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Determining the ‘space race’ between co-occurring species is crucial to understand 
the effects of interspecific interactions on the extinction risk of species threatened by 
poachers and predators. Dynamic two-species occupancy models provide a flexible 
framework to decompose complex species interaction patterns, while accounting for 
imperfect detection. These models can describe poachers–wildlife interactions, as they 
allow estimating occupancy, extinction and colonisation probabilities of wildlife con-
ditional on the occurrence of poachers and vice versa. We applied our model to a case 
study on wildlife poaching in the eastern plains of Cambodia. We used co-occurrence 
data extracted from the database of the SMART partnership to study the distribution 
dynamics between poachers and six ungulate species pooled together into the tiger 
prey guild. We used four years of survey data reporting the locations of snares and of 
presence signs of the ungulates recorded by rangers during their monthly multi-patrol-
ling sessions. Our results showed that a substantial proportion of the sites occupied 
by ungulate species went extinct over the years of the study while the proportion of 
sites colonised by poachers increased. We also showed, for the first time, that spatio-
temporal heterogeneity in the patrolling effort explains a great deal of the variation in 
the detection of poachers and ungulates. Our approach provides practitioners with a 
flexible and robust tool to assess conservation status of species and extinction risk of 
wildlife populations. It can assist managers in better evaluating, learning and adapting 
the patrolling strategies of rangers.

Keywords: banteng, hidden Markov model, illegal killing, species distribution, 
species interactions, tiger

Introduction

Illegal hunting (hereafter poaching) is a major threat to wildlife species around 
the world (Ripple  et  al. 2016, Gray  et  al. 2018). Poaching of endangered wild-
life, in particular, can push those species to the brink of extinction (Gross 2018). 
Moreover, poaching of certain taxa, like ungulates, can deplete prey resources 
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of large carnivore species. Prey depletion is considered 
a driving force of global declines in carnivore numbers  
(Wolf and Ripple 2016). Thus, quantifying poaching pressure 
in both space and time is an urgent conservation need. Doing 
so would help causally link poaching behaviour to wildlife 
population dynamics and better inform intervention efforts. 
Yet, assessing the interrelationships between poachers and 
wildlife is notoriously difficult for various reasons, includ-
ing: 1) inadequate information on the mediating influence 
of ranger patrols on poacher–wildlife interactions; 2) lack of 
empirical data on poachers, wildlife and patrols at sufficient 
spatial and temporal resolutions; 3) imperfect detection of 
poachers and wildlife; and 4) the absence of statistical models 
to partition the influence of poachers, patrols and wildlife 
on each other in space and time. To help overcome these dif-
ficulties, we build upon a rapidly advancing class of occu-
pancy models to study spatiotemporal interactions between 
poachers and threatened wildlife species in Cambodia. This 
study is part of a larger effort to use ecological theory and 
models to inform wildlife restoration efforts in this region,  
including the reintroduction of the globally endangered tiger 
Panthera tigris.

Poachers and wildlife interactions can be compared to a 
predator–prey system in which interactions fluctuate over 
time in a ‘landscape of fear’ (Laundre et al. 2010). Predator–
prey interactions often represent a ‘space race’, where prey 
try to minimize and predators maximize spatial overlap (Sih 
2005). Most empirical studies focusing on the space race for 
predator–prey interactions generally use telemetry or GPS 
tracking devices, assuming perfect detection probability 
of both predators and prey (Cusack  et  al. 2019). Tracking 
poachers with GPS devices is infeasible, so rangers often use 
indirect methods based on observations of snares, hunting 
camps and social surveys to detect their presence (Milner-
Gulland and Leader-Williams 1992). However, these obser-
vations suffer from imperfect detection of poachers and 
could therefore generate inaccurate estimates of poaching 
pressure or changes in wildlife populations, as well as lead to  
ineffective conservation policies.

Over the last 15 yr, the occupancy modelling framework 
has been extended to include multiple interacting species to 
address the issues of imperfect species detection and dynamic 
changes in species distributions (MacKenzie  et  al. 2006, 
2018). As such, this framework is well suited to study spatio-
temporal interactions between wildlife and poachers. Using 
repeated surveys of detections and non-detections of poach-
ing-related threats, such as snares, and of wildlife collected at 
several spatial units, one can estimate the temporal variation 
in the detection and occupancy probabilities of poachers in 
a given site conditional on the occurrence of wildlife with 
which they interact. Such a flexible parameterization can 
therefore assess the dynamics of species interactions simulta-
neously with species occupancy and detection (Fidino et al. 
2018). However, few studies account for the imperfect detec-
tion in the occupancy of poachers (Critchlow  et  al. 2015, 
Moore et al. 2018). One recent study assessed levels of illegal 

wildlife killing in a national park in Rwanda by fitting an 
occupancy model on detection/non-detection of poaching 
signs directly (Moore et al. 2018). This study did not account 
explicitly for interactions between poachers and wildlife. To 
our knowledge, no study has quantified how poachers and 
wildlife affect the space use of each other dynamically over 
time, while accounting for imperfect detection of both wild-
life and poachers.

