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Stage-structured  matrix  models  are  commonly  used  to  inform  management  decisions  for  species  with
complex  life  cycles.  These  models  require  information  on  the  number  or proportion  of individuals  in  each
stage. However,  complex  life  cycles,  such  as  those  in  species  exhibiting  a  complex  social  organization,  can
make these  data  difficult  to obtain.  The  discrete  time  structure  of matrix  models  makes  them reducible,
meaning  that  full  models  can be  simplified  by removing  some  stages.  We  illustrate  the method  by  reduc-
tage-structured models
eduction
ocial animals
anis lupus
onservation

ing  the life  cycle  of wolf  (Canis  lupus)  on  which  culling  and  conservation  plans  often  lead  to  controversial
debates.  Starting  from  a  4-stage  matrix  incorporating  social  stages,  we obtained  several  reduced  mod-
els of  increasing  simplicity  all  showing  similar  demographic  outcomes  to the full  model.  We  found  that
asymptotic  growth  rates  of reduced  models  were  in  close  agreement  with  empirical  data.  Our approach
can offset  the  lack of information  on individual  stage  abundance  and  therefore  be valuable  when  using
matrix  models  for wildlife  management  when  data  on  certain  stages  are  sparse.
. Introduction

Matrix population models are widely used in ecological mod-
lling. In stage-structured models, individuals are assigned to
ifferent stages (e.g., morphological for insects or phenological for
lants) and all individuals within a same stage are assumed to be

dentical (Birt et al., 2009). Matrix models are commonly used in
emographic studies to obtain estimates of the asymptotic pop-
lation growth rate, population size and stable stage distribution
Caswell, 2001). When used in decision theory, population matrix

odels can be combined with an optimization procedure to choose
etween alternative management strategies (Haight et al., 2002;
hadès et al., 2011).

Matrix models are parameterized with demographic rates such
s fertility or survival, which require calibration from data that
re sometimes difficult to collect in the field (Gimenez et al.,
012). Social species are typical examples of complex life cycles
or which data can be hard to obtain. Social species are organisms
iving in groups of more or less interactive and related individ-
als that maintain common social behaviours within and across

roups (Wilson, 1975). Neglecting the social structure in a matrix
odel can lead to biased estimation of population trends and con-

equently misinform management decisions and negatively impact

∗ Corresponding author.
E-mail address: lucile.marescot@cefe.cnrs.fr (L. Marescot).

304-3800/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2012.02.017
© 2012 Elsevier B.V. All rights reserved.

species conservation (Brault and Caswell, 1993; Carroll et al., 2003).
It is therefore important that the complexity of a population matrix
model reflects the species biology while staying within the scope
of available empirical data.

In this note, we demonstrate how matrix reduction can be
used to simplify demographic models so that they can match the
available data. Reduction of a stage-structured model consists in
removing certain stages of the life cycle and merging transitions
between them without affecting the population dynamics (Caswell,
2001; Wielgus et al., 2001). By doing so, demographic parameters
remain the same and the only information that is lost is the number
of individuals belonging to life stages that were collapsed (Caswell,
2001). A reduced matrix provides a simpler model while main-
taining the biological integrity of a full stage-structured model it
is issued from. Hence it allows focusing on life stages easy to mon-
itor and manage. We  showcase the approach using a case study on
wolf population dynamics.

2. Materials and methods

2.1. A four-stage model reflecting wolf social organization

The wolf (Canis lupus) is a social species living in packs. A pack

is a breeding unit, generally composed of a dominant male and a
dominant female (the alpha pair) – the only pair of breeders – and
their offspring of several generations. When juveniles reach their
complete sexual maturity between 1 and 3 years of age, they tend

dx.doi.org/10.1016/j.ecolmodel.2012.02.017
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:lucile.marescot@cefe.cnrs.fr
dx.doi.org/10.1016/j.ecolmodel.2012.02.017
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ig. 1. Complete wolf life cycle graph of model 1, structured in 4 stages (J for juve
raphs  in models 2, 3 and 4. Parameters notations are: f for fertility rate; ϕj , ϕd , ϕs a
nd pes for the probability of dispersing and of establishing a new pack and finally �

o disperse and to establish a new pack in another territory. In the
resent study, we considered a female-only pre-breeding model
rganized in four stages: juveniles, dispersers, subordinates and
lphas (see model 1 in Fig. 1). Only the alpha female breeds, pro-
ucing a single litter of pups every year. Those pups later become

uveniles, which may  not be fully sexually mature and will either
isperse or become subordinates. After reaching sexually maturity,

ndividuals disperse and look for a mate to establish a new pack
Mech and Boitani, 2003). Subordinates consist of sexually mature
ndividuals that have not dispersed yet and are inhibited from
reeding by the alpha’s presence (Zimen, 1975). As most individuals
isperse within 3 years, there are few subordinates above that age.
or simplicity we assume that an alpha never looses its status and
hat all subordinates disperse before 3 years. We  also assume that
ubordinates never directly transition to being an alpha because
ubordinates rarely become dominant in their natal pack.

