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Summary

1. Under increasing environmental and financial constraints, ecologists are faced with making decisions about

dynamic and uncertain biological systems. To do so, stochastic dynamic programming (SDP) is the most rele-

vant tool for determining an optimal sequence of decisions over time.

2. Despite an increasing number of applications in ecology, SDP still suffers from a lack of widespread

understanding. The required mathematical and programming knowledge as well as the absence of introductory

material provide plausible explanations for this.

3. Here, we fill this gap by explaining the main concepts of SDP and providing useful guidelines to implement

this technique, includingR code.

4. We illustrate each step of SDP required to derive an optimal strategy using a wildlife management problem of

the Frenchwolf population.

5. Stochastic dynamic programming is a powerful technique to make decisions in presence of uncertainty about

biological stochastic systems changing through time. We hope this review will provide an entry point into the

technical literature about SDP andwill improve its application in ecology.

Key-words: Canis lupus, decision-making techniques, markov decision process, optimization meth-

ods, stochastic dynamic programming

Introduction

Numerous problems in ecology involve making decisions

about the best option among a set of competing strategies.

These so-called optimization problems can be solved using

mathematical procedures such as linear programming (Nash

& Sofer 1996) which allows the determination of maximum

benefits or minimum costs given some objectives and under

some constraints for deterministic systems assumed at equilib-

rium. If uncertainty in the dynamic of the system needs to be

accounted for, a Markov decision process (MDP, Puterman

1994; Williams 2009) model is usually adopted. ‘MDPs are

models for sequential decision making when outcomes are

uncertain’ (Puterman 1994). MDPs are made of two compo-

nents: Markov chains that model the uncertain future states of

the system given an initial state and a decision model. First, a

MDP is aMarkov chain in which the system undergoes succes-

sive transitions from one state to another through time. For

example, these state transitions can correspond to the change

of a population size from 1 year to the next. InMarkov chains,

the transitions to future states only depend on the current state

of the system. In other words, the state of the system at time

step t provides sufficient information to predict the states of

the system at time step t+1. Second, a MDP involves a deci-

sion-making process in which an action is being implemented

at each sequential state transition. In the conservation and

wildlife management literature, the phrase stochastic dynamic

programming (SDP) is often used to refer to both the mathe-

matical model (MDP) and its solution techniques (SDP per se).

MDPs are usually modelled and solved by going through sev-

eral successive steps: defining the different objectives and for-

malizing them as a mathematical function of costs and/or

benefits (Williams, Nichols & Conroy 2002); defining possible

states of the system,monitoring the system andmaking statisti-

cal inference on system behaviour (Nichols & Williams 2006);

defining a set of alternative actions that influence the perfor-

mance of the system; building a dynamic model to describe the

system transitions from one state to another after implement-

ing every possible decision; and finally determining the optimal*Corresponding author. E-mail: olivier.gimenez@cefe.cnrs.fr
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strategy that is the set of decisions that is expected to best fulfil

the objectives over time (Runge 2011). These objectives are for-

malized in a utility function that prioritizes some desired

outcomes by evaluating the benefits of any decision for the sys-

tem (Williams, Nichols & Conroy 2002). MDP models high-

light the trade-off between obtaining current utility and

altering the opportunities to obtain utility in the future. Such

problems abound in ecology because decisions taken today

often have important implications for the future behaviour of

biological systems.

Stochastic dynamic programming is an optimization tech-

nique used to solveMDPs and is appropriate for the nonlinear

and random processes involved in many biological systems.

While the time dimension is often neglected in optimization

procedures such as classical linear or nonlinear programming,

SDP determines state-dependent optimal decisions that vary

over time (Williams, Nichols & Conroy 2002). Finally, SDP is

acknowledged to be one of the best tools for making recurrent

decisions when coping with uncertainty inherent to biological

systems (Possingham 1997, 2001; Wilson et al. 2006; Chad�es

et al. 2011).

The principle of SDP relies on the partitioning of a com-

plex problem in simpler subproblems across several steps

that, once solved, are combined to give an overall solution

(Mangel & Clark 1988; Lubow 1995; Clark & Mangel 2000).

SDP was first developed and used in applied mathematics,

economics and engineering (Bellman 1957; Intriligator 1971)

and has gained attention in ecology (Mangel & Clark 1988;

Shea & Possingham 2000). A pioneer use of SDP was in

behavioural ecology to determine individuals’ breeding and

foraging strategies maximizing fitness (Houston et al. 1988;

Mangel & Clark 1988; Ludwig & Rowe 1990). Early work in

resource management included applications to pest control

(Winkler 1975) and fisheries management (Walters 1975;

Reed 1979). In conservation biology, SDP has been success-

fully used to produce evidence-based management recom-

mendations (optimization of resources allocation: Westphal

et al. 2003; Martin et al. 2007; Chad�es et al. 2011; manage-

ment of natural resources in the context of global change:

Martin et al. 2011). In forestry, SDP allowed achieving a

balance between the protection of biological diversity and

sustainable timber production (Lembersky & Johnson 1975;

Teeter, Somers & Sullivan 1993; Richards, Possingham &

Tizard 1999). Stochastic dynamic programming has also been

implemented in various studies aiming at controlling the

spread of weeds, pests or diseases (Shea, Thrall & Burdon

2000; Baxter & Possingham 2011; Pichancourt et al. 2012),

to determine the best water management policies (Martin

et al. 2009) or to enhance the efficiency of a biocontrol agent

(Shea & Possingham 2000). In wildlife management, SDP

has often been used to find the optimal rates for harvesting

populations (Johnson et al. 1997; Milner-Gulland 1997;

Spencer 1997; Martin et al. 2010).

Despite the flexible nature of SDP and its ability to solve

important decision-making problems in ecology, its transfer

to ecologists is difficult. One reason for the slow uptake is

the mathematical knowledge required for SDP to be

implemented. Here, we provide a primer on SDP for ecolo-

gists. We introduce the main concepts of SDP, provide a

step-by-step procedure to implement dynamic programming

in a deterministic system and illustrate how to make deci-

sions in the presence of uncertainty. We demonstrate the

applicability of SDP by applying this approach to data from

a wolf population controlled by culling. We provide R code

to run the models as well as procedures in specialized tool-

boxes implementing SDP that can conveniently be amended

for one’s own purposes.

The six steps of stochastic dynamic programming

The aim of SDP is to find the solution of an optimization prob-

lem based on the ‘principle of optimality’ which states that ‘an

optimal policy has the property that, whatever the initial state

and decision are, the remaining decisions must constitute an

optimal policy with regards to the state resulting from the first

decision’ (Bellman 1957). The principle of optimality allows us

to consider a static problem for the current period by assuming

that all future decisions will be made optimally. The effect of

the current action thus contributes to both current utility and

to future utility through its effect on the future state of the sys-

tem. In this way, SDP finds a strategy that balances current

rewards with future opportunities. Stochastic dynamic pro-

gramming is the technique used to solve a Markov decision

problem.One can conceive solving aMarkov decision problem

through six steps described below. Notations are gathered in

Table 1, and a non-exhaustive list of studies that have used

SDP is given in Table 2.

The first step defines the optimization objective of the prob-

lem. An objective must be specific to the problem, acceptable

by involved actors, achievable, defined over a period of time

also called time horizon, and measurable with a function that

is related to the system states and actions. This function, called

utility, gives the reward for the outcome of any action applied

to a certain state (Williams, Nichols & Conroy 2002). Several

objectives can be defined depending on the type of ecological

problem we are investigating, but an optimization objective

must be defined asmaximization orminimization of a function

over a time horizon (Puterman 1994; Converse et al. 2012).

The time horizon can be defined as finite or infinite. For many

Table 1. Notation used in dynamic programming.

Variable Notation Nature

State variable Xt Vector indexed by time

Control action At Vector indexed by time

Time t Index

Optimal action p* Vector of length the number of

states at time t

Utility U(Xt, At) Function of the states and actions

Transition

probability

P(Xt+1|Xt, At) Matrix (number of states at t,

number of states at t+1)
Value V(Xt) Vector of length the number of

states at t

Discount factor b Real number between 0 and 1
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resource problems, choosing the time horizon is quite challeng-

ing and depends on a number of factors. First, there may be

mandated constraints on a problem. Conservation and man-

agement programmes are often planned on a limited time and

budget, and are bounded by political decisions also taken at

regular time intervals. For instance, the conservation status of

species listed under Appendix S2 of the Habitat Directive is

evaluated every 5 years by the European Commission (92/43/

EEC). As a consequence, some governments evaluate every

5 years decisions related to management of wildlife and

habitats present within their territory (Meedat – Map 2008).

For private decisions, a finite horizon is often appropriate for

situations in which firms hold time-limited rights to extract

resources. Finite horizons should be used carefully in situations

where they are arbitrary specified. It is very possible that the

‘optimal’ decision as the time horizon approaches will reflect

Table 2. Non-exhaustive list of studies using stochastic dynamic programming.

Study State variable Objective Actions Utility function

Shea&Possingham (2000) Site level of colonization:

empty, insecure,

established

Biocontrol agent colonizing

asmany sites and as

quickly as possible

Many agents

released in small

patches Few

agents in several

patchesMix of

both strategies

Number of established sites

Venner et al. (2006) Energy supply of the

orb-weaving spider

Optimize fitness by

maximizing

the energy brought

by breeding and foraging

whileminimizing

predation and starvation risks

Web-building choice

possible web size.

