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A B S T R A C T

Occupancy models allow assessing species occurrence while accounting for imperfect detection. As with any
statistical models, occupancy models rely on several assumptions amongst which (i) there should be no un-
modelled heterogeneity in the detection probability and (ii) the species should not be detected when absent from
a site, in other words there should be no false positives (e.g., due to misidentification). In the real world, these
two assumptions are often violated. To date, models accounting simultaneously for both detection heterogeneity
and false positives are yet to be developed. Here, we first show how occupancy models with false positives can be
formulated as hidden Markov models (HMM). Second, benefiting from the HMM framework flexibility, we
extend models with false positives to account for heterogeneity with finite mixtures. First, using simulations, we
demonstrate that, as the level of heterogeneity increases, occupancy models accounting for both heterogeneity
and misidentification perform better in terms of bias and precision than models accounting for misidentification
only. Next, we illustrate the implementation of our new model to a real case study with grey wolves (Canis lupus)
in France. We demonstrate that heterogeneity in wolf detection (false negatives) is mainly due to a hetero-
geneous sampling effort across space. In addition to providing a novel modeling formulation, this work illus-
trates the flexibility of HMM framework to formulate complex ecological models and relax important assump-
tions that are not always likely to hold. In particular, we show how to decompose the model structure in several
simple components, in a way that provides much clearer ecological interpretation.

1. Introduction

Occupancy models (Mackenzie et al., 2006) are commonly used to
infer species occurrence while accounting for imperfect detection
(Bailey et al., 2014; Guillera-Arroita, 2017). These models rely on
species detections and non-detections recorded during surveys repeated
across time and across several spatial sampling units (sites). As with any
statistical models, inferences made from occupancy analyses heavily
rely on several assumptions that should be checked and validated
(Mackenzie et al., 2003, 2006), although in reality this is rarely done
(see however, Mackenzie et al., 2004; Warton et al., 2017).

Here, we focus on two important assumptions. First, there should be
no unmodelled heterogeneity in species detection. In other words, all
heterogeneity should be accounted for with covariates. If ignored,
heterogeneity in detection leads to underestimating occupancy (Royle

and Nichols, 2003; Royle, 2006). Detection heterogeneity can be due to
a heterogeneous sampling effort in space (Louvrier et al., 2018), var-
iation in animal abundance (Royle and Nichols, 2003) or variation in
site characteristics (Mackenzie et al., 2011). Often, site-level covariates
can be measured on the field and incorporated in occupancy models to
account for detection heterogeneity. However, unexplained variation
may remain or measuring the relevant covariates may simply be im-
possible in the field. When we suspect substantial unmodelled hetero-
geneity to occur, we should consider modeling it, either with con-
tinuous latent variables (through normally distributed site random
effects, e.g. Gimenez et al., 2014). Modelling heterogeneity using nor-
mally distributed random effect has long been studied in the field of
theoretical biology (e.g., Perc, 2011). Alternatively, modelling hetero-
geneity can be done using finite mixtures. In finite-mixture models, a
latent variable is defined to assign sites to a mixture components (i.e.,
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groups of heterogeneity) characterized by specific parameters (Royle,
2006; Pledger and Phillpot, 2008). While heterogeneity in detection
probability using mixture models has been long studied in the capture-
recapture (CR) literature (review in Gimenez et al., 2017), less attention
has been given to this issue in occupancy models (Gimenez et al., 2014;
Miller et al., 2015).

A second important assumption of occupancy models is that the
species should not be detected when absent from a site (i.e. no false
positives). False positives occur when the species of interest is detected
at sites where it did not occur, usually as a result of misidentification
(Miller et al., 2013). Several studies have underlined the importance of
accounting for false positives on species distribution (Royle and Link,
2006; Miller et al., 2011, 2013; Chambert et al., 2015). Ignoring false
positives and counting them as true positives causes important biases,
such as overestimating occupancy and colonization probabilities, and
underestimating extinction probability (Royle and Link, 2006;
Mcclintock et al., 2010). Miller et al. (2011, 2013) developed static and
dynamic occupancy models that accommodate both false negatives and
false positives. As example of applications, these models have been used
to estimate occurrence of amphibians (Miller et al., 2011), bats
(Clement et al., 2014), and several large vertebrates in India (Pillay
et al., 2014), as well as occurrence dynamics of wolves in Montana
(Miller et al., 2013).

While several studies have accounted for heterogeneity in occu-
pancy models with false positives by using site-level covariates
(Mcclintock et al., 2010; Ferguson et al., 2015; Miller, 2015), methods
that simultaneously account for both unmodelled heterogeneity
through finite mixtures and false positives have yet to be developed.
Here, we fill this gap and illustrate the use of hidden Markov modelling
(HMM) framework as a powerful tool for further developments aiming
at relaxing occupancy models’ assumptions.

Standard occupancy models can be formulated as HMMs describing
two time-series running in parallel. The first time-series captures the
dynamics of the latent states with the state process following a
Markovian sequence (e.g. site occupied vs. unoccupied); the other time
series models the observation process consisting in detections condi-
tional on the underlying but possibly unknown states (Gimenez et al.,
2014). The originality of our approach is twofold. First, we show how
occupancy models with false positives can be formulated as HMMs.
Second, benefiting from the HMM framework flexibility, we extend
models with false positives to account for unmodelled heterogeneity
using a finite-mixture approach.

