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Summary

1. Mark–recapture studies are often used to estimate population size based on a single source of

individual identification data such as natural markings or artificial tags. However, with the develop-

ment of molecular ecology, multiple sources of identification can be obtained for some species and

combining them to obtain population size estimates would certainly provide better information

about abundance than each survey can provide alone.

2. We propose an extension of the Jolly–Seber model to infer abundance by combining two

sources of capture–recapture data. The need to merge both sources of data was motivated by

studies of humpback whales in which both photo-identification and DNA from skin biopsy sam-

ples are often collected. As whales are not necessarily available by both sampling methods on

any given occasion, they can appear twice in the combined data set if no combined sampling

ever occurred during the survey, i.e. being photographed and genotyped on the same occasion.

Our model thus combines the two sources of information by estimating the possible overlap.

Monte Carlo simulations are used to assess the properties of the present estimator that is then

used to estimate the size of the humpback whale population in New Caledonia. The new open-

population estimator is also compared with classic closed-population estimators incorporating

either temporal and ⁄or individual heterogeneity in the capture probability: the purpose was to

evaluate which approach (closed or open population) was the least biased for an open popula-

tion with individual heterogeneous capture probabilities.

3. When all assumptions are met, the estimator is unbiased as long as the probability of being dou-

ble-tagged (e.g. photographed and biopsied on the same occasion) on every occasion is above 0Æ2.
4. The humpback whale case study in New Caledonia shows that our two-source Jolly–Seber

(TSJS) estimator could be more efficient in estimating population size than models based only on

one type of data. Formonitoring purposes, the proposedmethod provides an efficient alternative to

the existing approaches and a productive direction for future work to deal with multiple sources of

data to estimate abundance.

5. R-codes formatting the data and implementing the TSJSmodel are provided inResource S5.

Key-words: abundance, humpback whales, joint modelling, Jolly–Seber model, open popula-

tion, two-source Jolly–Seber model

Introduction

Methods for estimating abundance of wild animal populations

have been of growing interest in ecology, and a large number

of such methods have been developed (Williams, Nichols, &

Conroy 2002; Amstrup, McDonald, & Manly 2005). The use

of capture–recapture methods with tagging methods such as

photo-identification and genetic sampling, in particular, is

increasing (Smith et al. 1999; Pearse et al. 2001; Mowat &

Paetkau 2002; Garrigue et al. 2004; Bellemain et al. 2005;

Lukacs & Burnham 2005; Forcada & Robinson 2006;
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Yoshizaki et al. 2009). Joint photo-identification and DNA

fingerprinting (i.e. microsatellite genotyping) from skin

biopsy samples are especially widely used to survey marine

mammals, as more individuals can be sampled and more

information gained that way about the population than

using the traditional method of photo-identification alone.

Using these methods in combination, researchers typically

end up with two data sets that, currently, are analysed sepa-

rately to estimate abundance (e.g. Garrigue et al. 2004). We

suggest a sensible solution where the two sources of informa-

tion are combined to estimate abundance. The use of multi-

ple sampling methods is potentially a relevant sampling

design to minimize bias by maximizing effectively the num-

ber of catchable animals (e.g. Barker, Burnham, & White

2004). Using this approach, the heterogeneity in individual

capture probabilities could be reduced, decreasing the nega-

tive bias in the population size estimates usually associated

with heterogeneity (Cubaynes et al. 2010) without having to

dilute the sampling effort over a large area or a long period

of time.

Open-population models have been developed to over-

come the violation of the closure assumption when using

closed-population models over an extended period. In terms

of population size estimation, they can also provide useful

information on trends in abundance as they provide an esti-

mate for every capture occasion. However, open-population

models with time variation on both survival and capture

probability, like the Cormack–Jolly–Seber (CJS) model, have

been mostly used to estimate biological parameters such as

survival and capture probabilities (Lebreton et al. 1992).

Although it is possible to estimate abundance with the CJS

model using a Horvitz–Thompson-like estimator after esti-

mating the capture probabilities (McDonald & Amstrup

2001; Cubaynes et al. 2010), currently only the Jolly–Seber

(JS) model leads to a direct estimate of population size (Jolly

1965; Seber 1965).

We propose here an extension of the JS estimator to

obtain estimates of population abundance by combining two

sources of capture–recapture data (e.g. from photo-identifi-

cation and genotyping) from the same population at the

same time where there is an unknown degree of overlap

between the data sets. This overlap results from the same

animal appearing in both data sets but – never having been

caught by both methods – being treated as two separate ani-

mals. Fusing the data sets enables us to get a larger sample

size to get a more reliable estimate of population size than

could be achieved by analysing the two data sources sepa-

rately. First, we introduce the data structure and our exten-

sion of the JS model, referred to as the two-source Jolly–

Seber (TSJS) model, with the corresponding notation and

assumptions. Then, we compare the new estimator to exist-

ing closed-population estimators in various scenarios of indi-

vidual heterogeneity in the capture probability. Finally, we

illustrate its use in the context of a humpback whale’s study

where two kinds of data are available: a photographic cata-

logue and a genotype data base.

