (AE hereafter). This site was included in the usual 
multisite CMR models formulation (Arnason 1972, 1973, 
Schwarz et al. 1993) with the only difference that the detec-
tion rate was zero. Once in the state AE, individuals lost 
their classification as low/high detection and low/high emi-
gration. Therefore, upon returning to the study site, they 
could become more/less detectable, or more/less site-faithful, 
than what they were before emigrating (see Supplementary 
material Appendix 1 part 2 for justification).

Modelling age-effects on survival when individuals enter the 
dataset at various ages
The straightforward implementation of age effects in the 
sense of CMR models (Lebreton et al. 1992) corresponds to 
the effect of time elapsed since first occurrence in the dataset 
(hereafter TFC to match a previous acronym: Crespin et al. 
2006). In our case gulls were marked as chicks and were thus 
of known age, but they entered the dataset as adults in the 
colony at a varying age (Clobert et al. 1994). TFC did 
thereby not correspond to true age. To model the effect of 
true age, we had to constrain survival to vary with time across 
as many groups as there were ages at first occurrence in the 
dataset (hereafter ‘group approach’; described in details in 
Supplementary material Appendix 1 part 2). This procedure 
was computer-time-hungry (around 24 h were needed to  
fit such a model using an Intel Pentium 4HT, 2.6 GHz  
(3.25  800) processor with 512 Mb of system memory, vs 
less than 1 h for a TFC model) and was thus impractical  
for model selection which required running many models 
sequentially. 

Yet using TFC as a proxy for true age in a similar study 
design does not prevent the detection of survival senescence 
as shown by Crespin et al. (2006). A test of power (Crespin 
et al. 2006) indicated that sample size rather than the use of 
TFC versus true age is the most critical factor preventing the 
detection of senescence. The main drawback of using TFC is 
that individuals of various true ages are mixed in a same 
TFC-class, thus creating noise and increasing the standard 
error on the estimation of the strength of senescence. Model 
selection using TFC was therefore considered conservative 
for what concerns the detection of senescence. We thus used 
TFC instead of age to select for the best model, and then 
confirmed our results by running the preferred model with 
true age instead of TFC. 

To represent a biologically sound relationship between 
age (or TFC) and survival we used a constrained piecewise 
relationship; we modelled a separate survival probability at 
age 1, a plateau lasting until 14-years old and a log-linear 
decrease in survival with age afterwards (see Supplementary 
material Appendix 1 part 2 for justification).

Modelling observations that provide information  
on detectability
As described in the ‘data collection’ section, the confirmation 
of breeding status conveyed information on the detectability 
of individuals. Models accommodating such data structure 
were introduced by Nichols et al. (2004; the individual  

In the following, survival is time-independent and detec-
tion is time-dependent, based on results of Prévot-Julliard  
et al. (1998) and Grosbois (2001).

Temporary emigration
We modelled temporary emigration as Markovian or state-
dependent transitions to and from a site where detection 
probability is zero (Fujiwara and Caswell 2002, Schaub et al. 
2004, Fig. 2, Supplementary material Appendix 1 part 2). 
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Figure 2. A tree diagram describing the hidden Markov chain prob-
ability structure for a model with a two–class individual heteroge-
neity structure on survival probabilities, the possibility to 
temporarily emigrate, and a detailed observation structure for the 
breeding status. Black boxes indicate the five possible states (S1: 
alive in the study site with high survival probability; S2: alive in the 
study site with low survival probability; AE1: alive outside the study 
site with high survival probability; AE2: alive outside the study site 
with low survival probability; dead), while grey boxes represent the 
three possible observations following initial release (0: not seen, 1: 
seen and breeding status confirmed; 2: seen but breeding status not 
confirmed). The probability for observing a particular encounter 
history is obtained by summing the probability of all possible paths 
leading to a given encounter history (for the sake of clarity at time 
t+1 only the states ‘AE’ are represented; paths from states ‘S’ are the 
same as at time t and the state ‘dead’ is absorbing, i.e. there is no 
path out of it). The probability of a given path can be obtained by 
multiplying the probabilities appearing alongside its component 
arrows. These probabilities consist of functions of π, the initial state 
probabilities; φ, apparent survival probabilities; ψ, state transition 
probabilities; p, detection probabilities; and r, the probabilities to 
confirm breeding status. A more formal matrix description of the 
same model is provided in Table 1.
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respectively (Pradel et al. 2005) and are inflated by individual 
heterogeneity. 