Balance between energy

gained from eggs laid and

prey caught on theweb and

energy cost from starvation

and from predation risks.

Runge& Johnson (2002) Pre-breeding

abundance of ducks

Find the optimal harvest

rate given several

recruitment and

survival functions

Harvest rate Total number of harvest

accumulated through time

Martin et al. (2010) Female raccoon abundance

Oyster productivity

MaintainOystercatcher

productivity above a level

necessary for population

recoverywhileminimizing

raccoon removal.

Harvest rate in

each age class

Total number of raccoons

after harvest with a penalty

factor when oyster

productivity goes below a

threshold

Milner-Gulland (1997) Saiga antilope

abundance Proportion

ofmales and females

Maximizemonetary yield

while preserving the saiga

population already

threatened by drought

Harvest rate

Proportion of

males in the harvest

Annualmonetary yield from

game hunting, given the

price of themeat, the horn

andmanagement costs

Study Dynamicmodel Optimization Last value Uncertainty

Shea&Possingham (2000) Colonization, extinction,

establishment in insecure sites

Backward iteration

T = 10

Unknown Probability of establishment

and of local extinction

Venner et al. (2006) DiscreteMarkovmodel

describing the

transition energy state

of a spider from

t to t + 1 given the choice of

web-building of individuals.

Value iteration over

an infinite

time horizon

Lifetime fitness

given its energy

state time horizon is

expected to be 1

Probability to catch a prey

and predation risks

Runge& Johnson (2002) Reproduction

Harvest

Naturalmortality

Value iteration Infinite

time horizon

(convergence criterion

was no change

of state-dependent

policy formore

than 4 years)

No discount rate

No values were

assigned to the

terminal state of the

processV(XT)=0

Structural uncertainty

Recruitment functions

(linear, exponential,

hyperbolic)

Survival functions

(constant, logistic,

compensatory)

Martin et al. (2010) Model structured in 3 age classes

(raccoon population)

Log-linear relationship between

oyster productivity and total

number of raccoons.

Backward iteration

iterating atmost 100 time

steps until a stable policy

wasmaintained for

15 time periods

The expected

abundance

range of raccoon

Environmental

stochasticity Parameter

uncertainty

Milner-Gulland (1997) Model structure in age and sex

classes with density-dependent

effects on survival

Value iteration

infinite horizon

Expected

future yield at

time horizon is 1

Environmental stochasticity

and partial controllability
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only very short run goals. For example, a conservation prob-

lem that penalizes failure to meet a target performance level at

the time horizon may result in short run decisions designed

only to meet the target rather than designed to maximize the

long run conservation goals. Objectives in management for

harvested populations typically focus on maximizing the

harvest opportunities, while insuring sustainable populations

over the time horizon (Caughlan & Oakley 2001; Hauser et al.

2007; Nichols et al. 2007). Alternatively, themonetary value of

the economic yield from harvest might be used (Milner-

Gulland 1997; Table 2). Objectives can include both conserva-

tion and exploitation of natural resources and can also include

several, possibly conflicting, conservation goals. For instance,

a conservation problem might deal with the protection of two

species that are negatively interacting between one another

over an infinite time horizon (Chad�es, Curtis & Martin 2012).

In metapopulation models, often used in invasion biology, epi-

demiology and landscape ecology, objectives can also be

expressed as maximizing or minimizing the number of sites

occupied by a species (Shea & Possingham 2000; Chad�es et al.

2011; Table 2). When the economic costs of management and

monitoring, as well as the cost of failure to maintain a viable

protected species are well known, the objective can be clearly

formalized to determine the best way to allocate funding

to protect a threatened species (Chad�es et al. 2008;

McDonald-Madden et al. 2011) or eradicate an invasive

species (Regan et al. 2006; Baxter & Possingham 2011).

The second step is to define the set of states that represents

the possible configuration of the system at each time step. Let

Xt be the state variable of the system at time t. The state vari-

able can be a population abundance (Milner-Gulland 1997;

Runge & Johnson 2002) or predator abundance and prey pro-

ductivity (Martin et al. 2010). Others studies have considered a

qualitative state variable such as site occupancy of a colonizing

species (Shea & Possingham 2000). We refer to Table 2 for

additional examples.

In the third step, one needs to define the decision variable,

At, that is the component of the system dynamic that one can

control to meet the objective. For example, it can be expressed

as the way of releasing a biocontrol agent in crop sites: many

individuals released in few sites or few individuals released in

many sites. Another example of control actions is different har-

vest rates in each age class (Martin et al. 2010) or sex class of a

species (Milner-Gulland 1997).

The fourth step is to build a transition model describing the

system dynamics and its behaviour in terms of the effect of a

decision on the state variables (Table 2). This transition model

follows a Markov process in which the future state Xt+1

depends on the current state Xt and the action adopted At but

not on the past state and action pairs of the system.

In the fifth step, one needs to define the utility function Ut

at time t also called the immediate reward. It might be

expressed in terms of economic benefits, desired ecological

status or social improvement (Table 2) and might be quanti-

fied in a more or less subjective way (Simon 1979; Isen,

Nygren & Ashby 1988; Milner-Gulland 1997). This function,

denoted as Ut (Xt, At), which pertains the Markov chain for-

mulation, represents the desirability of acting in a given state

of the system and is defined in terms of the state variable Xt

(step 2) and the decision At (step 3). The utility values can

accrue over either a finite or an infinite time horizon depend-

ing on the objectives formalized in step 1. In the former case,

a terminal reward or salvage value, R(XT+1) with T the hori-

zon time, can also be specified that measures the utility that

accrues if the system is left in a given state after the last deci-

sion is made. In population biology and behavioural ecology,

R(XT+1) is often chosen to be the desired abundance of a

population or the energy state of an individual (Mangel &

Clark 1988; Martin et al. 2010).

Sixth, the final step consists in determining the optimal

solution to the optimization problem. The optimal solution,

also called the optimal strategy or policy, maximizes our

chance of achieving our objective over a time horizon. An

optimal solution is defined as a function pt:Xt ? At that

maps each state to the optimal action for that state. Hereaf-

ter, we examine the three most commonly used approaches

to solve an MDP: backward iteration, value iteration and

policy iteration.

How to determine the optimal solution?

Several algorithms using SDP technique are available to find

the optimal solution of an MDP. How to choose the most

appropriate algorithms mainly depends on the optimization

objective (step one). Backward iteration is the run over a finite

horizon in time-reversed fashion. It leads to a time- and state-

specific optimal solution. Value iteration and policy iteration

are used to solve infinite time horizon problems. Both

techniques provide an optimal action expressed as a time-

independent function.

OPTIMIZATION PROCEDURE OVER A FIN ITE HORIZON

According to the principle of optimality (Bellman 1957), an

efficient way to find an optimal decision is by reasoning back-

ward in time. More precisely, it consists in assuming that the

last decision taken at the horizon time T is optimal and by

choosing what to do in every remaining time step. T is the

time required to reach the optimal solution. Let V(X) be the

value function of states that quantifies the reward or the pen-

alty after each state transition following decision (Lubow

1995). Let p* be a vector that maps the best decision for each

state at the horizon time. p * is the set of decisions (A) associ-

ated with the maximum value function of the set of states [V

(X)]. Let b be the discount factor, representing the value of

the reward gained in the next period relative to the reward

obtained in the current period (Moore, Hauser & McCarthy

2008; Martin et al. 2011). It can also reflect a measure of con-

fidence level in the predictions of the dynamic model. Predic-

tions made for the near future are generally more certain than

the ones made for the distant future.

The finite horizon problem can be written formally as
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VtðXtÞ ¼ max
fAsgTs¼t

XT
s¼t

bs�tUðXs;AsÞ þ bTþ1RðXTþ1Þ eqn 1

The expression includes two parts, the sum of the discounted

utility values from time t to the horizon T and the dis-

counted terminal reward (R(XT+1)), which is a function of

the state that the system is left in, XT+1 after the last deci-

sion is taken.

In the backward iteration algorithm, the starting point is to

realize that there exists a recursive relationship that identifies,

for each state, a value function for step t, denotedVt(Xt), given

that stepVt+1(Xt+1) has already been solved (Appendix S1):

VtðXtÞ ¼ max
At

½UtðXt;AtÞ þ bVtþ1ðXtþ1Þ� eqn 2

As suggested by the principle of optimality, the Bellman equa-

tion expresses the optimization problem in terms of the current

decision alone. The first part of this equation is made of the

immediate reward represented by the utility function, while the

second part is the value function for the next period,

Vt+1(Xt+1). The procedure is initialized by setting

VT+1(XT+1) = R(XT+1). Then, the previous value VT(XT) is

computed, thenVT-1(XT-1), and so on. The optimal action, that

is the action associated with each initial stateX0, is obtained by

repeated backward recursions from the horizon timeT to pres-

ent time 0 (see Fig. 1b–d) and by taking the argument of the

maximum initial valuesV0(X0) (Fig. 1d and Fig. 2).

An important issue, besides the choice of the horizon T and

of the terminal value of the system,R(XT+1), is the choice of a

discount factor b (Lubow 2001) which lies between 0 and 1

(Bellman 1957). Discounting is often specified in terms of a dis-

count rate r, with the (annual) discount factor given by b = 1/

(1 + r) Conservation biologists are more likely to use a b of 1,

meaning the value of future system states is not discounted. In

such situations, future utility contributes asmuch to the overall

objective as current utility.