Materials and methods

DATA STRUCTURE

In the present sampling situation, there are three kinds of capture his-

tories that need to be distinguished as individuals of a population can

be sampled by a method ‘1’ or by a method ‘2’ or by both simulta-

neously designated as method ‘3’ at any capture occasion. Therefore,

we denote by xl the capture history l of an individual only captured by

method 1, by ym the capture history m of an individual (possibly the

same individual) only captured by method 2 and by wn the capture

history n of an individual that has been simultaneously captured by

both sampling methods at least once during the study period. For

instance, possible capture histories for a 6-year study include

xl = 001011, ym = 200000 and wn = 023100. These sequences

mean that the animal with history l, captured by method 1 only, has

been caught at time 3, 5 and 6, that the animal with history m, cap-

tured bymethod 2 only, has been caught at time 1 and that individual

n that has been simultaneously captured by both sampling methods

at time 3 has also been captured bymethod 2 at time 2 and bymethod

1 at time 4. Themain issue comes from the individuals that have never

been sampled by method 3 (i.e. simultaneously by methods 1 and 2)

but have been captured separately by methods 1 and 2 on different

occasions. For example, histories xl and ym might be from the same

individual. These individuals have a capture history in data set 1 and

another distinct one in data set 2. The possible histories of captured

animals can be seenmore clearly in Fig. 1, the set of all possible histo-

ries of captured animals.

Thus, the number of animals actually caught by method 1 is the

number of animals in B[G[E[F, by method 2 the number of ani-

mals in C[D[E[F and by both methods simultaneously, method 3,

the number of animals inA[B[C[E.However, when lists 1 and 2 are

put together, i.e. combined, for joint analysis, the resulting list will be

too large by the number in E[F. Those animals in E will be easily

Fig. 1. AVenn diagram showing the possible theoretical types of cap-

ture histories (with examples) for captured animals in a mark–recap-

ture experiment where two capture methods can be used separately

(methods 1 and 2) or simultaneously (method 3) on any occasion: A is

the set of individuals captured only bymethod 3, B the set of individu-

als captured at least once by methods 1 and 3, C the set of individuals

captured at least once by methods 2 and 3, D the set of individuals

captured only bymethod 2, E the set of individuals captured bymeth-

ods 1, 2 and 3 and F the set of individuals captured bymethods 1 and

2 during the study. In the capture histories, ‘1’ refers to a capture by

method 1, ‘2’ to a capture bymethod 2, ‘3’ to a capture by bothmeth-

ods simultaneously and ‘0’ to the animal not being caught on the

occasion.
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identified and corrected thanks to the information provided by the

simultaneous capture, but those in F will not because they have never

been captured by bothmethods simultaneously.

So the unrecorded overlap (individuals in F, see Fig. 1) needs to be

estimated to avoid counting the individuals in F twice.

THE EXTENSION OF THE JOLLY–SEBER MODEL: THE

TWO-SOURCE JOLLY–SEBER MODEL

In this section, we describe the development of the TSJS model. The

notation used is given in Table 1. The modification of the JS model

and details about the approximation used in the TSJS model to

estimate the overlap between the two data sets are provided. In what

follows, by ‘record’ we imply capture history over the survey period.

POPULATION SIZE ESTIMATION

As in the JS model, the population size estimate does not appear

directly in the likelihood andwe use the traditional capture–recapture

formula where the ratio of the number of marked individuals over the

total population size is constant over time:

m0i
ni
¼ M̂i

N̂i

eqn 1

which leads to:

N̂i ¼
niM̂i

m0i
eqn 2

with

ni ¼ m0i þU0i eqn 3

where the number of marked individuals m0i captured at time i is

the sum of the number of individuals captured by each of the

three sampling methods

m0i ¼ m�i;3 þ ðm�i;1 þm�i;2ÞIid eqn 4

and U0i the number of unmarked individuals captured at time i is

the sum of the number of unmarked individuals captured by each

of the three sampling methods

U0i ¼ U�i;3 þ ðU�i;1 þU�i;2ÞIid eqn 5

The rate of true identity Iid is used for m0i and U0i to avoid counting

some individuals twice (i.e. individuals in F, see Fig. 1).

Following the method in the JS model, the estimation of M̂i, the

total number of marked individuals in the population immediately

before time i, is carried out by estimating the size of two different

groups of animals in the population:

1. the groupMi �m0i ofmarked animals not seen at time t,

2. the group ni of animals seen at time i, marked and released for sub-

sequent recaptures.

Table 1. Notation in the two-source Jolly–Seber model and corresponding definition

Notation Definition

Iid Probability of true identity, i.e. given that an animal has only been captured by method 1 or 2, the probability it has

never also been captured respectively by methods 2 and 1

m�i;1 Number of marked animals captured at occasion i by method 1 given that they were never captured simultaneously

during the survey period

m�i;2 Number of marked animals captured at occasion i by method 2 given that they were never captured simultaneously

during the survey period

m�i;3 Number of marked animals captured at occasion i given that they have at least one simultaneous capture (i.e. by method