We used techniques for partitioning χ2-variables (Rao 
1973, pp. 185 and following) to approximate a GOF test  
for a time-dependent model with capture heterogeneity as 
follow: (1) we computed the overall GOF χ2-statistics for 
transience and trap-dependence, from Test3 and Test2 
respectively (Pradel 1993, Pradel et al. 1997, Choquet et al. 
2005) (2) we computed the directional statistics, from Test3.
SR and Test2.CT respectively (3) we removed from the over-
all statistics the corresponding squared directional statistics 
(which are asymptotically distributed as χ²1), and we 
obtained non-directional components with one degree of 
freedom less. These components corresponded to a GOF test 
for a model where sources of transience and trap-happiness 
(here, individual heterogeneity) were accounted for. If this 
corrected test still proved statistically significant, we used an 
overdispersion coefficient ĉ, computed as the ratio between 
the χ2-statistic and the degree of freedom, in the model selec-
tion procedure (Burnham and Anderson 2002). All the GOF 
test components were computed using U-CARE (Choquet 
et al. 2009b).

Simulation study

To judge whether the results provided by the proposed meth-
odology were reliable in a complex but known case (three 
kinds of heterogeneity and a decrease in survival probability 
with age), we carried out Monte Carlo simulation studies 
(Supplementary material Appendix 2). Very briefly, these 
exercises illustrated that the multievent framework allowed 
(1) detecting simultaneously and using AIC all three kinds of 
heterogeneities when present, and (2) obtaining reliable evi-
dence and precise estimates for survival senescence by 
accounting for these heterogeneities. 

More precisely the simulation study indicated (1) that 
the magnitude of the age-effect on survival was very pre-
cisely retrieved when the heterogeneity structure in the 
model exactly matched the simulated structure, and (2) that 
bringing additional information on detectability of indi-
viduals was sufficient (and necessary) to separate detectabil-
ity and emigration heterogeneities. In our case, such 
information was provided by the confirmation of breeding 
status. The main drawbacks of the method were the non-
reliability of emigration probability estimates (the presence 
of emigration heterogeneity was retrieved, but the actual 
values of the parameters were not), and the fact that, most 
probably because the data on them were sparse, estimates 
for parameters associated to low-survival individuals were 
often inaccurate.

Results

Black-headed gull dataset: goodness-of-fit

As expected, the directional tests for transience and  
trap-happiness were statistically significant, which is a cue 
for heterogeneity in detection (Table 1). The corrected Test3.

status was the gender, documented by behaviour) and Conn 
and Cooch (2009; the individual status was the state of 
health, documented by visible symptoms). In the present 
paper, the class of detection heterogeneity was documented 
by the breeding status (see Supplementary material  
Appendix 1 for practical implementation). 

Model selection

There were 16 models in our candidate set representing 
every combination of presence/absence of the four con-
sidered effects: age-effect on survival, heterogeneity in  
survival, detection and emigration probabilities. The 
most general model we considered included heterogene-
ity in survival, emigration and detection probabilities as 
well as age-effect and had 11 states (model denoted 
{SH+a;DH;EH}; Supplementary material Appendix 1 part 
4). Subscripts H and 0 referred to models with and with-
out heterogeneity in survival (denoted S), detection 
(denoted D) and emigration (denoted E) probabilities, 
while subscripts +a and +ā referred to models with and 
without age-effect on survival. The lowest AIC-model 
(with a two AIC-points difference) was preferred (Akai-
ke’s information criterion; Burnham and Anderson 
2002). However, all models in which a given effect was 
included could be considered as ‘redundant’. Therefore, 
the importance value of each effect was computed as the 
sum of the AIC-weights of the models including the 
considered effect, and it was interpreted as the probabil-
ity that the effect was present in the data (Burnham and 
Anderson 2002). 

Goodness-of-fit

Goodness-of-fit (GOF) tests were performed on raw  
capture/non capture histories (formed of ‘0’ and ‘1’ thus  
discarding the details about age at first detection and 
breeding status; note that all the data concerned a single 
site). One of the main consequences of heterogeneity in 
detection probability is an excess (when compared to 
homogeneous datasets) of encounter histories with con-
secutive ‘captures’ (i.e. runs of ‘1’) and consecutive ‘non-
captures’ (i.e. runs of ‘0’). Such histories indicate the 
presence of highly and poorly detectable individuals, 
respectively. Some of the runs of ‘0’ will occur at the end 
of the capture history. As a consequence detection hetero-
geneity tends to induce both ‘transience’ (i.e. lower chance 
of recapture of first-encountered individuals than already 
encountered ones; Pradel et al. 1997) and ‘trap-happiness’ 
(i.e. higher probability to encounter at time t+1 the indi-
viduals encountered at time t than the individuals not 
encountered at time t but known to be alive because of 
previous and future recaptures; Pradel 1993). 