Here, for the first time, we utilized a two-species, multi-
season occupancy model to assess the spatial dynamics of 
local interactions between poachers and the collective com-
mon prey species of the tiger. The tiger has been functionally 
extinct in Cambodia since 2016, because of direct poaching 
and poaching of its main prey (CA|TS manual 2018). Our 
study provides a quantification of the impact of poaching on 
the occupancy of the main tiger prey during the four years 
preceding tigers’ extinction from the region. Our study ben-
efits from detection/non-detection data that were collected 
from January 2013 to December 2016 and georeferenced 
by rangers looking for poacher snares and signs of wildlife 
(e.g. hair, scat, footprint) during their patrols. As no records 
of tigers were found during those years, we only consider 
occurrences of six species regarded as the main tiger prey: the 
wild banteng Bos javanicus, the gaur Bos gaurus, the sambar  
deer Rusa unicolor, the eld’s deer Rucervus eldii and two least-
concern species, the wild boar Sus scrofa and the barking  
deer, also called red muntjac Muntiacus muntjak (Gray and 
Phan 2011).

Our model allows us to 1) investigate effects of spatial 
and temporal patterns in patrolling effort on detection and 
occupancy of poachers and wildlife; 2) estimate site-specific 
extinction/colonisation probabilities of wildlife conditional 
on the presence of poachers; and 3) estimate the extinction/
colonisation probability of poachers in a given site condi-
tional on the presence of wildlife. Thus, our model provides a 
quantitative assessment of how poachers affect wildlife at fine 
spatial scales (e.g. over a top predator home range such as the 
tiger, within protected area borders). We have developed the 
two following hypotheses. First, poachers drive the dynamic 
space race despite rangers’ patrolling efforts (the ‘poachers 
winning’ hypothesis). We therefore predict an increase in 
poachers’ occupancy and a decrease in wildlife occupancy. 
Alternatively, wildlife is winning the space race despite the 
impact of poaching. In the ‘wildlife winning’ hypothesis, we 
predict an increase or a stabilization of wildlife occupancy 
and a decrease in poachers’ occupancy as a function of patrol-
ling effort (other hypotheses are described in the methods 
and Supplementary material Appendix A).

Material and methods

Study area

We conducted our study in two protected areas within the 
eastern Plains Landscape of Cambodia: the Phnom Prich 
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wildlife sanctuary (PPWS), covering more than 2000 km2, 
and the Serepok wildlife sancturary (SWS), covering over 
3700 km2 of the Lower Mekong Dry Forest Eco-region. Both 
sites are among the 200 most important eco-regions of the 
world due to the high level of biodiversity facing a myriad of 
threats (Gray and Phan 2011).

Combined, the sanctuaries had a total of 11 patrol stations 
(five in PPWS and six in SWS) from which rangers departed 
by motorbike (95% of the data), boats or vehicle, in order to 
inspect for illegal activities and monitor wildlife. Patrolling 
for illegal activity mainly consisted of locating, removing 
snares and intercepting poachers. It also aimed at systemati-
cally recording any wildlife sign they may find during their 
patrolling activities.

Data collection

The data we used for the analysis were obtained from the 
Spatial Monitoring And Reporting Tool (SMART < http://
smartconservationtools.org >), a tool that has been devel-
oped by the consortium of conservation organizations to 
measure, evaluate and improve the effectiveness of wildlife 
law enforcement patrols and site-based conservation activities 
(smartconservationtoools.org). SMART is also a key tool for 
the recovery of the populations of tiger and other keystone 
species (CA|TS manual 2018).

We extracted all the dates and geolocations of informa-
tion collected by rangers from January 2013 to December 
2016. We gathered 1647 GPS waypoints reported by 85 
team leaders (23 in PPWS and 62 in SWS). During each 
patrolling session, rangers recorded several observations 
on specific landscape features (e.g. roads and rivers), ille-
gal activity (e.g. snaring, logging, fishing) and wildlife  
(direct sightings or signs of animal presence) or  
when no activity was detected (Supplementary material 
Appendix B).

For the wildlife data in the model, we used observa-
tions records and presence signs of the six tiger prey spe-
cies mentioned above. We assumed rangers identified the 
species correctly during their field survey and if a mis-
identification occurred, it would be among the six ungu-
late species, which we pooled into one guild. We removed 
from the data the observations of carcasses that can be dis-
placed by humans or other animals over long distance and 
therefore do not have reliable location. We used snares 
as relevant indicators of the presence of poachers and of  
their interactions with wildlife, as they represented a non-
targeted catching technique for small and large wildlife spe-
cies. Rangers collected the date and the GPS location of 
snares during their anti-poaching patrol route. Hereafter, we 
used the term ‘site occupied by poachers’ to refer to the sites  
that have snares.

Figure  1. Map of the study areas in Cambodia, the Phnom Prich wildlife sanctuary (PPWS) and Serepok wildlife sanctuary (SWS). 
Sampling sites were defined as 10 × 10 km cells. We show the occurrence patterns of poachers (red circles) and wildlife species (black dots). 
Brown lines represent the main patrolling path network (roads), blue lines describe the river streams, green triangles represent the ranger 
stations as well as temporary ranger’s campsites. Note that only 81 cells were used for the analysis as we removed 17 sites that were never 
sampled (cells shaded in grey).
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We plotted all the GPS data points collected in the two 
study areas, and used 10 × 10 km cells to partition the study 
areas, resulting in 42 sites for PPWS and 56 sites for SWS 
(Fig. 1). We chose this cell size to represent sample sites in 
order to achieve a compromise between ecological and moni-
toring assumptions. We made sure the site was large enough 
to meet the closure assumption upon which occupancy mod-
els rely on (see section below), meaning that wildlife would 
not move out of the site between sampling occasions. On the 
other hand, we ensured the scale of the cells was sufficiently 
fine to ensure that rangers patrolled a fair proportion of each 
cell at least once during a primary occasion (Supplementary 
material Appendix B). Finally, we combined information on 
poaching-related threats and wildlife in a table composed 
of 81 rows representing the sites prospected by rangers and 
48 columns representing the monthly occasions during the 
four years of the study period. We removed 17 sites never 
patrolled by rangers (Fig. 1); seven cells were from the PPWS 
grid and ten from the SWS one.