3) in their record

m0i Number of marked animals captured at time i

Mi Total number of marked animals captured and alive just before occasion i

M̂i Estimate of the total number of marked individuals (by either method) at time i

ni Total number of animals, marked and unmarked, captured at occasion i

N̂i Estimate of abundance at time i

r0i;1 Number of animals captured at occasion i by method 1, given that they were never captured simultaneously during the

survey period, that are captured again by method 1

r0i;2 Number of animals captured at occasion i by method 2, given that they were never captured simultaneously during the

survey period, that are captured again by method 2

r0i;3 Number of animals captured at occasion i given that they have at least one simultaneous capture in their record, that

are captured again

r0i Total number of animals captured at occasion i that are captured again later

U0i Total number of unmarked animals captured at occasion i

z0i;1 Number of animals captured by method 1 before i, not captured at i and captured by method 1 again later given that

they were never captured simultaneously during the survey period

z0i;2 Number of animals captured by method 2 before i, not captured at i and captured by method 2 again later given that

they were never captured simultaneously during the survey period

z0i;3 Number of animals captured before i, not captured at i and captured again later, given that they have at least one simul-

taneous capture in their record

zi Number of animals captured before i, not captured at i and captured again later
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Taking zi and r0i as members of, respectively,Mi �m0i and ni, which

are seen at least once again after time i, this leads, under the assump-

tion of equal catchability, to the ratios of zi
Mi�m0i

and
r0i
ni
being approxi-

mately equal:

zi
Mi �m0i

� r0i
ni
�

r0i;3 þ ðr0i;1 þ r0i;2ÞIid
ni

eqn 6

Similarly to U0i and m0i, r
0
i and zi can be decomposed into the sum

of three components based, respectively, on the number of

animals captured at time i and recaptured again later by each

method and on the number of animals captured before i, not cap-

tured at i and captured again later such that

zi ¼ z0i;3 þ ðz0i;1 þ z0i;2ÞIid eqn 7

Again, we use Iid in zi to avoid double-counting because of possible

duplicates (i.e. individuals in F, see Fig. 1).

Consequently, an estimator ofMi is given by:

M̂i ¼ m0i þ
U0izi
r0i

eqn 8

After i capture occasions, capture histories (records) are available for

each individual caught at least once during the survey and the data set

used is the one combining all capture histories frommethods 1, 2 and

3, thus, all the xl, ym and wn defined earlier. We define the following

events:

‘1 ¼ fanimal i belongs to list 1g ¼ B [G [ E [ F

‘2 ¼ fanimal i belongs to list 2g ¼ C [D [ E [ F

‘3 ¼ fanimal i belongs to list 3g ¼ A [ B [ C [ E

and the complement of event ‘3:

�‘3 ¼ fanimal i does not belong to list 3g ¼ G [ F [D

It is assumed that:

1. membership of the lists is independent: the probability of an indi-

vidual being included in the first list does not depend on whether it

was included in the other lists,

2. there is homogeneity in the probability of inclusion on a list that

does not vary from individual to individual.

In what follows, we reason conditionally on detection with

P1 = P(‘1), P2 = P(‘2) and P3 = P(‘3). Given events ‘1 and ‘2 are

independent (conditionally on detection), events ‘1 and ‘2, i.e. (‘1\‘2)
is equivalent to (E[F) in Fig. 1 and:

Pð‘1 \ ‘2Þ ¼ P1P2 eqn 9

The probability of belonging to list 1 and list 2 given the animal

was sampled on some occasions can be written as the sum of two

probabilities:

1. the probability of belonging to list 1 and list 2 separately and being

acknowledged to belong to both list 1 and list 2, P(E), and

2. and the probability of belonging to list 1 and list 2 separately and

not being acknowledged as belonging to both list 1 and list 2, P(F),

such that

Pð‘1 \ ‘2Þ ¼ Pðð‘1 \ ‘2Þ \ ‘3Þ þ Pðð‘1 \ ‘2Þ \ �‘3Þ eqn 10

Therefore,

Pð‘1 \ ‘2Þ ¼ P1P2P3 þ P1P2ð1� P3Þ eqn 11

And the probability of the unknown overlap between list 1 and list

2, i.e. the probability that an individual has an entry in list 1 and an

entry in list 2 but is not acknowledged as being in both lists, i.e. P(F),

is

Pðð‘1 \ ‘2Þ \ �‘3Þ ¼ P1P2ð1� P3Þ eqn 12

It follows that the probability that an individual has a single entry

in the combined list is

Iid ¼ 1� Pðð‘1 \ ‘2Þ \ �‘3Þ ¼ 1� P1P2ð1� P3Þ eqn 13

.

In a real data set, the probabilities P1, P2, P3 can be approximated

as being:

P̂1 ¼
Number of individualswith a capture
bymethod 1 on at least one occasion

Total number of individuals in
the combineddata set

¼ P̂ð‘1Þ eqn 14

P̂2 ¼
Number of individualswith a capture
bymethod 2 on at least one occasion

Total number of individuals in
the combineddata set

¼ P̂ð‘2Þ eqn 15

P̂3 ¼
Number of individualswith a capture

by bothmethods on at least one occasion
Total number of individuals in

the combineddata set

¼ P̂ð‘3Þ eqn 16

However, such estimators are biased, as the total number of cap-

ture histories has not been corrected for the undetected duplicates.