.2. Model calibration

Our model has four parameters that allow individuals to move
rom one stage to another: survival and dispersal probabilities, per
apita fertility rate of female alpha and probability to establish a
ew pack. We  run simulations over a mortality gradient ranging

rom 0 to 0.8 with an increment of 0.01 (Appendix 1). For each value
f the mortality gradient, we run 10,000 Monte Carlo iterations
n which survival probabilities are drawn in a normal distribution

ith a mean equal to the complementary of mortality rate and a
tandard deviation (SD) of 0.1. This value reflects uncertainty in
urvival and is estimated from a capture–recapture analysis on the
rench wolf population (Cubaynes et al., 2010). Because most wolf

urveys estimate individual mean survival whatever their social
tatus is, we follow the same approach in our simulations and give
he same value to survival of different stages (Mech and Boitani,
003; Fuller, 1989). We  also run supplementary simulations with
 D for dispersers, S for subordinates and A for alpha) and z-transformed life cycle
, respectively, for survival rate of juveniles, dispersers, subordinates and alphas, pdi

symptotic growth rate.

the more biologically realistic assumption of survival rate differing
across stages (MacNulty et al., 2009) and find that our conclusions
are not affected by this assumption (Appendix 2). In these sim-
ulations, for each step of the mortality gradient, we  investigate
different survival rate of juveniles and dispersers, always by set-
ting them at a lower rate of the alpha survival. Per capita fertility
rate (f) is the average number of births per breeder and per year.
Since our model includes only females, f is set to the average litter
size divided by 2. Empirical studies on wolf populations suggest
that litter size varies from 4 to 9 pups (Mech and Boitani, 2003;
Fuller, 1989; Miller et al., 2002; Webb et al., 2011). We  therefore
draw fertility rate from a uniform distribution varying from 2 to 4.5.
Annual dispersal rate (pdi) in natural populations generally varies
between 0.10 and 0.40 (Mech and Boitani, 2003; Fuller, 1989; Webb
et al., 2011), and 10,000 values of this parameter are drawn from
a uniform distribution between 0.1 and 0.4. Dispersal is usually
regarded as a single individual looking for a mate in a buffer zone
from 5 to 70 km outside the territory boundaries (Fuller, 1989).
Beyond this range, individuals are regarded as emigrants and below
as transients still belonging to the pack (Messier, 1985). Solitary
wolves that survived but did not manage to establish a new pack
are regarded as emigrants having left the population. Most of wolf
studies using radio-telemetry data show that between 0 and 25% of
the wolf population manage to settle new packs each month (Fuller,
1989; Keith et al., 1983). Averaging this estimation on the year and
for the disperser population only, we set the pack establishment
parameter pes to vary uniformly between 0.3 and 0.7.

2.3. Deterministic structure of the four-stage model as the basis
for reduction
First, we consider a deterministic version of the four-stage
model described above (model 1) as the framework for application
of transformation rules for life-cycle graphs (Caswell, 2001; e.g.,
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hapron et al., 2008; Wielgus et al., 2001). The population dynam-
cs follows an exponential growth via a discrete-time Markov chain

odel (Heppell et al., 2000) formalized as Nt+1 = ANt where Nt and
t+1 are, respectively, vectors of abundance in each stage at time t
nd t + 1 and A is the stage projection matrix representing the wolf
ife cycle:

 =

⎡
⎢⎣

0 0 0 f · ϕa

ϕj · pdi 0 ϕs 0
ϕj · (1 − pdi) 0 0 0

0 ϕd · pes 0 ϕa

⎤
⎥⎦

here ϕa, ϕj, ϕd and ϕs are the alpha, juvenile dispersers and sub-
rdinates survival probabilities.