Even though not discounting future utility complies with the

sustainability principle, most economists recommend using a

discount factor <1. One reason is that many people place more

importance on current than future rewards, especially when

future rewards are risky (Norgaard &Howarth 1991). In addi-

tion, most problems in resource management involve utilities

that have some social and economic cost and benefit, associ-

ated with them. When the resource has a non-market value, it

can be difficult to convert the ecological, social and economic

costs and benefits into a common scale (Wam 2009). Such scale

differences and issues of utility incommensurability impede the

determination of an appropriate discount rate (whether finan-

cial, social or ecological). The method commonly used for

selecting a discount rate is based on a market rate for a
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Fig. 1. The backward iteration showing successive transition states and the best harvest strategy (in%). (a) First step shows all realizations of state

variableX standing for population size, varying from 1 to 250 individuals and the associated values of the terminal reward R(XT+1) (bold column).

For convenience, we shorten the objective to maintaining an abundance range ofNmin = 50 andNmax = 60 so that the values at the endpoint T+1

worth 0 from state 1 to stateNmin�1 and then take the value of the states fromNmin toNmax. BeyondNmax, values are again set to 0. (b)We proceed

backward in time and define possible realizations for states at time T. In this example the state space remains the same across the horizon time. Here

we only looked at four potential actions: do nothing, harvest 10%, 20% and 30%of the population. The arrows illustrate the deterministic dynamic

of the system, and represent the exponential growth from 1 year to another (with k=1.25), the transition states given the harvest strategies. The best

strategy is framed in blue (for Nmin) and in green (for Nmax), and it stands for the action that maximizes the values at T+1 also framed in colored

squares. For instance with a population of 50 individuals (blue), among the four possible state transitions, the action associated to the highest termi-

nal value is a 10% harvest. So this action is optimal and allows the calculation of the value function of the blue state at time T: V(50)T = 50*

(1�0.10) + 56 = 101.We proceed the same way for all possible states at time T+1, in order to fill the vector of the value function. This allows us to

determine the optimal action for each state at T that is associated to themaximumvalue function at timeT+1. (c) At T�1, we look again at the tran-

sition states forNmin andNmax given the potential actions and we choose the strategy that leads to the next state (atT) showing the highest value. At

this step, there are two actions associated to the maximum value function V(50) = 101. In our example, we picked the minimum harvest rate when

there were several optimal actions. (d) At time 0, we look one last time at the transition states forNmin andNmax given the potential actions and the

strategy that leads to the highest value that is then the optimal solution. So in the backward iteration, optimal action is reached when the procedure

reaches the initial time 0.
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relatively risk-free asset such as a US Treasury bond. Recent

recommendations for environmental projects suggest the use

of r = 2% for long-term projects (http://www.whitehouse.gov/

omb/circulars_a094/a94_appx-c; see also EU’s ‘Guide to

Cost-Benefit Analysis of Investment Projects’).

OPTIMIZATION PROCEDURE OVER AN INFIN ITE

HORIZON

With infinite horizon problems, both the value function and

the optimal policy are independent of time. The problem to be

solved can be written as

VðXtÞ ¼ max
AðXÞ

X1
s¼0

bs�tUðXs;AðXsÞÞ eqn 3

Starting with an arbitrary value function and iterating over an

infinite horizon model with policy or value iteration causes the

optimal action to converge towards a time-independent func-

tion also called a stationary strategy with the optimal solution

only depending on the state of the system and not on time.

The first algorithm used to solve an MDP over an infinite

horizon, called value iteration, follows the same procedure as

described previously except that the Bellman equation is

applied iteratively until a convergence criterion is met. A typi-

cal convergence criterion (Boutilier, Dearden & Goldszmidt

2001) is

kVðXtþ1Þ � VðXtÞk� eð1� bÞ
2b

eqn 4

where the norm ‖V(Xt+1) - V(Xt)‖ is the maximum absolute

value of the difference between two successive decision values,

for all possible states. The value of ɛ is usually chosen to be

small, so that when the condition in eqn 4 is satisfied, the value

function is within ɛ of its optimal value. In our example, we

fixed ɛ at 10�3 as in Boutilier, Dearden&Goldszmidt (2001).

Another algorithm called policy iteration (Howard 1960)

involves alternating between finding the best policy (or strat-

egy) given the current guess of the value function and deter-

mining the value function associated with the current policy

(Appendix S2). One advantage of the policy iteration algo-

rithm is that it will generally run faster than the value iteration

(Howard 1960). The policy iteration approach can be decom-

posed in two steps.

In the first step (evaluation), a value function is calculated

from a guessed policy (Boutilier, Dearden & Goldszmidt

2001). LetAt be any policy which describes the actions that are

taken for any value of the stateXt, so thatXt+1 is a function of

both the state and action variables that can be written as

Xt+1 = g(Xt, At). The value function associated with this pol-

icy can be determined by solving a system of linear equations,

one for each value of the state variable

VtðXtÞ ¼ UtðXt;AtÞ þ bVtþ1ðgðXt;AtÞÞ eqn 5

In the second step (improvement), we find the policyA’ that sat-

isfies, for each value of the state

maxA0UðXt;A
0
tÞ þ bVtþ1ðgðXt;AtÞÞ eqn 6

The same procedure is performed again (back to first step)

until the two policiesA andA’ do not change.

In infinite time horizon problems, the standard approaches

may need to be modified if a discount rate of 0 is used.With no

discounting of the future, the value functionwill not be station-

ary unless there is a probability of 1 that the state variable

reaches and stays in a non-valued state at some time, such as

extinction in a population conservation problem. If there is a

positive probability of obtaining a positive reward in any given

future period, the expected value of future rewards will be infi-

nite, and hence, V will not well defined. In this situation, it is

therefore more appropriate to use an average value approach

that attempts to maximize the per period expected value func-

tion. Algorithmically, there are two main approaches to solve

such problems. The vanishing discount approach uses a dis-

count factor near 1 (such as 0.999999). The relative value

approach solves for the average reward plus an adjustment to

account for the relative value of being in alternative states. For

further discussion, see Puterman (1994).

Making decisions in presence of uncertainty

Thus far, we have focused on deterministic MDPs in which

each state and action combination yields a unique, known

result. Here, we discuss how to accommodate uncertainty in

dynamic programming. In SDP, there are several possible next

states, given the action taken and the current state and each of

them has a certain probability to be achieved. LetP be a transi-

tion matrix displaying the conditional probabilities of the sys-

tem at state Xt at time t and action At (in rows) to change into
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Fig. 2. End of the backward iteration and time sequence of actions for

four initial states. Here, we display the time sequence of actions stand-

ing for the trajectory that leads from any initial state to the final objec-

tive that is to keep a population between Nmin and Nmax while

harvesting as few individuals as possible. In the example, the recursion

starts from the end and goes backward in time. Once values of all states

are obtained across the time horizon, we can decide which actions to

take across the successive transition states. Here, we look at the best

trajectory for four initial statesN = 38, 50, 60 and 65 individuals.

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution, 4, 872–884

Primer on dynamic programming 877



statesXt+1 (in columns) given the action. The transitionmatrix

is a stochastic matrix which consists of non-negative elements

with rows that sum to 1. The Bellman equation can be rewrit-

ten as the sum of the utility value at the current state (which

holds in the deterministic version) and the sum of the expected

future rewards that are the products of transition probabilities

and values of all possible next states (Appendix S1). In the

backward iteration procedure, for example, the stochastic

version of the equation is

VtðXtÞ¼max
At

UtðXt;AtÞþb
X
Xtþ1

PðXtþ1 jXt;AtÞVtþ1ðXtþ1Þ
" #

eqn 7

One may notice that the difference from eqn 2 is the addition

of the transition probability matrix. Actually, the deterministic

version of the Bellman equation can be rewritten as a special

case of SDP, where P is a matrix of 0s with a single 1 in each

row. In SDP, P consists of transition probabilities depending

on stochastic events related to demographic and/or environ-

mental stochasticity or to the action taken, the effect of which

can be uncertain.

We distinguish several types of uncertainty that can be

accounted for to solve aMarkov decision problem. First, there

is the natural uncertainty which is related to natural and inher-

ent processes occurring in the system and its environment. It is

difficult to measure and even more difficult, if not impossible,

to reduce. Populations are subjected to environmental stochas-

ticity that can strongly affect their vital rates through changes

in weather conditions, habitat structure or other external biotic

and abiotic factors (Regan, Colyvan & Burgman 2002; Martin

et al. 2010). Demographic stochasticity is also a common

source of natural uncertainty. It reflects the variability in sur-

vival and reproduction among individuals and is likely to occur

in small-size populations (Lande 1993).

Second, management uncertainty, also called partial con-

trollability, results from the inability to accurately apply the

decision beingmade (Williams 2011). Sometime, actions them-

selves are taken in an uncertain way. For instance, a planned

harvest rate or a prescribed burn can sometimes not be

achieved by wildlife or forest managers for many reasons even

though it was assumed to be the best solution (Milner-Gulland

1997; Baxter & Possingham 2011; Richards, Possingham &

Tizard 1999; see also Table 3).

The third type of uncertainty deals with that coming from

the partial knowledge of the value of the state variable. To

cope with such uncertainty, one may use partially observable

Markov decision process (POMDP), a procedure that can

solve stochastic dynamic problems assuming we are unable to

observe perfectly the state of the system (Chad�es et al. 2008).