The total number of capture histories used as a denominator to cal-

culate those probabilities is likely to be overestimated because of

the unknown number of individuals appearing twice in the com-

bined data set. Hence, it will result in overestimation of the Iid
parameter. The primary purpose of using Iid is to correct the popu-

lation size estimate for duplicated, ‘phantom’, individuals when

using two data sets, so it seems legitimate to use it as well to correct

the total number of individuals. To correct for the potential overes-

timation of the total number of individuals, the total number of

individuals in the calculation of P̂1, P̂2, P̂3 is multiplied by the pre-

vious value of the parameter. In the second step of the iteration,

the Îid parameter then becomes:

I�id ¼ 1� 1

I�2id
P̂1P̂2 �

1

I�3id
P̂1P̂2P̂3

� �
eqn17

The iteration should continue substituting the previous value of Îid

calculated to get the next one until convergence. However, the present

iteration method resulted in unstable estimates where the iteration

did not converge. The reason for nonconvergence is that if the Îid esti-

mate overshoots the true value and goes too small, then because of

the reciprocal of high powers of Îid, the estimate gets massively

inflated and the process starts again. We tried to fix the instability by

using the mean of the two previous values and weighted means (with

a variety of weighting schemes) and produce convergence, but with

no success. Thus, an alternative approach was developed. The idea

here is to find the root(s) of fðÎidÞ with fðÎidÞ ¼ I�id, which would be

equivalent to the value of Îid reached at the convergence point (Ross

Ihaka, pers.com.). We solved this for Iid by getting the root of the

equation (see Resource S1 for details):
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1� 1

I�2id
P̂1P̂2 �

1

I�3id
P̂1P̂2P̂3

� �
� I�id ¼ 0 eqn 18

Then, the same unbiased formulae as in the JS are used for M̂i and

N̂i:

N̂i ¼
ðni þ 1ÞM̂i

m0i þ 1
eqn 19

and

M̂i ¼
ziðni þ 1Þ
r0i þ 1

þm0i eqn 20

The variance for N̂i is given by the same formulas as in Pollock

et al. (1990):

VarðN̂i Nij Þ ¼ Ni Nif � EðniÞg

� Mi � Eðm0iÞ þ ni
Mi

�
1

Eðr0iÞ
� 1

ni

� �
þ Ni �Mi

Ni � Eðm0iÞ

�
eqn 21

Assumptions are similar to those of the JSmodel: the capture prob-

abilities are the same across individuals within each capture method,

all animals have the same probability of survival between occasion i

and occasion i + 1, marked animals do not lose their mark and

marks are not overlooked, sampling periods are short enough to

avoid death during sampling period, emigration is permanent, and

capture probabilities are independent of each other. The TSJS model

also relies on three additional assumptions: there is no loss on cap-

ture, i.e. animals are returned to the population following a capture;

having a capture by one method in the capture history does not

depend on also having or not captures by the other methods; Individ-

uals cannot be caught separately by methods 1 and 2 on any capture

occasion unless the capture is a simultaneous capture (method 3), i.e.

any overlap betweenmethods 1 and 2 on any capture is known.

BIAS ESTIMATION

A simulation study was carried out to investigate the performances of

the TSJS model (see Resource S2 for details on the simulation). Bias

can be described by many measures of difference. In this paper, the

performance of the model will be discussed in terms of mean relative

error (MRE) on capture occasion i:

MREi ¼

Pa
j¼1

N̂ij�Nij

Nij

a
¼ 1

a

Xa

j¼1

N̂ij

Nij
� 1; eqn 22

i.e. the expected value of the estimate as a proportion of the true

value, minus 1. It is therefore a measure of bias where N̂j is the pre-

dicted population size given by the model, for simulation run j on

capture occasion i,Nj is the observed, true population size, for simu-

lation run j, a is the number of simulation runs. We also chose to

measure the performance, the overall error, of the TSJS estimator in

terms of rootmean–squared relative error (RMSRE):

RMSREi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPa
j¼1

N̂ij�Nijð Þ2
N2

ij

a

vuuut
eqn 23

The important difference between the two indices, MRE and

RMSRE, is that the MRE provides information on the average error

(i.e. the bias of the proportion), while the RMSRE measures the bias

and the random variation around the expected value. The RMSRE

can be seen as a measure of overall utility of the method and could be

large even in the absence of bias.

Finally, confidence intervals are one of the most effective ways to

measure precision. Assuming N̂i is log-normally distributed, the log-

normal approximation for the confidence interval (CI) is obtained at

each occasion such that CI ¼ ðN̂i=C; N̂i � CÞ where (Buckland et al.

1993)

C ¼ exp 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1þ VarðN̂iÞ

N̂2
i

Þ

s( )
eqn 24

Here, the coverage rate of the confidence intervals (CI coverage

rate) will be calculated as the ratio of the number of times that

the true value falls between the bounds of the estimated log-nor-

mal 95% confidence interval over the total number of simulation

runs. Results are based on 200 simulation runs.

COMPARISON WITH EXIST ING CLOSED- AND OPEN-

POPULATION MODELS

Multiple-recapture models handling heterogeneity in capture

probabilities, i.e. Mh and Mth by Chao (Chao 1988; Chao & Lee

1992) and Mt by Darroch (Darroch 1958), and the JS model

were coded to be used in the simulations. This choice was based

upon the closed-population models used in abundance assessment

of many animal populations such as polar bears, whales and

sharks, even though the population may be thought of as open

(Calambokidis et al. 1990; Derocher & Stirling 1995; Cerchio

1998; Meekan et al. 2006; Parra, Corkeron, & Marsh 2006). It is

of interest to compare, in the presence of heterogeneity in cap-

ture probability, the results of the TSJS model, the JS model and

the closed-population models that are commonly used even with

open populations: Mh, Mth and Mt. The objective here is to see

in which case the assumption of closure is more important than

the assumption of equal capture probability and if using two

data sets could overcome the systematic underestimation in the

JS estimates in presence of heterogeneity in capture probability

among individuals (Carothers 1973, 1979; Hwang & Chao 1995).