Hidden Markov formulation of multi-season  
two-species occupancy model

Definition of states and observations
We developed a multi-season two-species occupancy 
model (MacKenzie et al. 2004) in a hidden Markov model-
ling (HMM) framework (Fiske et al. 2014, Gimenez et al. 
2014). We described the ecological process as a latent vari-
able indicating at each sampling occasion whether a site 
was: ‘unoccupied by poachers and wildlife’ (U), ‘occupied 
by poachers only’ (OP), ‘occupied by wildlife only’ (OW) 
or ‘occupied by wildlife and poachers’ (WP). Occupancy 
models rely on the main assumption known as ‘popula-
tion closure’, whereby sites are supposed to remain in the 
same occupancy state and only detection can vary between 
repeated surveys called secondary occasions. Sites can 
then change from one state to another between succes-
sive primary occasions through extinction and colonisa-
tion processes. The observation process was characterized  
by a known variable showing time series of  
detection/non-detection of species in each site 
(MacKenzie et al. 2006).

We adopted the Richmond–Waddle (RW) parameteriza-
tion for occupancy and detection because it is more appro-
priate to describe poacher–wildlife interactions and identify 
the effects of covariates described below on species occupancy 
(Richmond  et  al. 2010, Waddle  et  al. 2010). This param-
eterization states that the initial occurrence of one species 
depends on the occurrence of the common species, but the 
reciprocate regarding the common species is not true. In our 
case study, we assumed that the main tiger prey, compris-
ing six ungulate species mentioned in the introduction, were 
the common species whose occupancy was initially indepen-
dent of poachers’ presence. We then investigated whether 

these wildlife, collectively, responded to poachers’ dynamic 
distribution during the four years preceding tiger extinction. 
Therefore, we used the MacKenzie et al. (2006) parameter-
ization for the transition process from one state to another, a 
convenient approach to model reciprocal responses between 
species following their interactions, meaning that extinction 
and colonisation probabilities of a species are conditional on 
the presence or absence of the other. This parameterization 
allowed us to assess whether poachers or tiger prey species are 
winning the space race by testing hypotheses on the under-
lying ecological mechanisms driving the dynamics. It also  
considered the probability that a species replaced another  
in a given site from one primary occasion to another 
(Fidino et al. 2018).

Occupancy
To build the model, we first defined whether a site was ini-
tially occupied or not, and in which state, which was conve-
niently captured by the initial state probabilities of HMM 
(Gimenez et al. 2014). We proceed in two steps for clarity. 
The first step represents whether a site is occupied or not by 
wildlife regardless of the presence or absence of poachers. The 
following vector shows the probability of being in an unoc-
cupied site U or a site occupied by wildlife W:

U W
Π1 1= −[ ]ψ ψW W

  

with ψW the occupancy probability by wildlife and its com-
plement the probability of a site being unoccupied. The sec-
ond matrix represents whether poachers, depending on the 
presence or absence of wildlife, occupy a site:

U OP OW WP
U
W

Π2

1
1

0 0
0 0

=
−

−



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


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ψ ψ
ψ ψ

P W P W

P W P W

/ /

/ /

  

with ψP/W the occupancy probability by poachers, conditional 
on the presence of wildlife and the complement 1 − ψP/W that 
a site is not occupied by poachers, conditional on the pres-
ence of wildlife. Parameter ψP W/  is the occupancy probabil-
ity by poachers, conditional on the absence of wildlife and 
the complement 1 − ψP W/  is the probability that poachers 
do not occupy a site conditional on the absence of animals.

Transitions
Conditional on the initial occupancy state, we describe how 
the state at a site changes over time assuming a Markovian 
process. We define the transition matrix T for a given site 
between the states U, OP, OW, WP from primary occasion t 
to the next primary occasion t + 1 as follows:
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Each element of the matrix T is the transition probability 
from one of the occupancy states during a given year to 
another or the same occupancy state in the next year. The 
matrix describes four main processes: colonisation, extinc-
tion, replacement and fidelity (MacKenzie et al. 2018) that 
are detailed in Table 1, Supplementary material Appendix A.

These transitions occur at the beginning of each year 
(January). Within each primary occasion, the transition 
matrix T is simply a diagonal matrix of 1’s because the status 
of a site does not change from one secondary occasion to the 
other according to the closure assumption. Here, we defined 

the secondary occasions on a monthly-based time interval 
(from February to December).

Observations

The last step of the HMM consists of linking the observa-
tion process to the partially observed latent states (U, OW, 
OP, WP) describing the dynamic of the species occupancy. 
Four events represent the observation process: nothing was 
detected (ND), only wildlife was detected (WD), only poach-
ers were detected (PD) or both were detected (WPD). For the 

Table 1. Description of the parameters used in the multi-season two-species occupancy model of dynamic interactions between poachers 
and wildlife.