In a population model, a POMDPmight augment anMDP to

include detection probability matrices. The detection history is

not explicitly represented but rather is summarized by a belief

state or probability distribution over the state space represent-

ing where we think the state of the system is (Chad�es et al.

2008; see also Table 3). Unfortunately, POMDPs are even

more complex to solve than MDPs, and to date, it is possible

to compute exact solutions only for small-size problems

(Chad�es et al. 2011).

Another form of uncertainty is model uncertainty, which

refers to the lack of certainty about the structural frame shap-

ing the behaviour of the system (Walters 1986; Punt &Hilborn

1997). Adaptive Management is a common approach adopted

to reduce such uncertainty by testing multiple models through

the ongoing process of management andmonitoring occurring

under the principle of ‘learning by doing’ (Runge 2011). In

adaptive management, belief weights are attributed to each

model depending on the comparison between model predic-

tions of the outcome of an action and the observed response

frommonitoring. Such a comparison allows us to increase our

belief in the model that is most likely to give rise to the

observed response.

Two approaches, based on the role of learning, are then con-

ceivable (Williams 2009). Passive adaptive management

assumes learning is a by-product of decision-making in which

the models weights are updated by applying Bayes theorem

but remain constant during the optimization process

(Williams, Nichols & Conroy 2002). For instance, Martin

et al. (2010) used passive adaptive management to determine

an optimal harvest strategy to control raccoons to improve

oystercatcher productivity. They considered two models, one

assuming no effect of raccoons on oystercatchers’ productivity

and another one assuming a strong effect. In the second

approach, referred to as active adaptive management, model

Table 3. Main features of software packages implementing dynamic

programming. MDPSolve (https://sites.google.com/site/mdpsolve/)

and MDPToolbox (http://www.inra.fr/mia/T/MDPtoolbox/) are con-

sidered. MDP is for Markov decision process, POMDP for partially

observedMarkov decision process andAM for adaptivemanagement.

MDPSolve MDPtoolbox

Natural and

Management

uncertainty

Yes (infinite/finite);

Value, policy,

backward iteration

Yes (infinite/

finite); Value,

policy,

backward

iteration

Comments f2p and g2p functions

compute the

transitionmatrix

Need to build

transitionmatrix

Observation

uncertainty

(POMDP)

Yes No

Comments Infinite or

finite horizon

Model uncertainty

and Parametric

uncertainty (AM)

Yes No

Comments Passive andActive Passive AM to be

included in

future release

Unknown

uncertainty

(reinforcement

learning)

No Yes (on Infinite horizon)

Comments Q-learning algorithm
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weights appear in the optimization process. More precisely,

the next updated weights are incorporated in the expected sum

of future rewards of the Bellman equation. Such approach is

the most advanced form of adaptive management. In contrast

to passive adaptive management, active adaptive management

considers how current decisions will affect future learning and

chooses an optimal balance between rewards based on current

beliefs and future rewards based on updated beliefs (Runge

2011). For instance, McDonald-Madden et al. (2011) used

active adaptive management to assess species relocation strate-

gies in the context of climate change. They considered two

models, one in which carrying capacity declined over time

because of climate change and another one in which climate

change had no impact on species carrying capacity.

The last form of uncertainty, referred to as parametric

uncertainty, is related to our limited knowledge about the

parameters that govern the system dynamics (Williams 2009).

This optimization problem is also referred to as adaptive man-

agement under parameter uncertainty. One approach to this

problem makes use of conjugate priors over the unknown

parameters (Raiffa & Schaifer 1961). For example, Walters &

Hilborn (1976) used a normal prior over parameters in popula-

tion growth model. Hauser & Possingham (2008) and Rout,

Hauser & Possingham (2009) used Beta priors to represent

uncertainty over transition probabilities. Recently, approxi-

mate approaches using projection methods have been devel-

oped for situations that do not support the use of conjugate

priors. Springborn & Sanchirico (2013) applied this approach

to the management of development that impacts mangrove

habitat.

When the form of uncertainty is unknown, an alternative

optimization approach to backward iteration, policy or value

iteration is reinforcement learning. This technique makes

sequential decisions when transition probabilities or rewards

are unknown and cannot be estimated by simulation (Chad�es,

Curtis & Martin 2012). The Q-learning algorithm is used in

which the optimal value V0* and the corresponding action are

estimated by a learning process of observed transitions and

values obtained with function approximation (Chad�es et al.

2007; Table 3). A potential issue with this method, originally

developed in robotics, is that it requires a large number of

observations to build the transitionmatrix.

Software packages performing dynamic
programming

There are several software packages that allow the implemen-

tation of SDP. Adaptive Stochastic Dynamic Programming

(ASDP) Lubow 1995, was the first application developed for

biologists to solve optimization problems using dynamic

programming. It is a MS DOS executable that is no longer

maintained by its author. Two other packages are available for

MATLAB: MDPSolve (Fackler 2011, available at https://

sites.google.com/site/mdpsolve/) and MDPtoolbox (version

4.0) available at http://www.inra.fr/mia/T/MDPtoolbox/.

MDPtoolbox is also available for the open-source software for

numerical computations Scilab, R (http://cran.r-project.org/

web/packages/MDPtoolbox) and GNU Octave (GNU’s not

Unix). Both MDPSolve and the MDPtoolbox implement the

value iteration and the policy iteration algorithms, while

ASDP uses only the former. Adaptive Stochastic Dynamic

Programming does not use the convergence criterion discussed

previously for infinite time horizon but stops after the policy

remains the same for a specified number of iterations. MDP-

Solve and MDPtoolbox deal with natural and management

uncertainty in finite and infinite time horizons (Table 3).

MDPtoolbox satisfyingly copes with unknown management

uncertainty through the implementation of Q-learning in an

infinite horizon, while MDPSolve does not. MDPSolve enjoys

capabilities that permit solving POMDP and addressingmodel

uncertainty, while MDPtoolbox does not. Transitions for con-

tinuous variables are often defined in terms of either a condi-

tional density or a transition equation which specifies the next

period state as a function of the current state and, possibly, a

random shock reflecting environmental variation or other pro-

cess noise. MDPSolve has procedures that define discrete tran-

sition matrices that approximate the transition for continuous

variables.

In the following section, we provide an application of SDP

and solve the associated decision problem using both MDP-

Solve and MDPtoolbox. Although we emphasize that this

exercise does not represent a general introduction to these

packages (we refer to the user’s guides instead), we hope it will

be a good starting point. In addition to the use of these pack-

ages, we demonstrate thatMDP problems can be implemented

in program R and provide code that can be amended for one’s

own purpose.

Application towolf culling

In this section, we illustrate each step of SDP required to derive

an optimal management strategy to control a population of

wolves in Europe. We consider several decision models of

increasing complexity for wolf culling. First, we build a deter-

ministic model to keep things easy and illustrate the notation.

Then, we illustrate how to make decisions when uncertainty

exists.

SETTING THE SCENE

We go through the six steps of dynamic programming. First,

the optimization objective is to maximize the population while

providing that the population does not exceed 250 individuals

(Nmax) and remains above 50 individuals (Nmin). These thresh-

olds are somewhat arbitrary from a biological perspective, but

were selected to obtain results in a reasonable amount of time

while scanning a relatively broad range of abundance states.

Second, the state variable Xt is the population sizeNt at time t,

which ranges from 0 toKwhere K is an arbitrary upper bound

on the state space. Third, the control variable At is the harvest

rate Ht, a discrete variable ranging from 0% to 100% with an

increment of 1/(K + 1) therefore allowing as many possible

actions as there are number of states. Fourth, regarding the

transition model describing population dynamics and the
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consequences of actions (harvest Ht) on the state variable

(abundance Nt), we adopted an exponential growth (Fig 1),

which is suitable to describe a population currently in a coloni-

zation phase. We assumed an additive effect of human offtake

on total mortality (Creel & Rotella 2010; Murray et al. 2010).

More precisely, we used:

Ntþ1 ¼ kNtð1�HtÞ eqn 8

where k is the population growth rate. The value of k was

extracted from the literature using the French population as an

example (the estimate of k is 1.25 with 95% confidence interval

[1.14; 1.37]; Marescot et al. 2011). Fifth, utility is based on

abundance and harvest rate bearing in mind the objective to

keep a population size between Nmin and Nmax. We choose a

utility function that is increasing linearly with abundance when

the current state is within the objective range. In mathematical

terms, we write:

Ut ¼ Ntð1�HtÞat eqn 9

where at takes the value 1 if Nmin ≤ Nt+1 ≤ Nmax and 0 other-

wise. Given the current population sizeNt and harvest rateHt,

if the future state is above the utility threshold Nmax or below

Nmin, the penalty factor at takes a null value and, therefore, the
utility function does as well. If, however, the future population

size Nt+1 is in the target abundance range, then the utility of

harvest level Ht in state Nt is the population size after harvest

but before annual growth occurs (Fig 1b). Because we

assumed exponential growth, and because Nmax is below the

carrying capacity and the growth rate is greater than 1, the

objective can be translated into attaining and then maintaining

the population at Nmax. An alternative utility function could

be defined only on the current abundance because no economic

cost was considered here. Adopting the general formulation in

which utility is defined as a function of current action would be

useful to incorporate economic costs and pay-offs. Sixth, we

need to solve the Bellman equation using the value iteration or

the policy iteration algorithm.