.4. The z-transformed method for reduced life cycle graphs

Before reducing a life cycle, the model needs to be z-
ransformed, which consists in multiplying �−1 to parameters of

 transition from one stage to another where � is the asymptotic
opulation growth rate, calculated from the dominant value of
he eigenvector of the deterministic projection matrix of model 1
Heppell et al., 2000). Caswell’s characteristic equation states that
he determinant of a z-transformed matrix for reduced life cycle is
qual to 0. In other words, the sum of all life cycle loops must be
qual to 1, with a loop being a path starting from one stage and
oing back to that same stage.

For a stage-structured matrix model the characteristic equation
an be formulated as

i

L(i) = 1

ith L(i) standing for the ith loop of the z-transformed life cycle
raph.

For instance in model 1, there are 3 loops, and any of these 3 are
isjoint since they are all going through the alpha state:

(1) = ϕa · �−1

(2) = pdi · ϕjϕd · pes · ϕa · f · �−3

(3) = ((1 − pdi) · ϕj · ϕd · ϕd · pes · ϕa · f · �−4)

The exponent of the inverse of the asymptotic growth rate in
ach loop reflects how many years are required for an individual to
o from one stage to another. In our case, a four-stage z-transformed
odel must verify:

ϕa · �−1 + pdi · ϕjϕd · pes · ϕa · f · �−3 + (1 − pdi) · ϕj · ϕd · ϕd · pes · ϕa · f · �−4 = 1
ϕa + pdi · ϕjϕd · pes · ϕa · f · �−2 + (1 − pdi) · ϕj · ϕd · ϕd · pes · ϕa · f · �−3 = �
pdi · ϕjϕd · pes · ϕa · f · �−2 + (1 − pdi) · ϕj · ϕd · ϕd · pes · ϕa · f · �−3 = � − ϕa

hich is equivalent to:

pdi · ϕjϕd · pes · ϕa · f · �−2 + (1 − pdi) · ϕj · ϕd · ϕd · pes · ϕa · f · �−3

� − ϕa
= 1 (1)

.5. Reduction of the wolf life cycle from a four-stage model to a
ne-stage model

The reduction method is similar to the ‘signal flow graph’
ethod (Mason, 1953), in which we remove some categorical vari-

ble in a matrix model while preserving all its dynamic properties,
n this case the asymptotic growth rate. We  added uncertainty in
arameter estimates to the deterministic four-stage model (model

) and we successively reduced the life cycle stage by stage.

First, a three-stage model is considered with the juvenile stage
emoved (see model 2 in Fig. 1). This model accounts for the direct
ransition from the alpha stage to either the subordinates stage with
delling 232 (2012) 91– 96 93

probability of f · ϕa · ϕj · (1 − pdi) · �−1 or to the disperser stage with
probability of f · ϕa · ϕj · pdi · �−1.

The following reduced model is built from the three-stage
reduced model, now with the subordinate stage collapsed (see
model 3 in Fig. 1). We  obtained a two-stage model describing abun-
dance of dispersers and alphas only. Individuals go directly from
the alpha stage to the disperser stage with transition probability
f · ϕa · ϕj · ϕs · (1 − pdi) · �−2 + f · ϕa · ϕj · pdi · �−1.

The last and most reduced model accounts only for the num-
ber of female alphas. The dynamics within this single stage model
reflects the temporal dynamic of established packs (model 4 in
Fig. 1). It is obtained by multiplying the expression for the tran-
sition between alpha and dispersers with the expression for the
transition between disperser and alpha. The self-loop standing for
the surviving alpha is reduced by dividing the total expression by
1 − �a · �−1, which give an asymptotic growth rate of

� = [�a · f · �s · �j · (1 − pdi) · pdi · �−2 + �a · f · �j · pdi · �−1]

·
[

�d · pes · �−1

1 − �a · �−1

]
(2)

Now multiplying both sides by �−1 leads to Eq. (1),  meaning that
after successive stages being reduced, our transformed model still
solves Caswell’s characteristic equation.

2.6. Model validation

We  compared model results to check that the matrix reduction
did not affect population dynamics with regards to the asymptotic
growth rate (Fig. 2). To do so, we  calculated the median and 95%
confidence interval of the exponential rate of increase obtained
from the 10,000 simulations as a function of mortality rate (Fig. 2,
Appendix 1). We  also validate the accuracy and reliability of reduc-
ing matrix by checking that population dynamics did not differ
between our models by comparing the median exponential rate
of increase of the full and reduced model calculated with different
survival rates across stages (Appendix 2).