Processes Symbol Description by site

Detection
 OW
 OP
 WP

pW
pP
pWP

detection probability of wildlife only
detection probability of poachers only
detection probability of wildlife and poachers

Occupancy
 OW ψP/W occupancy probability of poachers in presence of wildlife
 OP ψP W/

occupancy probability of poachers in absence of wildlife

 WP ψW occupancy probability of wildlife regardless of poachers
Colonisation
 from U to OW γW P/

probability that wildlife colonise an unoccupied site given that poachers were absent between 
t and t + 1

 from U to OP γ P W/
probability that poachers colonise an unoccupied site given that wildlife was absent between  
t and t + 1

 from U to WP γWP probability that both colonise an unoccupied site given that both were absent at t
 from OP to WP γW/P probability that a site is colonised by wildlife given the presence of poachers between  

t and t + 1
 from OW to WP γP/W probability that a site is colonised by poachers given the presence of wildlife between t  

and t + 1
Extinction
 from WP to OP ϵW/P extinction probability of wildlife given presence of poachers between t and t + 1
 from WP to OW ϵP/W extinction probability of poachers given presence of wildlife between t and t + 1
 from WP to U ϵWP extinction probability of both in a site between t and t + 1
 from OP to U P W/

extinction probability of poachers conditional on the absence of wildlife between t and t + 1

 from OW to U W P/
extinction probability of wildlife conditional on the absence of poachers between t and t + 1

Replacement
 from OW to OP ωWP probability that a site occupied by wildlife only is replaced by poachers between t and t + 1
 from OP to OW ωPW probability a site occupied by poachers only is replaced by wildlife between t and t + 1
Fidelity
 from OP to OP 1− − −γ ωW P PW P W/ /

a site stays occupied by poachers only from one year to another between t and t + 1

 from OW to OW 1− − −γ ωP W WP W P/ /
a site stays occupied by wildlife only from one year to another between t and t + 1

 from WP to WP 1− − −  P W W P WP/ /
a site stays occupied by both from one year to another between t and t + 1
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sake of simplicity, we described detection probabilities of a 
species (poachers or wildlife) not conditionally on the pres-
ence/absence of the other (Fidino et al. 2018). We therefore 
defined the observation matrix as:

ND PD WD WPD

U
OP
OW
WP

B =
−
−

−

















1 0 0 0
1 0 0
1 0 0

1 0 0

p p
p p

p p

P P

W W

WP WP




with pP the probability of detecting poachers in a site given 
that only poaching-related threats occur, pW the probability of 
detecting wildlife in a site where only wildlife occurs and pWP 
the probability of detecting poachers and wildlife conditional 
on the presence of both.

Analyses

Covariates
We accounted for the patrolling effort defined as a proxy 
of the number of surveys carried out (counted in terms 
number of GPS waypoints recorded) on each site during 
each sampling occasion and standardized to a scale from 
0 when a site was not patrolled on a given occasion, to 1 
where the most GPS waypoints were recorded on a sam-
pling occasion (with the number of GPS waypoints equal 
or superior to the number of visits, Supplementary mate-
rial Appendix B). We also considered the nearest distance 
to a ranger station as another site-specific covariate reflect-
ing spatial variation in the patrolling effort. We defined 
the shortest distance of each site to a road to account for 
effects of road access on the monitoring effort of rang-
ers but also on the distributions of wildlife and poachers. 
Finally, we assessed the stream length crossing in each cell 
as another potential determinant of species detection and 
occupancy (Plumptre et al. 2014).

Model selection and parameter estimation
We performed model selection on the poacher–wildlife occu-
pancy models and tested different hypotheses to determine 
the biotic (species interactions) and abiotic drivers (effects 
of roads, rivers, patrolling station, patrolling effort) of spe-
cies detection, occupancy and transition probabilities. This 
was done in three steps. For each step, described below, we 
estimated 18 parameters presented in matrices PI, T and B 
using maximum likelihood estimation (Supplementary mate-
rial Appendix A). No parameters were fixed to a certain value, 
although we did constrain some parameters to be equal to 
others according to our hypotheses.

First, we considered detection probability to differ 
between states of site occupancy and to vary with environ-
mental covariates (see Supplementary material Appendix A 
for model formulation). We used the best model structure on 
detection, and started the model selection procedure with a 
consensus model assuming interaction between poachers and 
wildlife, where occupancy of poachers depend on whether 
wildlife is present and the transition parameters of a species 
(wildlife or poachers) depend on whether the other was pres-
ent (see consensus model described in Table 2, Supplementary 
material Appendix A). Then, we tested hypotheses, specific to 
poachers’ responses to wildlife and rangers and other envi-
ronmental covariates while accounting for the selected effects 
on detection probabilities. We looked at whether poachers’ 
initial occupancy was independent on the presence of wild-
life but conditional of patrolling effort, or was independent 
on the presence of rangers but conditional to the presence of 
wildlife or independent of both. We then selected the best 
model regarding the effects on occupancy and detection and 
tested whether transition parameters of poachers depended 
on wildlife presence.

Finally, we considered a second set of hypotheses specific 
to wildlife response to poachers and environmental covari-
ates while accounting for variation in detection probabilities. 
We tested whether wildlife occupancy was conditional to 
poachers’ occupancy and environmental covariates including 
ranger patrolling effort, or was only conditional to the pres-
ence of poachers, or independent of both (Supplementary 

Table 2. Model selection testing effects on the detection process while fixing occupancy and state transition parameters to the same structure 
(constant effects of species interactions). The model names describe the effects of patrolling effort, of roads, rivers and stations and species 
interactions (detection is conditional on whether or not species co-occurred) on detection probabilities in a state of occupancy S (see 
Supplementary material Appendix A for corresponding model formulation). S representing three possible occupancy states OW, OP, WP for 
a site i at sampling occasion t. The number of parameters, the deviance, AIC and the difference of AICs between the best model and any 
other candidate models (ΔAIC) are also indicated.