DETERMINISTIC CASE

Wefirst ran a deterministic model over an infinite time horizon

using both value iteration and policy iteration algorithms.

There was also an analytic solution to this deterministic MDP,

which enables us to validate the approach. With an objective

of keeping a population between Nmin and Nmax, the optimal

action for a stateN is a harvest rate of themaximum between 0

and 1 –Nmax/(kN) which removes the exact surplus of individ-

uals aboveNmax as in our linear utility function. The three dif-

ferent methods provided the same optimal harvest rates. The

strategy of no culling remained the best strategy until popula-

tion reached 200 individuals. Above 200 individuals, expected

population size reached the utility threshold Nmax

(200 9 1.25 = 250). From there, optimal harvest rate

increased from 0.8% to 20%. The highest harvest rate was

reached at the utility abundance threshold of 250 individuals.

We provide R code to implement the resolution of this MDP

(Appendices S1 and S2). This example was also run in MDP-

Solve and MDPtoolbox (Appendix S3 for the scripts and S4

for the numeric values).

The solution demonstrates the trade-off between current

and future utility inherent in dynamic programming problems.

Here, there is no reason to cull unless the population will

exceed Nmax in the next period. If the population is high

enough, however, it is optimal to forgo current utility by cull-

ing enough to ensure that utility is obtained in the next period.

COPING WITH UNCERTAINTY

Besides the deterministic model, we consider models with

demographic stochasticity that generates variability in popula-

tion growth rates arising from random differences among

individuals in survival and reproduction within a season or a

year (Lande 1993). R code is provided to run this additional

example (Appendix S5).

We assume that the state variable is distributed according to

a Poisson distribution:

Ntþ1 �PoisðkNtð1�HtÞÞ eqn 10

withmean valueEðNtþ1Þ ¼ kNtð1�HtÞ equal to its determin-

istic counterpart (Appendix S1 and S2). The transition proba-

bilities are now changing across the different states according

to a Poisson distribution:

PðXtþ1 ¼ ntþ1jXt ¼ nt; at ¼ htÞ ¼ eð�kntð1�htÞÞ ½kntð1� htÞ�ntþ1

ntþ1!

eqn 11

We found that harvesting was not recommended as long as

population was below 200 individuals. As in the deterministic

model, above this abundance threshold, harvesting

increased from 0.8% to 20%of population size (Fig. 3).When

population was already at the upper objective limit Nmax, 50

individuals were to be removed.

Discussion

Stochastic dynamic programming is a valuable tool for solving

complex decision-making problems, which has numerous

applications in conservation biology, behavioural ecology, for-

estry and fisheries sciences. It provides an optimal decision that

is most likely to fulfil an objective despite the various sources

of uncertainty impeding the study of natural biological sys-

tems. The formalization of objectives of any Markov decision

problem is given by the utility function that allows prioritizing

the preferences of the ones who make the decisions (decision-

maker or manager). As opposed to the dynamic model, the

representation of utility is subjective and hence can be difficult

to define.

DIFFERENT WAY OF DEFIN ING A UTIL ITY FUNCTION

The use of dynamic programming implies a particular formal-

ization of the objective into a utility function. The utility is a
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function of one or more decision variables, themselves

defined on the system states and actions. Utility is a sometimes

defined with constraints that can reflect different decision rules

(Williams, Nichols &Conroy 2002).

Problems in resource management often deal with trade-

offs not only between current and future objectives but also

between multiple current objectives. For example, one trade-

off objective is to control and protect a predator that is

potentially threatened. Other objectives can be to restore nat-

ural habitat while minimizing action cost and allowing some

recreational activities. When multiple objectives are involved,

different decision variables can be considered. The objective

can be to find a relevant utility optimum reflecting the trade-

off between the different decision variables (for instance, the

habitat quality and the intensity of recreational activity)

which can respond differently to decisions (restoration). In

such cases, some weighting scheme must be used to express

the different decision variables in common units. For exam-

ple, suppose that E is an environmental performance of vari-

able and B is the benefits from recreation activities and C is

the financial cost of an action. Utility can be defined as a

weighted sum of the decision variables U = wE + B�C,

where w is a weight that assigns a monetary value to envi-

ronmental variable.

An alternative to using weighted sums is to use a multiplica-

tive functional form such asU = Ea Bb. The parameters a and

b serve two functions. First, if a and b are both positive and if

a > b, it implies that environmental variable is more impor-

tant than the recreation variable. The relative value of a to b

changes the weight that is placed on E versus B. Second, if a or

b value is <1 in absolute value, it implies that the marginal con-

tribution of an additional unit is smaller for larger values of the

variable than for smaller one. This representation is also

appropriate when it is deemedmore important to save an addi-

tional individual of a protected species such as the wolf in

Francewhen there are very few remaining thanwhen the popu-

lation is more abundant. Note that unlike the additive utility

form, this multiplicative form is not affected by the scale of

either variable.

Another approach is to convert one decision variable into a

constraint or to use a penalty function for failure to meet the

target. This approach simplifies the multiple objectives into a

single constrained objective (Converse et al. 2012). For

instance, one objective can be to improve habitat quality

given a limited budget of $50 000, while allowing a minimum

of 100 h/year of recreational activities. For example, U = E if

(B ≥ 100 h/year) and if (C < $50 000); otherwise U = 0.

Here, the decision variable is the intensity of recreation, and

action cost has been converted into a constraint. This avoids

the need to make comparisons between variables of different

types, but it also has implications that an analyst should be

aware of. First, if the system never reaches the threshold

implied by the two constraints (100h/year of recreation and a

budget of $50 000), it means that both B and C are irrelevant.

Second, it implies that once one threshold is reached, further

increases in C or further decreases in B are irrelevant. Finally,

it should be noted that this utility is not the same as optimiz-

ing with respect to E subject to a long run expectation that

the thresholds are satisfied.

L IMITS OF DYNAMIC PROGRAMMING: CURSE OF

DIMENSIONALITY

Despite the flexibility of dynamic programming, one has to

find a trade-off between biological realism andmodel complex-

ity when tackling an optimization problem. Indeed, DP meth-

ods often face the issue known as ‘the curse of dimensionality’

which states that, when more state variables are added in the

model, the size of the DP problem increases exponentially

(Walters & Hilborn 1978; Schapaugh & Tyre 2012). To over-

come this computational complexity, approximate optimiza-

tion methods can be used such as heuristic sampling

algorithms that proved efficient for models with several vari-

ables (Nicol & Chad�es 2011). These methods approximate the

optimal solution given the starting state by simulating the pos-

sible future states the more likely to occur. Simulating only

possible future states lightens the computational calculation in

comparison with the value or policy iteration procedure in

which values are computed for all possible states.

PERSPECTIVES FOR WOLF POPULATION MANAGEMENT

The aim of this study was to demonstrate the usefulness and

relative ease of SDP. We hope that this study can serve as an

entry point into the extensive literature and potential applica-

tions of SDP in ecology. For the sake of clarity, we made

assumptions to keep the illustration simple, but SDP can

accommodate several useful extensions. For example, we did

not include socio-economic constraints in the modelling
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Fig. 3. Optimal harvest obtained from a model incorporating demo-

graphic stochasticity. Demographic stochasticity stands for individual

variability in vital rates. The stochastic dynamic programming was run

over a finite time horizon (150 years) with the backward iteration pro-

cedure. The transition probabilities are changing across the different

states according to a specific density function, here that of a Poisson

distribution of parameter the next population states.
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process. However, SDP allows the incorporation of such fac-

tors by maximizing several objectives simultaneously using

complex trade-offs in the utility function (Walters & Hilborn

1978; Milner-Gulland 1997; Runge & Johnson 2002). In our

example, economic constraints could be incorporated via a

trade-off between monetary loss from livestock depredation,

impact of wolves on game abundance and indirectly on hunt-

ing activity, the receipts from ecotourism and the cost of wolf

culling (e.g. Milner-Gulland 1997). Second, the lower abun-

dance limit could also be refined based on an ecological

threshold that once reached is irreversible (Holling 1973;

Bodin & Wiman 2007). Using such thresholds would be rele-

vant for a protected species because it would insure popula-

tion viability without necessarily changing the optimal policy

(Martin et al. 2009). Additionally, further work is needed to

compare optimal strategies obtained with alternative popula-

tion dynamic models. Indeed, the choice of exponential

growth is an adequate model for a colonizing population, but

when a population is established and the habitat saturated,

this model becomes inappropriate. Instead of considering

exponential growth, one could use a logistic growth with den-

sity-dependent effects such as an Allee effect which has been

shown in social species with few breeding units like African

wild dogs (Lycaon pictus) (Stephens & Sutherland 1999).

PERSPECTIVES FOR ADAPTIVE MANAGEMENT

Structural uncertainty can be defined as the noise arising from

our lack of knowledge about system behaviour and can be

reduced through comparison of multiple models (Walters

1986; Punt &Hilborn 1997;Williams, Nichols &Conroy 2002;

Dorazio & Johnson 2003). For example, one could also assess

the impact of accounting versus neglecting poaching on the

final optimal action (Milner-Gulland 1997) or the impact of

additive versus compensatory effects of harvesting on annual

mortality (Runge& Johnson 2002). Reducing structural uncer-

tainty is essential for conducting a conservation programme,

especially when the resulting optimal policy is highly sensitive

to models structure and assumptions. In such case, one needs

the most accurate predictions to optimize future allocation of

monitoring andmanagement effort (Williams, Nichols &Con-

roy 2002; Conroy et al. 2008). Adaptive management is a

sequential action process, specifically designed for conserva-

tion problems dealing with structural uncertainty (Runge

2011). It is an integrated part of decision-making that deals

simultaneously with predictions on future states and updated

beliefs from monitoring (Walters 1986). Using SDP in an

adaptive management framework aims at seeking the optimal

management strategy while reducing structural uncertainty, so

better knowledge leads to better actions (Martin et al. 2009).