To explore how well the models fit to empirical data, we  graph-
ically explored the outputs obtained with stage-invariant survival
rates, and overlaid empirical rate of increase observed in many wolf
populations given their estimated mortality found in the literature.
We choose this representation first because mortality and growth
rate are two  demographic parameters common to wolf studies. Sec-
ond, they are both acknowledged to be good indicators for assessing
the species conservation status (Marescot et al., 2011). Empirical
data were extracted from the wolf monograph by Fuller (1989) and
updated with other wolf studies summarized in Mech and Boitani
(2003). We also added a recent estimate of the rate of increase of the
wolf population in the French Alps (Marescot et al., 2011) (Table 1).
We performed a Kolmogorov test to statistically evaluate how well
the models fit the data (Quinn and Keough, 2002).

3. Results

All models adequately represented wolf population dynamics.
The asymptotic growth rate followed a decreasing trend along
the mortality gradient and which was identical between full and
reduced models and so, whether survival rate differed or not across
stage (Fig. 2, Appendix 2). Asymptotic growth rate calculated from
the stage model and its reduced derivatives encompass all data
except one data point located at the extreme boundary of the mor-

tality gradient. This dataset is for the East-central Yukon population
that exhibited a rate of increase of −0.03 for a mortality rate of 0.60
(Hayes et al., 1991) and is beyond the upper limit of models predic-
tions. Besides this population, most of the data points are close to
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Fig. 2. Median exponential growth rate (red circles) and 95% confidence intervals, calculated in each model as a function of mortality rate and fitted to empirical data (black
points)  obtained mostly in Fuller (1989) review of North American wolf populations. (For interpretation of the references to color in this figure legend, the reader is referred
to  the web version of the article.)

Table 1
Empirical data and model results of the exponential rate of increase used for the Kolmogorov test as a function of mortality rates found in the literature.

Mortality rate Median exponential
rate of increase

Exponential rate of
increase in empirical data

Referencesa Population

0.15 0.237 0.190 Fuller and Keith (1980) Northeastern Alberta
0.16  0.227 0.400 Hayes and Harestad (2000) East-central Yukon
0.161  0.229 0.271 Marescot et al. (2011) French Alps
0.18  0.206 0.150 Wydeven et al. (1995) Northern Wisconsin
0.21  0.176 0.010 Peterson (1998) Isle Royale Michigan
0.27  0.094 0.180 Mech et al. (1998) Denali park Alaska
0.28  0.086 0.120 Fritts and Mech (1981) Northwestern Minnesota
0.31  0.039 −0.080 Berg and Kuehn (1982) North central Minnesota
0.33  0.010 0.060 Peterson et al. (1984) Kenai Peninsula Alska
0.34  −0.001 −0.050 Peterson and Page (1988) Isle Royale Michigan
0.35  −0.022 0.060 Messier (1985) Southwestern Quebeck
0.36  −0.033 0.020 Fuller (1989) North Central Minnesota
0.36  −0.037 0.100 Fuller (1989) North Central Minnesota
0.37  −0.050 0.010 Forbes and Theberge (1995) Algonquin Park Ontario
0.42  −0.135 −0.120 Mech (1977, 1986) North esatern Minnesota
0.45  −0.184 −0.130 Ballard et al. (1997) Northwestern Alaska
0.45  −0.186 −0.130 Ballard et al. (1987) South-central Alaska
0.46  −0.202 −0.370 Gasaway et al. (1983) Interior Alaska
0.56  −0.404 −0.150 Carbyn (1980) Southwestern Manitoba
0.58  −0.456 −0.270 Ballard et al. (1997) Northwestern Alberta
0.6  −0.504 −0.030 Hayes et al. (1991) Southern Yukon
0.68  −0.723 −0.920 Bjorge and Gunson (1983) Northwestern Alberta

References cited here are issued from Table 6.8 of Fuller et al. in chapter 6 of Mech and Boitani (2003); from Fuller (1989) and from Marescot et al. (2011).
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he curve representing the median exponential rate of increase. In
he Kolmogorov goodness-of-fit test the null hypothesis assuming
hat median exponential rates of increase of a model do not differ
rom the ones observed in natural populations was  rejected nei-
her in the original four-stage model (D = 0.1667, p-value = 0.799;
able 1) nor in the reduced models that lead to the same values of
symptotic growth rates.