Model name # Parameters Deviance AIC ΔAIC

Effects on detection probabilities
 pS,i,t = f(Xi,t) 21 1527.21 3112.085 0
 pS,i = f(DRi) 21 1554.65 3166.97 54.88
 pWP = pW = pp 16 1563.34 3167.189 55.11
 pS,i,. = f(Xi,.) 21 1563.66 3167.824 55.74
 pWP ≠ pW ≠ pp 18 1566.38 3173.264 61.18
 pS,i = f(DSi) 21 1559.45 3176.56 64.47
 pS,.,t = f(X.,t) 21 1568.71 3177.928 65.84
 pS,i = f(SLi) 21 1561.95 3181.57 69.48



7

material Appendix A). We selected the effects on occupancy 
and detection best supported by the data and tested in the 
same model whether transition parameters of poachers 
depended on wildlife presence. We did not consider spatial 
or temporal variations in environmental covariates on the 
transition parameters to respect the closure assumption of 
the population.

In particular, we expect that under the ‘wildlife win-
ning’ hypothesis, wildlife species are using habitat regardless 
of patrolling or poaching, indicating that animal space use 
was more strongly associated with resource distribution than 
anthropogenic disturbances. Therefore, we expect to find 
wildlife transition parameters indifferent to poachers’ occu-
pancy and patrolling effort. In contrast, under the ‘poacher 
winning’ hypothesis, we predict that the presence of poachers 
will be positively associated with the extinction probability of 
wildlife and negatively associated with the colonization prob-
ability of wildlife.

For each step of the model selection, we used the Akaike 
information criterion (AIC, Burnham and Anderson 2002) 
to determine which effects best explain the variation in the 
data. We considered the model having the lowest AIC to 
be best supported by the data. We used R software envi-
ronment (R Core Team) for all analyses. The maximum 
likelihood estimates were obtained using the quasi-newton 
method of the optim function in R. We provide the data and 
R codes in GitHub at < https://github.com/oliviergimenez/
poaching_occupancy >.

From the estimated probabilities of initial occupancy and 
the estimated transition matrix, we assessed temporal changes 
in the probability of occupancy in the four states using a 
Markov chain over the study period. We obtained confidence 
intervals using a parametric bootstrap (Davison and Hinkley 
1997). We predict under the ‘poacher winning’ hypothesis 
an increase in poacher’s occupancy and decrease in wildlife 
occupancy. As the model selection supported this hypothesis 
we then used estimates obtained from this model to param-
eterize those projections over four years.

Simulations

To validate the performance of our model, we assessed the 
bias and precision in parameter estimates using two simula-
tion studies focusing on 1) variation in the occupancy design 
and 2) variation in the sparseness of the data owed to differ-
ences in species detectability and occupancy (Supplementary 
material Appendix C). A previous simulation study on occu-
pancy modelling for a single species revealed that the optimal 
design for monitoring a rare species was to sample more sites 
with fewer surveys, and the one for monitoring a common 
species was to sample few sites with more surveys (MacKenzie 
and Royle 2005). In our first simulation analysis, we asked 
the question whether this general recommendation still holds 
when considering occupancy of two species with different 
ecology: one with restricted range (wildlife) and the other 
with a more widespread distribution (poachers). In the sec-
ond simulation study, we investigated whether sparseness in 

the data due to low species detectability and occupancy may 
generate bias in parameter estimation.

Results

Occupancy data

Over the study period, we collected 322 presence signs of 
our six key wildlife species (119 of banteng, 119 of bark-
ing deer, 9 of gaur, 65 of wild boar, 2 of eld’s deer and 8 of 
sambar deer) and 377 signs of poachers from the two study 
areas. We counted 195 detections of poachers only, 213 of 
wildlife only and 38 detections of both poachers and wild-
life in the same sites (Fig. 1). Finally, the occupancy table 
was also composed of 3442 non-detections (Supplementary 
material Appendix B Table B1). Each site was visited on aver-
age 617 times (617 GPS waypoints ± 528). Rangers recorded 
on average 477 (± 156) GPS waypoints each month across 
the two study areas, more precisely 32 (± 28) GPS waypoints 
recorded per day during an average of 10 (± 1.65) patrolling 
day per month (Supplementary material Appendix B).

Effects of patrolling effort, road proximity and river 
density on detection

We found that the detection probabilities of poachers only, 
wildlife only and both poachers and wildlife depended on 
spatial and temporal variations of patrolling effort (Table 2). 
Detection probability of poachers and wildlife at the same 
time was greater than detection of poachers only or wild-
life only, and increased rapidly with patrolling effort. The 
co-occurrence between wildlife and poachers was perfectly 
detected (pW = pP = pWP = 1 ± 0) where the patrolling effort was 
above 0.4, that was at sites where the number of surveys con-
ducted by rangers was above 40% of the maximum number 
of visits per site conducted in a month. The detection prob-
ability of poachers only increased from 0.04 to 0.96 with 
increased patrolling effort and was consistently greater than 
the detection of wildlife only, which increased from 0.04 to 
0.62 also with increased patrolling effort (Supplementary 
material Appendix A Fig. A1.1, A1.2).

Effects of species interactions on occupancy and 
transition probabilities

The best model supported the ‘poacher winning’ hypothesis 
(AIC = 3105.28, Table 3). Poachers’ occupancy was unre-
lated to wildlife distribution or to rangers’ patrolling effort 
(Table 3.1). Also, poachers’ transition probabilities were not 
affected by wildlife, meaning that the dynamics in poach-
ers’ space use were independent of wildlife distribution. 
Conversely, we found a positive relationship between extinc-
tion probability of wildlife and the presence of poachers (with 
an effects size based on odd ratios of 7.14) and a negative rela-
tionship between colonisation probability of wildlife and the 
presence of poachers (with an effect size of 7.8) (Table 3.1). 
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In the second set of hypotheses testing, focusing on wild-
life distribution, the best model showed a positive effect of 
river length on wildlife occupancy and negative effects of 
poachers on the dynamics in wildlife space use (Table 3.2, 
Supplementary material Appendix A). This model was not 
following ‘wildlife winning’ predictions and had less empiri-
cal support compared to the ‘poacher winning’ model from 
the first set of hypotheses (Table 3.1).