However, the real interest of adaptive management in conser-

vation biology is not really to reduce structural uncertainty

that sometimes does not affect the optimal solution but more

to drive a learning process to improve decision given manage-

ment objectives (Runge 2011).

One common assumption in conservation biology is

that a system must be well understood before making any

management decision. Monitoring efforts tend to be oriented

towards the perspective of understanding system functions

more than towards the establishment of good decision rules.

This leads sometimes to inefficient outlays of conservation

funds (Caughlan & Oakley 2001; Field, Tyre & Possingham

2005; Chad�es et al. 2008). Considering the environmental

issues currently at stake, we agree with Nichols & Williams

(2006) that active conservation action should be initiated even

when the causes of the problem are not fully identified. Sto-

chastic dynamic programming is a relevant optimization

method for making decisions while conducting monitoring.

Biologists studying ecological systems are often facing uncer-

tainty, noise and disturbance. Adaptive management is a fur-

ther natural extension of SDP and should be the preferred

approach undertaken whenever a management action is

planned.
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##################################################################################!1
# MARESCOT ET AL.!2
# COMPLEX DECISIONS MADE SIMPLE: A PRIMER ON STOCHASTIC DYNAMIC PROGRAMMING!3
##################################################################################!4
!5
##################################################################################!6
# APPENDIX 1: DETERMINISTIC DYNAMIC PROGRAMIC MODEL - VALUE ITERATION OVER INFINITE 7
HORIZON!…
# Computation time ~ 1 min. on an Intel Xeon CPU X5670 Westmere @2.93 GHz!8
##################################################################################!9
!10
##################################################################################!11
# STEP 1: DEFINE OBJECTIVES!12
##################################################################################!13
!14
# This is a conceptual step which does not require coding!15
!16
###################################################################################!17
# STEP 2: DEFINE STATES!18
##################################################################################!19
!20
# state space limit!21
K <- 250!22
!23
# Vector of all possible states!24
states <- 0:K!25
!26
##################################################################################!27
# STEP 3: DEFINE CONTROL ACTIONS!28
##################################################################################!29
!30
# Vector of actions: rate of the population that can be removed, ranging from 0 to 1!31
H <- seq(0, 1, 1/(K+1))!32
!33
##################################################################################!34
# STEP 4: DEFINE DYNAMIC MODEL (WITH DEMOGRAPHIC PARAMETERS)!35
##################################################################################!36
!37
# Population growth rate!38
lambda <- 1.25!39
!40
# Function for the exponential growth of the dynamic model!41
dynamic <- function(actualpop, action) {!42
! nextpop <- actualpop*lambda*(1-action)!43
! return(nextpop)!44
}!45
!46
##################################################################################!47
# STEP 5: DEFINE UTILITY!48
##################################################################################!49
!50
# Maximum objective threshold for population abundance!51
Nmax <- 250!52
!53
# Minimum objective threshold for population abundance!54
Nmin <- 50!55
!56
# Utility function!57
get_utility <- function(x) {!58
! return(ifelse(x < Nmin | x > Nmax, 0, x))!59
}!60
!61
##################################################################################!62
# STEP 6: SOLVE BELLMAN EQUATION WITH VALUE ITERATION!63
##################################################################################!64



!65
# Transition matrix!66
transition <- array(0, dim = c(length(states), length(states), length(H)))!67
!68
# Utility matrix!69
utility <- array(0, dim = c(length(states), length(H)))!70
!71
# Fill in the transition and utility matrix!72
# Loop on all states!73
for (k in 0:K) {!74
!75
! # Loop on all actions!76
! for (i in 1:length(H)) {!77
!78
! ! # Calculate the transition state at the next step, given the #current state k!79
! ! # and the harvest Hi!80
! ! nextpop <- dynamic(k, H[i])!81
! ! !82
! ! # Compute utility!83
! ! utility[k+1,i] <- get_utility(nextpop)!84
!85
! ! # Since the state space has a finite dimension, we cap the #next population 86
size!…
! ! nextpop <- min(round(nextpop), K)!87
!88
! ! # Find next state index!89
! ! index <- which(states == nextpop)!90
! ! transition[k+1,index,i] <- 1!91
!92
! } # end of action loop!93
} # end of state loop!94
!95
# Discount factor!96
discount <- 0.9!97
!98
# Action value vector at tmax!99
Vtmax <- numeric(length(states))!100
!101
# Action value vector at t and t+1!102
Vt <- numeric(length(states))!103
Vtplus <- numeric(length(states))!104
!105
# Optimal policy vector!106
D <- numeric(length(states))!107
!108
!109
!110
# We define a factor and convergence cirterion to check for convergence #time !111
did_converge <- FALSE!112
discount <- 0.9!113
epsilon <-0.0001!114
!115
!116
#Tmax <- 150 defining a finite Time horizon in the case of backward #iteration!117
!118
# The backward iteration consists in storing action values in the vector Vt which is 119
the maximum of!…
# utility plus the future action values for all possible next states. #Knowing the 120
final action !…
# values, we can then backwardly reset the next action value Vtplus to #the new value 121
Vt. We start !…
!122
#for (t in (Tmax-1):1) { # the backward iteration at time T-1 since we #already defined 123
the action value at Tmax.!…
while(did_converge==FALSE) { # infinite value iteration!124



!125
! # We define a matrix Q that stores the updated action values for #all states (rows)!126
! # actions (columns)!127
! Q <- array(0, dim=c(length(states), length(H)))!128
! !129
! for (i in 1:length(H)) {!130
! !131
! ! # For each harvest rate we fill for all states values (row) #the ith column 132
(Action) of matrix Q!…
! ! # The utility of the ith action recorded for all states is #added to the 133
product of the transition matrix of the ith action by the #action value of all states !…
! ! Q[,i] <- utility[,i] + discount*(transition[,,i] %*% Vtplus)!134
! !135
! } # end of the harvest loop!136
!137
! # Find the optimal action value at time t is the maximum of Q!138
! Vt <- apply(Q, 1, max)!139
!140
! !141
! if(max(abs(Vtplus-Vt)) <= epsilon*(1-discount)/(2*discount)) did_converge <- TRUE  !142
! !143
! # After filling vector Vt of the action values at all states, we #update the vector 144
Vt+1 to Vt!…
# and we go to the next step standing for previous time t-1, since we #iterate backward!145
! Vtplus <- Vt!146
!147
} # end of while loop (in the case of value iteration over infinite horizon) !148
  #or end of the time loop (in the case of the bacward iteration)!149
!150
# Find optimal action for each state!151
for (k in 0:K) {!152
! # We look for each state which column of Q corresponds to the #maximum of the last 153
updated value of Vt (the one at time t+1). If the #index vector is longer than 1 (if …
there is more than one optimal value #we chose the minimum harvest rate)!…
! D[k+1] <- H[(min(which(Q[k+1,] == Vt[k+1])))]!154
}!155
!156
##################################################################################!157
# PLOT SOLUTION!158
##################################################################################!159
!160
plot(states, D, xlab="Population size", ylab="harvest rate")!161
!162
##################################################################################!163
# PROOF OF OPTIMALITY: COMPARE WITH ANALYTICAL SOLUTION!164
##################################################################################!165
!166
exact_policy <- rep(0,K)!167
for (k in 0:K) {!168
! exact_policy[k+1] <- max(0, 1 - K/(k*lambda))!169
}!170
!171
# The difference between Bellman equation solution and the analytical #solution is 172
small:!…
lines(states, exact_policy)!173
D - exact_policy!174

175



##################################################################################!1
# MARESCOT ET AL.!2
# COMPLEX DECISIONS MADE SIMPLE: A PRIMER ON STOCHASTIC DYNAMIC PROGRAMMING!3
##################################################################################!4
!5
##################################################################################!6
# APPENDIX 2: DETERMINISTIC DYNAMIC PROGRAMIC MODEL - POLICY ITERATION OVER INFINITE 7
HORIZON!…
# Computation time ~ 6 min. on an Intel Xeon CPU X5670 Westmere @2.93 GHz!8
##################################################################################!9
!10
##################################################################################!11
# STEP 1: DEFINE OBJECTIVES!12
##################################################################################!13
!14
# This is a conceptual step which does not require coding!15
!16
###################################################################################!17
# STEP 2: DEFINE STATES!18
##################################################################################!19
!20
# state space limit!21
K <- 250!22
!23
# Vector of all possible states!24
states <- 0:K!25
!26
##################################################################################!27
# STEP 3: DEFINE CONTROL ACTIONS!28
##################################################################################!29
!30
# Vector of actions: rate of the population that can be removed ranging #from 0 to 1!31
H <- seq(0, 1, 1/(K+1))!32
!33
##################################################################################!34
# STEP 4: DEFINE DYNAMIC MODEL AND DEMOGRAPHIC PARAMETERS!35
##################################################################################!36
!37
# Population growth rate!38
lambda <- 1.25!39
!40
# Function for the exponential growth of the dynamic model!41
       dynamic <- function(actualpop, action) {!42
! nextpop <- actualpop*lambda*(1-action)!43
! return(nextpop)!44
       }!45
!46
##################################################################################!47
# STEP 5: DEFINE UTILITY!48
##################################################################################!49
!50
# Maximum objective threshold for population abundance!51
Nmax <- 250!52
!53
# Minimum objective threshold for population abundance!54
Nmin <- 50!55
!56
# Utility function!57
get_utility <- function(x) {!58
! return(ifelse(x < Nmin | x > Nmax, 0, x))!59
}!60
!61
##################################################################################!62
# STEP 6: SOLVE BELLMAN EQUATION WITH POLICY ITERATION!63
##################################################################################!64