To compare the closed- and the open-population estimates, we

averaged the open-population estimates and all related values

(standard errors, MRE, RMSRE, true population size) across

occasions.

In the case study, we estimated the population size using the TSJS

and JSmodels and the following closed-populationmodels: themodi-

fied Chapman (1951),Mt byDarroch,Mh andMth by Chao.We used

program capture included in the option ‘closed capture’ in program

mark for the multi-occasion closed-population estimates (White &

Burnham 1999).

Results

In what follows, Pr(capture) refers to capture probabilities,

whereas method-specific capture probabilities, i.e. probabili-

ties of sampling by any of the methods, refer to the per-

centage of captured individuals caught by any one specific

method (e.g. sampling scenario 20-40-40 = percentage of

double-sampling-percentage of sampling by method 1-per-

centage of sampling by method 2) (see Resource S2 for

details).
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RESULTS OF THE TSJS ESTIMATOR WITH NO

VIOLATION OF ASSUMPTIONS

The first issue of interest was the behaviour of the model esti-

mates for different probabilities of simultaneous double-tag-

ging (i.e. caught by method 3). The simultaneous double

captures allowed the correct identification of the unknown

duplicate entries in the capture history matrix. The probabili-

ties of sampling by each method separately were set equal, the

population set at 500 individuals at the start of the 10-occasion

simulation experiment. If the probability of a capture being a

simultaneous tagging was below 0Æ2, the TSJS estimator gave

negatively biased estimates (see Resource S3 for details).

For the following, we investigated the bias of the TSJS

model for a minimum probability of double-sampling of 0Æ2
(that was 20% of all captures should be by method 3). Above

this value, the TSJS estimator seemed to be fairly reliable so

long as the overall capture probability on an occasion was

Table 2. Mean relative error (MRE), root mean squared relative error (RMSRE), mean estimate and true value of the population size over the

simulation runs, and standard errors (SE) of the estimated values and log-normal CI coverage rates at each capture occasion of a 10-year study

for different capture probabilities for a starting population of 500 individuals with sampling scenario 20-40-40

Capture probability

Mean

estimate

Mean true

value MRE

Mean

estimated SE RMSRE

Log-normal CI

coverage rate (%)

Pr(c) = 0Æ05
N̂2 391 627 )0Æ38 259 0Æ56 81

N̂3 546 653 )0Æ16 323 0Æ62 84

N̂4 670 695 )0Æ04 372 0Æ89 86

N̂5 778 719 0Æ08 419 1Æ1 83

N̂6 873 748 0Æ17 466 1Æ3 87

N̂7 734 766 )0Æ04 396 0Æ61 88

N̂8 805 799 0Æ01 432 0Æ8 83

N̂9 653 834 )0Æ22 351 0Æ69 77

Pr(c) = 0Æ1
N̂2 643 627 0Æ03 194 0Æ63 74

N̂3 696 656 0Æ06 186 0Æ4 86

N̂4 785 694 0Æ13 203 0Æ46 87

N̂5 803 719 0Æ12 204 0Æ44 88

N̂6 817 745 0Æ1 205 0Æ39 88

N̂7 880 762 0Æ15 220 0Æ45 84

N̂8 834 794 0Æ05 209 0Æ42 86

N̂9 937 829 0Æ13 234 0Æ77 75

Pr(c) = 0Æ2
N̂2 648 626 0Æ04 78 0Æ28 67

N̂3 678 653 0Æ04 77 0Æ19 79

N̂4 713 692 0Æ03 80 0Æ17 86

N̂5 755 718 0Æ05 85 0Æ18 85

N̂6 769 743 0Æ03 87 0Æ17 84

N̂7 801 762 0Æ05 91 0Æ17 81

N̂8 820 793 0Æ03 94 0Æ16 87

N̂9 860 828 0Æ04 100 0Æ24 74

Pr(c) = 0Æ5
N̂2 619 627 )0Æ01 14 0Æ07 54

N̂3 652 654 0 16 0Æ04 35

N̂4 698 694 0 20 0Æ04 60

N̂5 727 720 0Æ01 22 0Æ04 70

N̂6 750 744 0 24 0Æ04 79

N̂7 764 763 0 25 0Æ04 69

N̂8 793 795 0 27 0Æ04 73

N̂9 809 830 )0Æ02 29 0Æ06 56

Pr(c) = 0Æ8
N̂2 623 625 0 2 0Æ02 27

N̂3 662 651 0Æ02 4 0Æ02 35

N̂4 711 693 0Æ03 7 0Æ03 31

N̂5 740 716 0Æ03 8 0Æ04 26

N̂6 768 743 0Æ03 10 0Æ04 30

N̂7 783 761 0Æ03 11 0Æ03 47

N̂8 808 792 0Æ02 12 0Æ03 75

N̂9 823 827 0 13 0Æ02 90

Pr(c) = occasion-specific capture probability; N̂2, …, N̂9 = population size estimate at time 2, …, 9.
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above 0Æ1. For capture probabilities smaller than 0Æ1, TSJS esti-
mates could be severely biased with values of the MRE reach-

ing )0Æ38 on the second capture occasion for a capture

probability of 0Æ05 (see Table 2 and Resource S3). If we

ignored the estimates based on animals marked in the first and

last occasions of sampling and concentrated on the intermedi-

ate estimates that were based on more information, TSJS

estimates were quite reasonable even at relatively small proba-

bility of simultaneous tagging (‡0Æ2) and low capture probabi-

lities (>0Æ05). Concerning the magnitude of the overall relative

variation represented by theRMSRE, it followed the evolution

of theMRE: it varied between 0Æ4 and 1Æ3 for capture probabil-
ities smaller than 0Æ1 and then stabilized at small values (<0Æ2)
above this capture probability.