Parameter estimates and space race

From this best model supporting the ‘poacher winning’ 
hypothesis, the initial occupancy probability of poachers 
(0.06 ± 0.11, with an odd ratio OR = 0.06) was lower than 

the initial occupancy of wildlife (0.46 ± 0.11, OR = 0.85) 
(Fig. 2). We found that the extinction probability of wildlife in 
a given year in sites occupied by poachers (ϵW/P = 0.80 ± 0.14, 
OR = 4) was more than double than in sites where poachers 
were absent ( W P/  = 0.36 ± 0.11, OR = 0.56). The probability 
of poacher extinction was unrelated to wildlife occurrence 
( P W/  = P W/  = 0.20 ± 0.14, with an OR = 0.25). The prob-
ability of wildlife colonisation was nearly six times greater in 
absence of poachers ( γW P/  = 0.28 ± 0.02, with an OR = 0.39) 
than in their presence (γW/P = 0.05 ± 0.02, OR = 0.05) while 
the colonization probability of an unoccupied site by both 
poachers and wildlife was estimated at 0 (γWP ~ 0). The prob-
ability that a site occupied by wildlife was replaced by poach-
ers (ωWP = 0.44 ± 0.11, OR = 0.78) was more than three times 

Table 3. Model selection results on occupancy and transition process using the best model structure for the detection process selected in 
Table 2 (consensus model: p f XS i t i t P W P W W W P W P P W P W, , , / / / / / /( ), , ,= ¹ ¹ ¹ ¹y y y t t t t  with τ generic symbol for all transition parameters, 
colonisation γ, extinction ε and replacement probabilities ω). Here, models for species occupancy and transition are grouped according to 
our two sets of hypotheses: 1) specific responses of poachers to wildlife occupancy, rangers activities (patrolling effort, distance to station) 
and environmental covariates (roads, rivers) and species interactions (transition parameters conditional on whether or not species co-
occurred), 2) specific response of wildlife to poachers occupancy and transition parameters and to environmental covariates (see 
Supplementary material Appendix A for corresponding model formulation). The number of parameters, the deviance, AIC and the difference 
of AICs between the best model and any other candidate models (ΔAIC) are also indicated. The best model, highlighted with bold character 
is the one with the lowest AIC. The best model supported the ‘poacher winning hypothesis’ named in bold symbol as tt ttP W P W/ /=  which 
estimated constant occupancy probabilities of wildlife and poachers independently of one another’s presence, transition probabilities of 
wildlife conditional on the occupancy of poachers, transition probabilities of poachers regardless of wildlife presence, while accounting for 
effects of patrolling effort in each site and each month on detection probabilities.

1) Response of poachers to wildlife and rangers after accounting for effects of patrolling effort on detection

Poacher occupancy

 ψ ψ ψP W P W W/ /= ≠ 20 1528.787 3111.574 0

 ψ ψ ψP W P W W/ /≠ ≠ 21 1527.21 3112.085 0.51

 ψ ψP W P W if DS/ /=  = ( ) 21 1527.43 3112.53 0.95

 ψ ψP W P W if SL/ /=  = ( ) 21 1528.02 3113.69 2.17

 ψ ψP W P W if X/ /=  = ( ) 21 1528.587 3114.836 3.262

 ψ ψP W P W if DR/ /=  = ( ) 21 1528.79 3115.23 3.66

 ψ ψP W P W if DS/ /≠  = ( ) 24 1524.47 3118.38 6.81

 ψ ψP W P W if X/ /≠  = ( ) 23 1527.082 3119.533 7.959

 ψ ψP W P W if SL/ /≠  = ( ) 24 1524.74 3118.92 7.35

 ψ ψP W P W if X/ /≠  = ( ) 24 1527.077 3123.583 12.009

Poacher transition with ψ ψ ψ τ τP W P W W W P W P S i t i tp f X/ / / / , , ,, ,= ≠ ≠ = ( )
 tt ttP W P W/ /= 18 1529.12 3105.276 0

 / /τ τP W P W≠ 20 1528.787 3111.574 6.30

2) Response of wildlife to poachers and rangers after accounting for effects of patrolling effort on detection

Wildlife occupancy

 ψW if SL= ( ) 21 1526.63 3110.91 0

 ψ ψ ψP W P W W/ /= ≠ 20 1528.787 3111.57 0.66

 ψW if DS= ( ) 21 1528.78 3115.21 4.30

 ψW if X= ( ) 21 1528.78 3115.21 4.30

 ψW if DR= ( ) 21 1528.79 3115.23 4.32

Wildlife transition , , ,/ / , , ,ψ ψ τ τW i W P W P W S i t i tf SL p f X= ( ) ≠ ≠ = ( )
 / /τ τW P W P= 21 1526.63 3110.91 0

 τ τW P W P/ /≠ 21 1530.60 3115.19 4.28
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the probability that a site occupied by poachers was replaced 
by wildlife (ωPW = 0.12 ± 0.11, OR = 0.14) (Fig. 3). Poachers 
were also three times more likely than wildlife to remain in 
a site (site fidelity of 0.63 ± 0.09 for poachers OR = 1.7, ver-
sus 0.20 ± 0.11 for wildlife with an OR = 0.25) (Fig. 2). The 
probability that poachers colonise sites was independent of 
wildlife presence and was very low ( γ P W/  = γ P W/  = 0 ± 0.11 
with γWP ~ 0).