!65
!66
# Discount factor!67
discount <- 0.9!68
!69
# Theta and delta are variables used at the end of each evaluation loop to check !70
# when to stop the evalution step and start the improvement step!71
theta <- 5.555556e-06!72
!73
delta <- 0!74
!75
!76
# Boolean to check for convergence!77
did_converge <- FALSE!78
!79
# Action value vector at t!80
Vt <- numeric(length(states))!81
!82
# Optimal policy vector!83
D <- numeric(length(states))!84
!85
# Vector of action values (updated at each iteration)!86
V <- numeric(length(states))!87
while(!did_converge) {!88
!89
! # This control flow evaluates the policy!90
! repeat {!91
!92
! ! # Loop over all states!93
! ! for (k in 0:K) {!94
! ! ! !95
! ! ! # We take the actual value!96
! ! ! v <- V[k+1]!97
! ! ! !98
! ! ! # Compute next population size!99
! ! ! # D[k+1] because arrays are indexed from 1 and not 0!100
! ! ! nextpop <- dynamic(k, D[k+1])!101
! ! ! !102
! ! ! # Compute utility!103
! ! ! utility <- get_utility(nextpop)!104
! ! ! !105
! ! ! # Truncate and cap population size!106
! ! ! nextpop <- min(round(nextpop), K)!107
! ! ! !108
! ! ! # Get index of future state!109
! ! ! index <- which(states==nextpop)!110
! ! ! !111
! ! ! # Update action value!112
! ! ! V[k+1] <- utility + discount*V[index]!113
! ! ! !114
! ! ! # Take the best improvement on the action values!115
! ! ! delta <- max(delta, abs(v - V[k+1]))!116
!117
! ! } # end of the state loop!118
!119
# if the best improvement on action values across the state #space is higher than a 120
factor then we can test for another #action value and step to the improvement loop                                                            !…
! ! if (delta >= theta) break!121
! ! !122
! } #end of the evaluation step!123
!124
! !125
! did_converge <- TRUE!126
! # Vector to store updated action values for each state!127
! Q <- numeric(length(H))!128



!129
! # This loop improves the policy!130
! for (k in 0:K) {!131
!132
! ! # Get the action from actual policy!133
! ! d <- D[k+1]!134
!135
# Try every possible action and record their corresponding #rewards!136
! ! for (i in 1:length(H)) {!137
!138
! ! ! # Compute next population size!139
! ! ! nextpop2 <- dynamic(k, H[i])!140
! ! ! !141
! ! ! # Compute utility!142
! ! ! utility <- get_utility(nextpop2)!143
! ! ! !144
! ! ! # Truncate and cap population size!145
! ! ! nextpop2 <- min(round(nextpop2), K)!146
! ! ! !147
! ! ! # Get index of future state!148
! ! ! index2 <- which(states==nextpop2)!149
!150
! ! ! # Update Q!151
! ! ! Q[i] <- utility + discount*V[index2]!152
! ! } # End of loop on actions!153
!154
! ! # Find which action is the best!155
! ! D[k+1] <- (min(which(Q == max(Q))) - 1)/(K+1)!156
! ! if(D[k+1] != d) did_converge <- FALSE !157
! ! !158
! } # End of improvement loop!159
!160
} # End of main loop!161
!162
##################################################################################!163
# PLOT SOLUTION!164
##################################################################################!165
!166
plot(states, D, xlab="Population size", ylab="harvest rate")!167
!168
##################################################################################!169
# PROOF OF OPTIMALITY: COMPARE WITH ANALYTICAL SOLUTION!170
##################################################################################!171
!172
exact_policy <- rep(0,K)!173
for (k in 0:K) {!174
! exact_policy[k+1] <- max(0, 1 - K/(k*lambda))!175
}!176
!177
# The difference between Bellman equation solution and the analytical #solution is 178
small:!…
D - exact_policy!179

180



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!1
% MARESCOT ET AL.!2
% COMPLEX DECISIONS MADE SIMPLE: A PRIMER ON STOCHASTIC DYNAMIC PROGRAMMING!3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!4
!5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!6
% APPENDIX 3a: DETERMINISTIC DYNAMIC PROGRAMIC MODEL - VALUE ITERATION WITH MDPTOOLBOX!7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!8
!9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!10
% STEP 1: DEFINE OBJECTIVES!11
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!12
!13
% This is a conceptual step which does not require coding!14
!15
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!16
% STEP 2: DEFINE STATES!17
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!18
!19
mins = 0;!20
maxs = 250;!21
ns = 251;!22
S = linspace(mins,maxs,ns)';!23
lambda = 1.25;!24
!25
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!26
% STEP 3: DEFINE CONTROL ACTIONS!27
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!28
!29
mina = 0;!30
maxa = 250;!31
Umin = 50;!32
Umax = 250;!33
na = 251;!34
a = (linspace(mina,maxa,na)./na)';!35
!36
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!37
% STEP 4: DEFINE DYNAMIC MODEL AND DEMOGRAPHIC PARAMETERS!38
% STEP 5: DEFINE UTILITY!39
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!40
!41
% These two steps are done in a single loop!42
!43
P=zeros(size(S,1),size(S,1), size(a,1));!44
R=zeros(size(S,1),size(a,1));!45
for i = 1:size(S,1) !46
    for h = 1:size(a,1) !47
    !48
    Snext = lambda*S(i)*(1-a(h));!49
    if (((Snext < Umin)|| (Snext > Umax)))!50
       R(i,h) = 0;!51
    else  R(i,h) = Snext;!52
    end!53
    Snext = min(round(Snext), maxs);!54
    P(i,Snext+1,h) = 1;!55
    end!56
end!57
!58
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!59
% STEP 6: SOLVE BELLMAN EQUATION WITH VALUE ITERATION!60
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!61
!62
[V Policy] = mdp_value_iteration(P, R,  0.9);!63
plot(S, a(Policy))!64
!65



!66
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!67
% APPENDIX 3b: DETERMINISTIC DYNAMIC PROGRAMIC MODEL - VALUE ITERATION WITH MDPSOLVE!68
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!69
!70
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!71
% STEP 1: DEFINE OBJECTIVES!72
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!73
!74
% This is a conceptual step which does not require coding!75
!76
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!77
% STEP 2: DEFINE STATES!78
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!79
!80
mins = 0;!81
maxs = 250;!82
ns = 251;!83
S = linspace(mins,maxs,ns)';!84
lambda = 1.25;!85
!86
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!87
% STEP 3: DEFINE CONTROL ACTIONS!88
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!89
!90
mina = 0;!91
maxa = 250;!92
Umin = 50;!93
Umax = 250;!94
na = 251;!95
a = (linspace(mina,maxa,na)./na)';!96
!97
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!98
% STEP 4: DEFINE DYNAMIC MODEL AND DEMOGRAPHIC PARAMETERS!99
% STEP 5: DEFINE UTILITY!100
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!101
!102
% Generate all possible State-action combinations!103
X = rectgrid(S,a);!104
Ix=getI(X,1);!105
nx=size(X,1);!106
% Calculate futur states after applying each action to each current state!107
Snext = lambda.*X(:,1).*(1-X(:,2));!108
!109
% Fill the reward vector!110
reward = (Snext(:)>=Umin & Snext(:) <=Umax);!111
R = zeros(size(Snext,1),1);!112
R(reward,:) = Snext(reward);!113
!114
% Build the transition matrix!115
Snext = min(round(Snext),maxs);!116
g = @(X) (lambda.*X(:,1).*(1-X(:,2)));!117
goptions = struct('cleanup', 0, 'recinterp', 0);!118
P = g2P(g, S, X, goptions);!119
!120
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!121
% STEP 6: SOLVE BELLMAN EQUATION WITH VALUE ITERATION!122
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!123
model.Ix=Ix;!124
model.X = X;!125
model.P = P;!126
delta = 0.9;!127
model.d = delta;!128
model.R = R;!129
result = mdpsolve(model);!130



plot(result.Xopt(:,1),result.Xopt(:,2))!131
132



Appendix S4: Numerical solutions representing for each population abundance the associated 
optimal harvest rate obtained with our R code, MDPsolve, MDPtoolbox and the analytic 
solution.     