As expected, the standard error decreased with an increase

in the value of the capture probability and it increased with the

capture occasion. For capture probabilities smaller than 0Æ1,
the standard errors were large (in the order of 50% of the esti-

mated population size), while, for large capture probabilities,

the standard error was generally much smaller. Consequently,

the CI coverage rate was better for small capture probabilities

(<0Æ1), generally above 80%, than for very high capture prob-

abilities (0Æ8), where although the SE was small the small bias

causes poor coverage. In this case, coverage could be as small

as 25%. However, the confidence intervals at small capture

probabilities were too wide for the model to be useful (recap-

ture rates were too low for reliable estimates). Standard errors

and coverage rates of confidence intervals for capture proba-

bility above 0Æ2 (even though they are too liberal) still suggested
that the estimation method worked reasonably well. A smaller

CI coverage rate was also usually observed for the second and

the ninth capture occasions.

COMPARISON OF ESTIMATORS

Table 3 shows that N̂TSJS was the best estimator when the

heterogeneity (see Resource S2 for details on the structure of

the heterogeneity in the simulations) was small and ⁄or the

capture probabilities high (cases 1, 5 and 6) with respect to

MRE, RMSRE and CI coverage. In presence of moderate

or high individual heterogeneity in capture probabilities

(cases 2, 3 and 4), the TSJS estimator was generally better

than the JS estimator, although less good in terms of CI cov-

erage rate because the TSJS method usually produced smal-

ler standard errors. In moderate and high cases of

heterogeneity, closed-population estimators performed bet-

ter: in cases 2 and 3, N̂t produced the best estimates with

more than 87% of CI coverage rate. However, in case 3,

N̂TSJS and N̂h seemed similar in RMSRE and absolute value

of MRE (N̂TSJS underestimates while N̂h overestimates) and

N̂TSJS even appeared slightly better than N̂h in case 3, in

terms of CI coverage rate: log-normal CI coverage rate was

of 44% while being 32% for N̂h.

All the estimators were expected to underestimate the true

parameter when capture probabilities vary among individuals

(Carothers 1973; Otis et al. 1978; Pollock et al. 1990; Hwang

& Chao 1995) but most of the closed-population estimators

N̂t, N̂h, N̂th presented a positive error (MRE >0Æ1) for most

cases of heterogeneity (N̂t, N̂h, N̂th in cases 1, 2, 3, 5 and 6 and

N̂th in case 4). When the heterogeneity was high (case 4), N̂h

and N̂th provided a very good CI coverage. The JS estimator

led to estimates systematically more negatively biased than the

ones given by the TSJS estimator but better CI coverage rates

in cases 2, 3 and 4 (see Resource S4 for details on the bias of

the TSJS estimator per capture occasion under the six cases of

heterogeneity).

CASE STUDY

The TSJS model was applied to capture–recapture data of

humpback whales in New Caledonia between 1996 and 2001.

Two sampling methods were used to gather data during the

breeding season, from July to September: photo-identification

and skin biopsy. However, on some occasions, some whales

did not fluke so could not be photographed or could not be

approached closely enough to be genotyped by skin biopsy.

Thus, combining data from photo-identification and genotyp-

ing during the survey offered the opportunity to produce more

efficient abundance estimates for the humpback whale popula-

tion in New Caledonia. See Garrigue et al. (2004) for further

details.

The 1996–2001 data set comprised 373 captures and 273

recapture histories: 62 whales have been genotyped only, 34

photographed only and 177 simultaneously genotyped and

photographed at least once (Table 4).

As a comparison to the TSJSmodel results on the combined

data set, the JS and some closed-population models were

applied separately on the photographic data set 1996–2001

and on the genetic data set 1996–2001. The results are given in

Table 5.

From this example, the variety of models and the resulting

large range of abundance estimates led to two questions in the

absence of a way to use both data set in one abundance model:

which model to believe and which data set to use? Indeed of

the six models, four gave similar results but models Mh and

Mth produced estimates twice as large as the other fourmodels,

both with the photo-identification data set alone [respectively

624 (SE = 100Æ87) and 628 (SE = 94Æ16)] andwith the genetic
data set alone [respectively 730 (SE = 110Æ96) and 720

(SE = 108Æ33)]. Moreover, results given by models estimating

population size from the genetic data set were also systemati-

cally larger than those based on the photo-identification data

set.

On a population that was clearly open like the humpback

whale population here over 6 years, the closed-population esti-

mates cannot be interpreted like the open-population one: the

closed-population estimates could only be interpreted as a

superpopulation (Kendall 1999), i.e. the total number of indi-

viduals ever present in the population between 1996 and 2001.

Therefore, these models were of limited use for monitoring the

population.