One-sided directional test statistics are the signed square 
roots of the χ2-statistics for the corresponding tests: Test3.SR 
for transience and Test2.CT for trap-dependence (Pradel 
1993, Pradel et al. 1997, 2005; practical implementation 
detail in Choquet et al. 2005). They are the most relevant 
statistics for the detection of transience and trap-happiness 
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the AIC-weights of the models in which the considered effects 
occurred) of the TFC-effect on survival probability was 0.83, 
which we interpret as a high probability for a decrease in sur-
vival with age. These results supported the existence of survival 
senescence in the population, although the slope of the TFC-
effect was statistically not different from zero: –0.16 (95% CI: 
–0.49; 0.17); see next section.

Importance values of heterogeneity in survival, detection 
and emigration were 0.09, 0.94, and 0.78, respectively. We 
interpret these values as high probability that two-class het-
erogeneity structure was present in detection and emigration 
probabilities, and low probability that such heterogeneity 
was present in survival probability. As discussed later, we do 
not exclude that the discrete-class heterogeneity models were 
unable to detect small, continuous individual variation in 
survival probability.

SR and Test2.CT were statistically non significant, and the 
overall corrected GOF test indicated that there was no need 
to account for any overdispersion (Table 1). This test indi-
cated that a time-dependent model with heterogeneity in 
detection probability fitted the data. Thus, accounting for 
other sources of heterogeneity could only improve the fit. 

Modelling age-dependence and testing for senescence 

Model selection using TFC
There was strong support for a model with individual hetero-
geneity in both detection and emigration probabilities, along 
with TFC-effect on survival (Table 2: model {S0+a;DH;EH}). 
This model was nearly four AIC-points lower and three times 
more likely than the next model (as indicated by the ratio of 
AIC-weights). The importance value (computed as the sum of 

Table 1. Components of an approximate goodness-of-fit (GOF) test for a model with heterogeneity, obtained by removing from the components 
of the standard GOF test for the time-dependent model the squared directional test statistics (see methods). The overall GOF test shows no sign 
of lack-of-fit for a model correcting transience and trap-happiness. DF is the degree of freedom. ĉ is the overdispersion coefficient computed 
as the ratio between the chi-squared statistic and the degree of freedom.

Test3: transience Test2: trap dependence

χ2-statistic
Squared 

directional statistic χ2- statistic
Squared 

directional statistic
Total 

χ2- statistic

Time-dependent model 64.19 38.67 25.88 9.21 164.39
DF 22 1 22 1 131
p-level < 0.0001 < 0.0001 0.26 0.002 0.02
ĉ 2.92 1.18 1.25
Time-dependent model with 

heterogeneity of detection
25.52 16.67

116.52
DF 21 21 129
p-level 0.23 0.73 0.78
ĉ 1.22 0.79 0.90

Table 2. Model selection. The 16 candidate models vary in the presence/absence (Y/N) of heterogeneity and of the age-effect on survival. For 
each model the number of parameters (np), deviance (Dev), AIC and AIC-weight are given. Subscripts H and 0 referred to models with and 
without heterogeneity in survival (denoted S), detection (denoted D) and emigration (denoted E) probabilities, while subscripts a and ā 
referred to models with and without age-effect on survival. The models are sorted by AIC.

Heterogeneity in:

Model Survival Detection Emigration Age-effect np Dev AIC AIC weight

{S0+a;DH;EH} N Y Y Y 43 7781.88 7867.88 0.761

{S0+ā;DH;E0} N Y N N 36 7799.44 7871.44 0.128

{SH+a;DH;E0} Y Y N Y 47 7779.50 7873.50 0.046

{SH+ā;D0;E0} Y N N N 35 7803.62 7873.62 0.043

{S0+a;D0;EH} N N Y Y 37 7802.12 7876.12 0.012
{SH+a;D0;E0} Y N N Y 38 7801.99 7877.99 0.005

{S0+ā;DH;EH} N Y Y N 40 7800.28 7880.28 0.002

{S0+a;DH;E0} N Y N Y 41 7797.91 7879.91 0.002

{SH+a;D0;EH} Y N Y Y 42 7797.25 7881.25 0.001

{SH+a;DH;EH} Y Y Y Y 53 7777.12 7883.12 0.000

{SH+ā;DH;E0} Y Y N N 43 7802.21 7888.21 0.000

{S0+ā;D0;E0} N N N N 31 7856.10 7918.10 0.000
{S0+a;D0;E0} N N N Y 34 7820.42 7888.42 0.000

{SH+ā;D0;EH} Y N Y N 37 7852.13 7926.13 0.000

{SH+ā;DH;EH} Y Y Y N 49 7834.15 7932.15 0.000

{S0+ā;D0;EH} N N Y N 34 7857.33 7925.33 0.000
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to fit the gull data: heterogeneity models with discrete classes 
(Pledger et al. 2003, Pradel 2009), temporary emigration 
models (Fujiwara and Caswell 2002, Schaub et al. 2004), 
and models accommodating partial information on individ-
ual status (Nichols et al. 2004, Conn and Cooch 2009). The 
framework was flexible enough to combine these model 
structures which had only been used separately until now.