Abundance	   R	  value	  iteration	   R	  policy	  iteration	   MDPtoolbox	   MDPsolve	   Analytic	  solution	  
from	  0	  to	  200	   0	   0	   0	   0	   0	  

201	   0,008	   0,008	   0,008	   0,008	   0,005	  
202	   0,012	   0,012	   0,012	   0,012	   0,010	  
203	   0,016	   0,016	   0,016	   0,016	   0,015	  
204	   0,020	   0,020	   0,020	   0,020	   0,020	  
205	   0,028	   0,028	   0,028	   0,028	   0,024	  
206	   0,032	   0,032	   0,032	   0,032	   0,029	  
207	   0,036	   0,036	   0,036	   0,036	   0,034	  
208	   0,040	   0,040	   0,040	   0,040	   0,038	  
209	   0,044	   0,044	   0,044	   0,044	   0,043	  
210	   0,048	   0,048	   0,048	   0,048	   0,048	  
211	   0,056	   0,056	   0,056	   0,056	   0,052	  
212	   0,060	   0,060	   0,060	   0,060	   0,057	  
213	   0,064	   0,064	   0,064	   0,064	   0,061	  
214	   0,068	   0,068	   0,068	   0,068	   0,065	  
215	   0,072	   0,072	   0,072	   0,072	   0,070	  
216	   0,076	   0,076	   0,076	   0,076	   0,074	  
217	   0,080	   0,080	   0,080	   0,080	   0,078	  
218	   0,084	   0,084	   0,084	   0,084	   0,083	  
219	   0,088	   0,088	   0,088	   0,088	   0,087	  
220	   0,092	   0,092	   0,092	   0,092	   0,091	  
221	   0,096	   0,096	   0,096	   0,096	   0,095	  
222	   0,100	   0,100	   0,100	   0,100	   0,099	  
223	   0,104	   0,104	   0,104	   0,104	   0,103	  
224	   0,108	   0,108	   0,108	   0,108	   0,107	  
225	   0,112	   0,112	   0,112	   0,112	   0,111	  
226	   0,116	   0,116	   0,116	   0,116	   0,115	  
227	   0,120	   0,120	   0,120	   0,120	   0,119	  
228	   0,124	   0,124	   0,124	   0,124	   0,123	  
229	   0,127	   0,127	   0,127	   0,128	   0,127	  
230	   0,131	   0,131	   0,131	   0,132	   0,130	  
231	   0,135	   0,135	   0,135	   0,136	   0,134	  
232	   0,139	   0,139	   0,139	   0,139	   0,138	  
233	   0,143	   0,143	   0,143	   0,143	   0,142	  
234	   0,147	   0,147	   0,147	   0,147	   0,145	  
235	   0,151	   0,151	   0,151	   0,151	   0,149	  
236	   0,155	   0,155	   0,155	   0,155	   0,153	  
237	   0,159	   0,159	   0,159	   0,159	   0,156	  
238	   0,163	   0,163	   0,163	   0,163	   0,160	  
239	   0,163	   0,163	   0,163	   0,163	   0,163	  
240	   0,167	   0,167	   0,167	   0,167	   0,167	  



241	   0,171	   0,171	   0,171	   0,171	   0,170	  
242	   0,175	   0,175	   0,175	   0,175	   0,174	  
243	   0,179	   0,179	   0,179	   0,179	   0,177	  
244	   0,183	   0,183	   0,183	   0,183	   0,180	  
245	   0,187	   0,187	   0,187	   0,187	   0,184	  
246	   0,187	   0,187	   0,187	   0,187	   0,187	  
247	   0,191	   0,191	   0,191	   0,191	   0,190	  
248	   0,195	   0,195	   0,195	   0,195	   0,194	  
249	   0,199	   0,199	   0,199	   0,199	   0,197	  
250	   0,203	   0,203	   0,203	   0,203	   0,200	  

 

	  



##################################################################################!1
# MARESCOT ET AL.!2
# COMPLEX DECISIONS MADE SIMPLE: A PRIMER ON STOCHASTIC DYNAMIC PROGRAMMING!3
##################################################################################!4
!5
##################################################################################!6
# APPENDIX 5: STOCHASTIC DYNAMIC PROGRAMMING MODEL WITH DEMOGRAPHIC STOCHASTICITY!7
# Computation time ~ 1 min. on an Intel Xeon CPU X5670 Westmere @2.93 GHz!8
##################################################################################!9
!10
##################################################################################!11
# STEP 1: DEFINE OBJECTIVES!12
##################################################################################!13
!14
# This is a conceptual step which does not require coding!15
!16
###################################################################################!17
# STEP 2: DEFINE STATES!18
##################################################################################!19
!20
# state space limit!21
K <- 250!22
!23
# Vector of all possible states!24
states <- 0:K!25
!26
##################################################################################!27
# STEP 3: DEFINE CONTROL ACTIONS!28
##################################################################################!29
!30
# Vector of actions: rate of the population that can be removed, ranging #from 0 to 1!31
H <- seq(0, 1, 1/(K+1))!32
!33
##################################################################################!34
# STEP 4: DEFINE DYNAMIC MODEL (WITH DEMOGRAPHIC PARAMETERS)!35
##################################################################################!36
!37
# Population growth rate!38
lambda <- 1.25!39
!40
# Function for the exponential growth of the dynamic model!41
dynamic <- function(actualpop, action) {!42
! nextpop <- actualpop*lambda*(1-action)!43
! return(nextpop)!44
}!45
!46
##################################################################################!47
# STEP 5: DEFINE UTILITY!48
##################################################################################!49
!50
# Maximum objective threshold for population abundance!51
Nmax <- 250!52
!53
# Minimum objective threshold for population abundance!54
Nmin <- 50!55
!56
# Utility function!57
get_utility <- function(x) {!58
! return(ifelse(x < Nmin | x > Nmax, 0, x))!59
}!60
!61
##################################################################################!62
# STEP 6: SOLVE BELLMAN EQUATION WITH VALUE ITERATION!63
##################################################################################!64
!65



# Transition matrix!66
transition <- array(0, dim = c(length(states), length(states), length(H)))!67
!68
# Utility matrix!69
utility <- array(0, dim = c(length(states), length(H)))!70
!71
# Fill in the transition and utility matrix!72
# Loop on all states!73
for (k in 0:K) {!74
!75
! # Loop on all actions!76
! for (i in 1:length(H)) {!77
!78
# Calculate the transition state at the next step, given the #current state k and the 79
harvest Hi!…
! ! nextpop <- dynamic(k, H[i])!80
! ! !81
! # Implement demographic stochasticity by drawing !82
      #probability from a Poisson density function!83
! ! transition[k+1,,i] <- dpois(states,nextpop)!84
! ! # We need to correct this density for the final capping state !85
! ! transition[k+1,K+1,i] <- 1 - sum(transition[k+1,-(K+1),i])!86
! ! !87
! ! # Compute utility!88
! ! utility[k+1,i] <- get_utility(nextpop)!89
!90
! } # end of action loop!91
} # end of state loop!92
!93
# Discount factor!94
discount <- 0.9!95
!96
# Action value vector at tmax!97
Vtmax <- numeric(length(states))!98
!99
# Action value vector at t and t+1!100
Vt <- numeric(length(states))!101
Vtplus <- numeric(length(states))!102
!103
# Optimal policy vector!104
D <- numeric(length(states))!105
!106
# Time horizon!107
Tmax <- 150!108
!109
# The backward iteration consists in storing action values in the vector Vt which is 110
the maximum of!…
# utility plus the future action values for all possible next states. Knowing the final 111
action !…
# values, we can then backwardly reset the next action value Vtplus to the new value 112
Vt. We start !…
# The backward iteration at time T-1 since we already defined the action #value at 113
Tmax.!…
for (t in (Tmax-1):1) {!114
!115
# We define a matrix Q that stores the updated action values for #all states (rows)!116
! # actions (columns)!117
! Q <- array(0, dim=c(length(states), length(H)))!118
! !119
! for (i in 1:length(H)) {!120
! !121
# For each harvest rate we fill for all states values (row) #the ith column (Action) of 122
matrix Q!…
# The utility of the ith action recorded for all states is #added to the product of the 123
transition matrix of the ith #action by the action value of all states !…



! ! Q[,i] <- utility[,i] + discount*(transition[,,i] %*% Vtplus)!124
! !125
! } # end of the harvest loop!126
!127
! # Find the optimal action value at time t is the maximum of Q!128
! Vt <- apply(Q, 1, max)!129
!130
# After filling vector Vt of the action values at all states, we #update the vector 131
Vt+1 to Vt and we go to the next step standing #for previous time t-1, since we iterate …
backward!…
! Vtplus <- Vt!132
!133
} # end of the time loop!134
!135
# Find optimal action for each state!136
for (k in 0:K) {!137
# We look for each state which column of Q corresponds to the #maximum of the last 138
updated value !…
# of Vt (the one at time t+1). If the index vector is longer than 1 #(if there is more 139
than one optimal value we chose the minimum #harvest rate)!…
! D[k+1] <- H[(min(which(Q[k+1,] == Vt[k+1])))]!140
}!141
!142
##################################################################################!143
# PLOT SOLUTION!144
##################################################################################!145
!146
plot(states, D, xlab="Population size", ylab="harvest rate")!147
!148
##################################################################################!149
# PROOF OF OPTIMALITY: COMPARE WITH ANALYTICAL SOLUTION!150
##################################################################################!151
!152
exact_policy <- rep(0,K)!153
for (k in 0:K) {!154
! exact_policy[k+1] <- max(0, 1 - K/(k*lambda))!155
}!156
!157
# The difference between Bellman equation solution and the analytical #solution is 158
small:!…
lines(states, exact_policy)!159
D - exact_policy!160
!161
!162

163
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