Both the JS model and the TSJS model suggested an

increase in the population every year, with the results based on

the TSJS estimator [from 167 (SE = 33) in 1997 to 366
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(SE = 69) in 2000] systematically in between the estimates

given by the JS estimator on the photographic [from 139

(SE = 33) in 1997 to 227 (SE = 43) in 2000] and genetic data

[from 216 (SE = 51) in 1997 to 484 (SE = 116) in 2000].

Given that more than 20% of the individuals sampled on any

occasion between 1996 and 2001 were caught by both methods

simultaneously (Table 4), the probability of true identity Îid
was high (Îid = 0Æ98) and the TSJS estimator was within the

Table 3. Comparison of mean relative error (MRE), root mean squared relative error (RMSRE), mean estimate and true value of the

population size and standard errors of the estimated values and log-normal CI coverage rates over the simulation runs, under six cases of

heterogeneity in capture probabilities, with closed-population and Jolly–Seber (JS) models and the two-source Jolly–Seber (TSJS) model under

scenario 20-40-40, over 10 occasions and with a starting population of 500 individuals

Heterogeneity case

Mean

estimate

Mean true

value MRE

Mean

estimated SE RMSRE

Log-normal CI

coverage rate (%)

Case 1

CV = 0Æ14
�PrðcÞg ¼ 0:2

N̂TSJS 709 728 )0Æ03 82 0Æ19 79

N̂JS 689 )0Æ06 113 0Æ27 76

N̂t 962 0Æ33 75 0Æ36 2

N̂h 1053 0Æ46 82 0Æ48 0

N̂th 1073 0Æ46 68 0Æ66 0

Case 2

CV = 0Æ37
�PrðcÞg ¼ 0:2

N̂TSJS 585 728 )0Æ2 66 0Æ25 46

N̂JS 566 )0Æ22 92 0Æ32 51

N̂t 799 0Æ11 69 0Æ16 92

N̂h 871 0Æ21 72 0Æ24 27

N̂th 847 0Æ17 52 0Æ19 50

Case 3

CV = 0Æ43
�PrðcÞg ¼ 0:2

N̂TSJS 583 727 )0Æ2 67 0Æ26 44

N̂JS 561 )0Æ23 92 0Æ33 48

N̂t 802 0Æ11 70 0Æ16 87

N̂h 877 0Æ22 75 0Æ25 32

N̂th 866 0Æ18 55 0Æ2 31

Case 4

CV = 0Æ68
�PrðcÞg ¼ 0:2

N̂TSJS 411 728 )0Æ44 37 0Æ45 1

N̂JS 401 )0Æ45 54 0Æ47 7

N̂t 628 )0Æ13 55 0Æ16 49

N̂h 700 )0Æ03 66 0Æ11 100

N̂th 761 0Æ06 48 0Æ1 85

Case 5

CV = 0Æ23
�PrðcÞg ¼ 0:64

N̂TSJS 677 727 )0Æ07 13 0Æ07 20

N̂JS 558 )0Æ23 20 0Æ24 0

N̂t 1068 0Æ48 44 0Æ5 0

N̂h 1159 0Æ61 42 0Æ63 0

N̂th 1275 0Æ74 37 0Æ75 0

Case 6

CV = 0Æ26
�PrðcÞg ¼ 0:7

N̂TSJS 731 729 0 11 0Æ04 55

N̂JS 581 )0Æ2 18 0Æ21 0

N̂t 1214 0Æ68 43 0Æ7 0

N̂h 1310 0Æ61 38 0Æ83 0

N̂th 1412 0Æ93 35 0Æ93 0

CV ¼ coefficient of variation;

N̂TSJS, N̂JS,N̂t, N̂h, N̂th = population size estimate for the TSJS model, JS model, Mt by Darroch, Mh by Chao, Mth by Chao.
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appropriate range of sampling probabilities as suggested by

the simulations. However, heterogeneity in capture probability

was most likely present among the individuals of this popula-

tion as it is the case in other humpback whale populations

(Hammond 1990; Smith et al. 1999; Garrigue et al. 2004), and

therefore, the population sizes given by the TSJS model may

be underestimated. Nevertheless, with the evidence provided

by the present TSJS model, the humpback whale population

of NewCaledonia was estimated at less than 400 individuals in

2000 [i.e. 366 (SE = 69)], and these results emphasized the

potential vulnerability of this population. This also suggested

that if the hunt really ended 30 years ago and if the New Cale-

donia population was recovering, as suggested by the TSJS

model, the rate of recovery may be far less than the 10%

observed for some other populations (Zerbini, Clapham, &

Wade 2008).

Discussion

Multiple sampling methods are nowadays commonly jointly

used in mark–recapture surveys, and these sampling schemes

are arguably good approaches to maximize the number of

catchable animals without having to dilute the sampling effort

over a large area. In doing so, onemight also expect to decrease

the heterogeneity in capture probabilities among individuals,

hence minimizing the bias in the population size estimates.