. Discussion

.1. Interpretation of results

Matrix reduction does not affect population trends since asymp-
otic growth rate remains the same as the juvenile, subordinate and
isperser stages are successively removed from the model. Reduc-

ng a population matrix model is allowed only on a z-transformed
ife cycle graph for which the characteristic equation must be equal
o 1 (Caswell, 2001). We  perform reduction on an un-transformed
raph because in our particular model starting reduction on a trans-
ormed graph or un-transformed graph was equivalent (see Eqs.
1) and (2)). When the model is fully reduced, the single loop of
he alpha-only model corresponds to the asymptotic growth rate
f the full un-transformed model (Eq. (2)). Hence in our specific
odel, multiplying the transition parameters by �−1 before reduc-

ion on the full model, or after reduction on the one-stage model,
s equivalent and solves the characteristic equation. We  emphasize
hat such simplification would not be possible on a stage-structured

odel with disjoint loops. For instance, if emigration was not con-
idered, the surviving dispersers that failed in settling a pack would
emain in the disperser stage and because such self loop would
e disjointed with the alpha self loop our approach would not be
easible.

We found that our simple reduced stage structured model ade-
uately fits the empirical data even though it required less data
han in a full age-structured model (Miller et al., 2002) or in an
ndividual-based model (Chapron et al., 2003; Pitt et al., 2003). Our

odel predictions along mortality gradient covered all empirical
ata except the southern Yukon wolf population. We  offer two
xplanations for this discrepancy. First, our matrix models did not
ccount for harvest and the Southern Yukon wolf population expe-
ienced one of the strongest harvest pressures amongst the data
onsidered (40% of the population was harvested through culling
orresponding to 67% of the total mortality rate) (Hayes et al.,
991). Harvest can lead to a temporary increase of the population
rowth rate by decreasing competition and favouring pup produc-
ion and survival, which can explain why this population is above
he 95% confidence interval of models predictions (Fuller, 1989;
eith, 1983). Second, this actual population exhibits a high immi-
ration rate, a demographic process that we chose to ignore for the
ake of model simplicity.

.2. Management implications

Evaluating the conservation status of large carnivore popula-
ions is a real challenge given the difficulty of surveying these
pecies as well as the social and economic consequences of their
olonization. The limited field data impedes a precise knowledge of
heir demography. In many cases of tense social contexts and seri-
us threats of population extinction risks, important decisions need
o be made quickly. These decisions often preclude using stage-
tructured models to evaluate the consequences of management

trategies on population trends and status (DeMaso et al., 2011;
eppell et al., 2000). This is unfortunate because such models are
ell-suited to inform conservation decisions due to their concep-

ual simplicity, flexibility, ease of computation, and their ability
delling 232 (2012) 91– 96 95

to be directly parameterized from empirical data (Wisdom et al.,
2000). However, their implementation requires calibration with
demographic data that are very difficult to estimate especially for
elusive, wide ranging, long-live and social species exhibiting mul-
tiple stages difficult to observe (Crouse et al., 1987; Brault and
Caswell, 1993). Thus, reducing the life cycle of species is a rec-
ommended approach to deal problem of studying species with
limited count data. It allows focusing on those life stages detectable
in situ or quantifiable via field, laboratory or computing techniques,
thereby allowing more efficient allocation of management and sur-
vey effort. It allows mostly focusing on which stage management
actions must aim at. For instance, regarding wolf management, it
might be relevant to consider a two  stage model (individuals in
packs and dispersers) and thus investigated the impact of removing
a pack members comparing to dispersers. Because reduced models
only loose information on number of individuals in particular stages
and not on probabilities of transition between these stages, they are
consistent with and show the exact same resulting dynamic than a
complete stage model.

Optimization methods such as stochastic dynamic program-
ming provide powerful tools for solving the optimal strategy that
best achieves management objectives (Chadès et al., 2011). Consid-
ering a demographic model with few life stages when coupled with
an optimization model would help to avoid a common problem
in dynamic programming known as the ‘curse of dimensionality’.
This difficulty arises when many state variables (e.g., life stages) are
included in the model and the dimension of the state space there-
fore increases exponentially (Walters and Hilborn, 1978). Despite
the many conveniences reduction model brings within the decision
process, few matrix models have used reduction so far, and even
though they are applied to species threatened of extinction, they
are not dealing with social species like wolves (see Chapron et al.,
2008 on tigers and Wielgus et al., 2001 on bear populations). In the
case of the wolf, keeping only the breeder stage produces a model
based on pack dynamic only, which can be relevant for managers.
Following the population in terms of number of packs (i.e., number
of alpha females) instead of number of individuals in each stage can
adequately document the spatial growth of a colonizing population
without corrupting estimates of the overall numeric growth. This
simple approach of reducing the wolf life cycle can provide sim-
ple models to implement in a an adaptive management framework
by keeping only the stage measurable in the field and regarded as
important in terms of the species conservation (Varley and Boyce,
2006).
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