As predicted by ‘poachers winning’ hypothesis, the esti-
mated probability of sites being occupied by wildlife only was 
initially high (0.43 ± 0.02) then decreased by about 50% over 
the years of the study to 0.22 ± 0.01. The probability of sites 
occupied by poachers only exceeded the probability of wild-
life occupancy in just the second year of the study. More spe-
cifically, it increased from 0.04 ± 0.01 to 0.30 ± 0.05 during 
the study period. The probability of sites occupied by both 
wildlife and poachers remained relatively constant over the 
study period (from 0.04 ± 0.01 to 0.02 ± 0.01) (Fig. 3).

Discussion

The spread of poaching through time and space is an urgent 
conservation issue; yet its impact on wildlife species remains 
poorly known even in surveillance systems handled by rang-
ers (Milner-Gulland and Leader-Williams 1992). Here, we 
combined predator–prey theory of competition for space 
with a two-species occupancy model to study poacher–wild-
life dynamics in protected areas of Cambodia. Our findings 
largely support the hypothesis that poachers were winning 
the space race, indicated by three lines of evidence. First, 
from 2013 to 2016, there was a substantial increase in the 
proportion of sites occupied only by poachers (approximately 
from 80 to 600 km2 in PPWS and from 148 to 1110 km2 
in SWS as explained in Supplementary material Appendix 
A). Second, over the same time period, there was a dramatic 
decline of the spatial coverage by wildlife. Third, the reduc-
tion in wildlife occupancy between years was directly attrib-
utable to the presence of poachers, as indicated by both the 
extinction and colonisation parameters. If poaching was 
reduced by half, for example, our models indicate that the 
occupancy range of the wildlife detected in our study could 
gradually increase from 400 km2 to 580 km2 in PPWS and 
from 740 km2 to 1073 km2 in SWS (Supplementary material 
Appendix A). Combined, these lines of evidence suggest that 
the increasing presence of poachers in our two study sites has 
substantially reduced the spatial occupancy of ungulate spe-
cies, with serious consequences on prey availability for tigers.

Although we found support for the ‘poachers winning’ 
hypothesis, some of our results do not directly align with 
theories of wild predator–prey space use. Previous research 
on predator–prey space use in a landscape of fear established 
that greater levels of spatial overlap between predators and 
prey indicate that predators are winning the race. Whereas, 
lower levels of spatial overlap indicate that prey are winning 
the race (Sih 2005). However, in our case study, we found 
that the proportion of sites occupied both by poachers and 
wildlife (‘WP’ in Fig. 3) remained relatively low and con-
stant. This difference might be due to poachers operating 
very differently from wild predators. Crucially, unlike wild 
predators, many poachers in this area are hunting for eco-
nomic gain not individual subsistence (Loucks et al. 2009). 
Because poachers seek to maximize their offtake relative to 
effort, for example, through blanket use of methods that cap-
ture and kill a wide-range of species, the per-capita impact of 

Figure 2. Estimated ecological parameters with associated 95% con-
fidence intervals. We provided the estimated occupancy probability 
for wildlife (ψW) regardless of the presence/absence of the poachers, 
occupancy probability for poachers which was independent of wild-
life occupancy so we denoted it as (ψP) the extinction probability (ε) 
of a species (wildlife denoted by W or poachers noted by P) given 
the presence (without an upper bar) or absence (denoted by an 
upper bar) of the other (W or P), the colonisation probability of a 
species (γ) conditional on the presence/absence of the other, the 
replacement probability of one species by another (ω). Estimates 
were obtained from the best model displayed in bold character in 
Table 3 with no effects of wildlife on the transition parameters of 
the poachers nor on their initial occupancy and spatiotemporal 
effect of the patrolling efforts on the detection probability of poach-
ers and wildlife.

Figure 3. Temporal changes in the probability that a site is occupied 
by poachers only (OP, in red) and occupied by wildlife only (OW, 
green) or occupied by both, poacher and wildlife (WP, blue), esti-
mated over the study period.



10

poachers on wild ungulates is likely higher than that of wild 
predators. As a result, wild predators might be more likely 
to co-occur with wild prey at the site-level, whereas the rela-
tively fast and intense poaching pressure we observed in our 
study completely suppressed wild ungulate occupancy.

Another factor that differentiates our study from a typical 
study on wild predator–prey systems is the presence of rang-
ers. For example, rangers change the distribution of snares 
(i.e. predation pressure) through removal and could alter the 
behaviours of poachers and wildlife due to their patrolling 
routes and schedules. In addition, wildlife could use patrol-
ling stations or roads as ‘shields’ to avoid poachers, similar to 
prey species sometimes using areas close to human activities 
(e.g. settlements) as refuge from wild predators (Muhly et al. 
2011). However, in our case study, wildlife species were prob-
ably unable to differentiate between poachers and rangers, 
and we did not find evidence for rescue effects arising from 
ranger patrols. Instead, the positive effect of river density on 
wildlife occupancy suggests wildlife were selecting for areas 
with high quality habitat (Dudgeon 2000), despite the top–
down pressure from poachers. The extent to which predator–
prey theories advance our understanding of poacher–wildlife 
systems is a fruitful area of future research. Insights from 
such work can generate testable hypotheses that ultimately 
improve the effectiveness of anti-poaching interventions.