However, a drawback of using multiple sampling methods is

the potential overlap that can arise between the sampling

methods. This can prevent the joint use of the data from the

different sampling methods if this overlap is unknown. Our

objective was thus to develop an analytical framework allow-

ing for the combination of two overlapping sources of data in

an open-populationmodel to provide a robust abundance esti-

mator. We adopted an ad hoc approach based on an extension

of the JS model. While classical approaches in mark–recapture

models are typically based on the likelihood, presence of two

overlapping sources of capture currently limits the develop-

ment of a likelihood approach to closed-population models

(Madon 2010). Theoretically, for open populations, other solu-

tions could be considered for a more parsimonious modelling

of parameters: an extension of the Crosbie–Manly–Arnason–

Schwarz framework (Crosbie&Manly 1985; Schwarz&Arna-

son 1996), or the use ofmultinomialmodels based on the latent

history approach of Link&Barker (2010) are appealing. How-

ever, the approach would consist in enumerating the complete

list of possible latent histories, and even for short studies, it

would require a rather powerful computer.

Correlation between the sampling methods is an important

consideration (Boulanger et al. 2008) that could be a limiting

factor in the TSJS model. Here, the reasoning is based on the

assumption that the sampling methods are independent condi-

tionally on detection. In the case study and in the simulations

(see Resource S2), the sampling methods are therefore not

assumed unconditionally independent on occasion but they

Table 4. Number of whales captured by genetic, photographic and simultaneous sampling between 1996 and 2001 inNewCaledonia

1996 1997 1998 1999 2000 2001

Number of whales genotyped only 4 3 10 11 16 35

Number of whales photographed only 12 18 13 3 6 11

Number of whales photographed and genotyped 43 33 36 24 33 62

Total number of captures 59 54 59 38 55 108

Table 5. Humpback whale population size in New Caledonia between 1996 and 2001 using the two-source Jolly–Seber model on the combined

data set, the Jolly–Seber and closed-populationmodels separately on the photo-identification (photo) and the genetic (genet) data sets

Model Type 1997 (SE) 1998 (SE) 1999 (SE) 2000 (SE) 2001

Two-source Jolly–Seber model Open 167 (33) 205 (40) 262 (41) 366 (69)

Jolly–Seber model

Photo Open 139 (33) 138 (30) 170 (25) 227 (43)

Genet 216 (51) 273 (67) 298 (65) 484 (116)

Modified Chapman

Photo Closed 193 (35) 162 (27) 466 (214) 186 (58) 295 (72)

Genet 253 (75) 216 (58) 563 (261) 299 (97) 612 (179)

Model Mt Darroch

Photo Closed 357 (27)

Genet 474 (42)

Model Mh Chao

Photo Closed 624 (101)

Genet 730 (111)

Model Mth Chao

Photo Closed 628 (94)

Genet 720 (108)
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are assumed independent providing the animal was detected.

Furthermore, in the TSJSmodel, we assume that having a cap-

ture by one method in the capture history does not depend on

also having captures by the other methods, i.e. capture events

are independent across occasions. This assumption is only jus-

tified asymptotically as the number of periods goes to infinity,

as the incidence of a capture by one method reduces the num-

ber of trials available for the othermethods.

Our simulations demonstrate that the TSJS estimator’s bias

is negligible when the capture probability is reasonably high.

These results are similar to those of Gilbert’s (1973) on the JS

model. As in the study byGilbert (1973), the bias is not>10%

of the true population size when the capture probability is

>0Æ2 and additionally the probability of simultaneous sam-

pling is above 0Æ2. The comparisonwith closed-population esti-

mators highlights that in presence of small heterogeneity in

individual capture probability, although negatively biased, the

TSJS estimator remains more robust than closed-population

estimators handling heterogeneous capture probabilities.

The assumption of population closure is most likely violated

in the humpback whale study given the length of study

(6 years) and the migratory behaviour of the animals. In other

cases, the closure assumption might alternatively be violated

because of sampling design, such as small grid size or inappro-

priate grid placement. When the assumption of closure is not

met, closed-population estimators become hard to interpret.

Yet closed-population estimators offer the advantage of being

able to incorporate heterogeneity in capture probabilities

between individuals and ⁄or over time. Among humpback

whales in New Caledonia, heterogeneity in individual capture

probability is likely (Smith et al. 1999; Garrigue et al. 2004). It

is therefore important to determine what results in the least

biased estimate: a closed-population estimator that addresses

heterogeneity in capture but whose closure assumption is vio-

lated, or the TSJS, which acknowledges the open nature of the

population but assumes homogeneous capture probabilities?

The violation of the closure assumption generally biases

closed-population estimators upward, because it inflates the

number ofmarked animals and negatively biases capture prob-

abilities (Boulanger & McLellan 2001). In contrast, capture

heterogeneity among individuals usually induces a downward

bias in these estimators, even though such heterogeneity is

ostensibly accounted for (Otis et al. 1978). We argue that this

makes closed-population estimators difficult to interpret in

many real-world circumstances. Although our simulations

indicate that the TSJS estimator suffers from negative bias

when heterogeneity in capture probabilities is present, we feel

it outperforms available closed-population estimators by pro-

viding more interpretable estimates. It also offers more infor-

mation for population monitoring by estimating abundance at

each time period.

We provide a valid ad hoc open-population size estimator,

the TSJS model, that allows researchers to combine two

sources of capture–recapture data to estimate population size

and therefore holds great promise in monitoring by providing

researchers and managers with a method allowing for a diver-

sity of sampling protocols. Furthermore, extension of this

methodology to closed-population models handling heteroge-

neity in capture should also prove useful for short studies or

closed populations. R-codes formatting the data and imple-

menting the TSJSmodel are provided inResource S5.
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