Survival senescence in our population was only detected 
after accounting for heterogeneity in temporary emigration in 
the models (Table 2), which illustrates the interest of complex 
models mixing several possible causes of heterogeneity. This 
result was perhaps not unexpected since temporary emigration 
events occurring at the end of an individual’s life, when not 
followed by a detection event, could mimic earlier death. 
Thereby, emigration heterogeneity might have created patterns 
in the data similar to heterogeneity in survival, and prevented 
the detection of survival senescence when not accounted for. 
However, our simulation studies only weakly supported this 
purported effect of non modelled heterogeneity in temporary 
emigration on the detection of survival senescence. The result 
that senescence was discarded when not accounting for emi-
gration heterogeneity might therefore originate from a lack-of-
fit impairing the model selection when models did not include 
the appropriate heterogeneity structure. 

Definitive emigration has evidently an even greater impact 
on survival estimates than temporary emigration, but it can 
only be modelled if recoveries data (i.e. rings recovered on 
birds shot or found dead throughout the year) are available 
(Burnham 1993).

In senescence studies, we thus recommend that (1) 
emigration is modelled when field observations indicate 
its presence and (2) either individual heterogeneity is 
explicitly considered or evidence for its absence is provided 
by GOF tests or biological considerations. In particular, 
empirical support for the absence of senescence in animals 
(Nichols et al. 1997, Miller 2001, Pistorius and Bester 
2002, Congdon et al. 2003) should be considered with cau-
tion until the results are verified with analyses accounting 
for heterogeneity.

Sources of heterogeneity in the gull dataset: emigration, 
detectability

Although there was a strong support for the existence of  
low- and high- emigration classes in our population,  
biological explanations are not straightforward. Emigration 
heterogeneity might include the skipping of breeding 
attempts and the effect of early nest failures. These two phe-
nomena result in an absence of the individuals from the 
colonies during field-work (thereby mimicking temporary 
emigration), and they are influenced by individual quality 
(Calladine and Harris 1997), a well known source of hetero-
geneity in demographic parameters (Hamel et al. 2008). 
Moreover, true temporary emigration, reproduction failures 
and reproduction skipping do not occur at the same  
frequency which might create individual heterogeneity  
when they are modelled using a same transition probability. 
Alternatively, individual heterogeneity in true temporary 
emigration rate could stem from sex-biased dispersal (Green-
wood 1980) or from heterogeneity in individual quality and/
or the conditions experienced during early life or previous 

The second best model (Table 2: model {S0+ā; DH; E0}),  
as opposed to the best model, did not account for heteroge-
neity in emigration probability and, most importantly, did 
not include any variation in survival probability with TFC. 
This result means that, when not accounting for heterogene-
ity in emigration probabilities, the selection procedure dis-
carded TFC-effect on survival, in other words the detection 
of survival senescence was prevented.

Parameter estimates in the true age formulation 
Parameter estimates are from the preferred model {S0+a;DH;EH}, 
ran using true age instead of TFC. Prime age survival (between 
2 and 14 years old) was 0.84 (95% CI: 0.79; 0.88) and the 
slope of the decrease in survival after age 14 was –0.16 (–0.30; 
–0.02) on a logit scale (Fig. 3). Thus, when comparing true 
age- (this model) and TFC-models (previous section), we 
observed that the use of TFC increased the error on the esti-
mated slope of the decrease in survival with age, as expected, 
but did not modify the value of the estimate.

The estimated temporary emigration probabilities to state 
AE were 0.17 (0.03; 0.54) in stayers and 0.67 (0.28; 0.91) in 
movers. The estimated detection probabilities (averaged over 
time) were 0.08 (0.05; 0.10) and 0.48 (0.41; 0.55) in the 
low- and high-detectability classes. The estimated propor-
tion of sightings on the nest or with chicks was 0.53 (0.44; 
0.63) for the low-detectability class and 0.61 (0.56; 0.66) for 
the high-detectability class. 

Discussion

Detecting senescence in wild populations

We used multievent framework to combine three pre- 
existing types of CMR models that were potentially required 
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Figure 3. Survival probabilities for the black-headed gulls as a func-
tion of true age. Parameters estimates are from model {S0+a; DH; EH} 
which includes heterogeneity in both detection and emigration prob-
abilities, and a piecewise constrained relationship between age and 
survival probabilities. Dotted lines correspond to the 95% asymp-
totic CI. Black dots are boundary estimates, which come with no 
standard errors. The survival probability for the first age class (age 2) 
was estimated separately and fell on the line for older age classes. 
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our results are therefore encouraging for the application of 
multievent models to the study of population dynamics of 
species with complex life-histories, weak or variable site-
fidelity, or inhabiting very heterogeneous habitats.
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