Our results also suggest that the patrolling effort in the 
PPWS and SWS study areas of Cambodia are currently inad-
equate, in both the spatial coverage and the time allocation of 
rangers’ forces. Increasing patrolling effort improved detec-
tion but not occupancy probabilities of poachers, meaning 
that increasing the frequency of survey within a site was 
effective for detecting snares but not for preventing poach-
ing. Poachers tend to put more snares in sites where wildlife 
is abundant in order to maximize their probability of cap-
ture success. Doing so likely also increases the chance of their 
snares being detected and removed by rangers. This could 
explain why the detection probability of both poachers and 
wildlife was greater than the detection probability of poach-
ers only or wildlife only (see Hines et al. 2010 for effects of 
abundance on detection). Our results therefore suggest that 
there is a diminishing return on investment beyond a cer-
tain patrolling effort. Instead of exceeding that effort level, 
ranger resources would be better invested in monitoring new 
sites. In particular, increased patrolling of those sites where 
only poaching-related threats occur may stem the invasion 
of poachers to new sites. It is important to note, however, 
that without effective criminal prosecution of poachers, those 
individuals might continue to poach despite the detection of 
their snares and activities.

Model limitations

The strength of some of our inferences is limited because, 
unfortunately, we could not estimate the detection prob-
ability of wildlife only despite the presence of poachers 
and vice versa (Miller  et  al. 2012, Fidino  et  al. 2018). 
We ran preliminary analysis using the same model as in 

Miller  et  al. (2012), where detection probability of one 
species was conditional on the presence of the other. 
Unfortunately, our data was insufficient and too sparse to 
estimate such parameters. Therefore, we opted for a sim-
pler representation, prioritizing the tests on the effects 
of patrolling effort on the detection of both wildlife and 
poachers. Also, we acknowledged that pooling six species 
of ungulates into one guild defined as ‘tiger prey’ could 
also generate bias in estimates, as each species has its own 
abundance, occupancy dynamics and detection probabili-
ties. To address this problem in the future, statistical ecol-
ogists could develop a mixture dynamic occupancy model 
within the multi-species framework to deal with heteroge-
neity in detection and occupancy (MacKenzie et al. 2018).

Our model relied on several assumptions, which under 
certain circumstances, can be violated. We assumed the 
population to be closed during the 12-months’ primary occa-
sion. However, poaching-related threats may change within 
a year given the incentive of poachers to displace snares after 
catching an animal and given the role of rangers to remove 
snares every time they detect one. This could overestimate the 
occupancy of poachers in a single-species model (Rota et al. 
2009). This is the reason why we viewed ‘site-occupancy’ as 
‘site-use’ by a species, similar to Moore et al. (2018).

We did not account for spatial autocorrelation among 
detections and occupancy states, which is likely to occur in 
interacting species, monitored with transects (Hines  et  al. 
2010, Guillera-Arroita et al. 2011). Our model also assumes 
spatial independence in the process governing the dynam-
ics across the species’ entire range. This assumption can be 
relaxed via Bayesian methods using estimated occupancy of 
neighbouring sites in the previous time step as a covariate to 
predict extinction/colonisation processes in the current step 
(Heard et al. 2013, Green et al. 2018) or mixture dynamic 
occupancy models as mentioned above.

Finally, assessing the quality of fit of occupancy models 
accounting for imperfect detection is not straightforward. 
In standard species distribution models, AUC metrics are 
routinely used for model evaluation and predictive perfor-
mance. AUC metrics can still be computed in occupancy 
models under imperfect detection, but they no longer assess 
how well it predicts true occupancy but rather how well it 
predicts detection (Lahoz-Monfort et al. 2014). MacKenzie 
and Bailey (2004) developed a goodness-of-fit test for single-
season occupancy models for one species only but no test has 
so far been developed for two-species occupancy models. The 
simulations we performed in a two-fold validation process, 
demonstrated that our model was appropriate for the sam-
pling design and the community dynamics in our case study, 
but we encourage future research into goodness-of-fit tests 
for the models we have used.

Conclusions

To our knowledge, this study is one of the few applications 
of a two-species occupancy model extended to a multi-season 
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version (see also Yackulick et al. 2014, Fidino et al. 2018). 
It is also the first to apply such a model to explicate the 
space use dynamics of a poacher–wildlife system. As such, 
our model helps quantify the rate at which poaching pres-
sure shrinks the occupied range of wildlife species, as well as 
wildlife communities, in relatively data-poor systems. Range 
contraction is an important indicator of species extinction 
risk (Burgess et al. 2017). Our study is also a proof of concept 
for a science-based conservation program in the wildlife sanc-
tuaries of Cambodia. We can use our results to parameterize 
a predictive distribution model and implement structured-
decision making (SDM) to determine cost effective patrol-
ling strategies for rangers in Cambodia (see Martin  et  al. 
2011 combining occupancy modelling and SDM). Such a 
program is needed, for example, to help understand how 
poaching-induced prey depletion will influence tiger rein-
troduction efforts in the region. Furthermore, because our 
model utilized SMART data from ranger patrols, it can be 
easily replicated in many regions around the world that use 
the SMART system. It could bridge the gap between science-
based wildlife management and anti-poaching law enforce-
ment (Hofer  et  al. 2000, Hilborn  et  al. 2006). Continued 
development of methods for evaluating wildlife distribution 
dynamics that account for the impacts of illegal hunting, as 
with our model, will enable better prediction of how different 
poaching interdiction strategies influence wildlife recovery in 
space and time.
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