To assess the performance of our approach, we performed a simu-
lation study comparing parameter bias and precision in a model ac-
counting for misidentification and heterogeneity vs. a model ac-
counting for misidentification only. To do so, we considered scenarios
with an increasing level of heterogeneity in the probability of false
positive detection. We also used a case study on the grey wolves’ (Canis
lupus) distribution in France to illustrate implementation of the method
in a real-world scenario. Our objectives were (i) to investigate how
detection heterogeneity, when ignored, affects the accuracy of occu-
pancy estimation and (ii) assess the extent at which this heterogeneity
might be explained by sampling effort variability across space.

2. Methods

In the statistical literature, there are three main problems of interest
when using HMM (Rabiner, 1989). In what follows, we review each of
these problems in the context of occupancy models. In the evaluation
problem, we ask what the probability that the observations are gener-
ated by our model is – see Section 2.1. In the decoding problem, we ask
what the most likely state sequence in the model that produced the
observations is – see Section 2.5. In the learning problem, we ask how
we should adjust the model parameters to maximize the likelihood – see
Section 2.3.

2.1. HMM formulation of occupancy models with misidentification

Occupancy models can be viewed as HMM whereby the ecological
states are considered as partially hidden states, i.e. imperfectly ob-
served (Gimenez et al., 2014). Occupancy models incorporating false
positives can also be framed within this approach. The HMM for-
mulation allows flexibility in the model formulation. By decomposing
the occupancy approach into simpler steps, the HMM formulation al-
lows better understanding of the ecological and observation processes.
To account for false positives, we followed the multi-season dynamic
model formulation of Miller et al. (2013). For occupied sites, three
observations can be made: (i) an unambiguous detection which is a true
detection that has been validated, (ii) an ambiguous detection which is
also a true detection but that could not be validated and (iii) no de-
tection. At unoccupied sites, by definition, unambiguous detections
cannot occur, thus, only two possible observations can be made: an
ambiguous detection, which in this case is a false positive detection due
to species misidentification, or no detection. The parameters of interest
are ψ1 the probability of initial occupancy, the probability of local
extinction ε and of colonization γ, the probability of correctly detecting
the species at an occupied site p11, the probability to falsely detect the
species at an unoccupied site p10, and the probability b to classify a
true-positive detection as unambiguous (Miller et al., 2011). The spe-
cification of a HMM is divided in three steps: the vector of initial state
probabilities, the matrix of transition probabilities linking states be-
tween successive sampling occasions and the matrix of observation
probabilities linking observations and states at a given occasion
(Gimenez et al., 2014). We define zi,k the latent state of a site i during
the primary occasion (e.g., season or year) k. At the first primary oc-
casion, k = 1, a site can only be in one of two states (‘unoccupied’ or
‘occupied’), with probabilities in the vector of initial state probabilities:

=
−

Ψ
unoccupied occupied

ψ ψ[1 ]1 1

Then, the states are distributed as a first-order Markov chain gov-
erned by a transition matrix of the form:

=
+

⎡
⎣

−
+

−
⎤
⎦

T unoccupied at k
occupied at k

unoccupied at k
γ

ε

occupied at k
γ

ε

1
1

1

1

where rows describe states at occasion k in, and columns describe states
at k + 1.

Next, we describe the observation process, which is conditional on
occupancy states. We define yi,j,k the observation of a site i during the
secondary occasion (e.g. visit or survey) j during the primary occasion
k. For unoccupied sites, unambiguous detections (yi,j,k=1) do not
occur while ambiguous detections (yi,j,k=2) or no detections (yi,j,k=0)
may occur. For occupied sites, unambiguous detections, ambiguous
detections and no detection can all occur. For the sake of clarity, it is
more convenient to write the observation process as the product of two
matrices. The first matrix summarizes the detection state process con-
ditional on occupancy state (rows) ‘unoccupied’ and ‘occupied’ at k.
Columns describe the following intermediate latent detection states: ‘no
detection’, ‘true positive detection’ and ‘false positive detection’:

= ⎡
⎣⎢

−
− ⎤

⎦

P unoccupied
occupied

no detection
p
p

true positive detection

p

false positive detection
p1

1
0

0
10

11 11
10

It is important to keep in mind that the true, underlying state (i.e.,
false or true positive) of the detections is unknown. At this stage of the
modeling, we are still dealing with latent state, not with actual data.
The second matrix then summarizes the classification of a true-positive
detection as unambiguous or ambiguous, with probability b and 1-b,
respectively. In this matrix, rows represent the above intermediate
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latent detection states (‘no detection’, ‘true-positive detection’, ‘false
positive detection’) while columns correspond to actual observations
(data), i.e., ‘no detection’ (yi,j,k=0), ‘unambiguous detection’
(yi,j,k=1) and ‘ambiguous detection’ (yi,j,k=2):

=
⎡

⎣
⎢
⎢

−
⎤

⎦
⎥
⎥

no detection

B
true positive detection
false positive detection

no detection unambiguous detection

b

ambiguous detection

b
1
0
0

0

0

0
1

1

We reemphasize that, by definition, false detections can only occur
in the form of ambiguous detection. This last process only deals with
the classification of true detection as certain or ambiguous, depending
on the level of confidence in the observation. The overall observation
process can then be written in the form of a simple matrix product, O =
PB, which gives:

= ⎡
⎣⎢

−
− −

⎤
⎦⎥

O unoccupied
occupied

no detection
p
p

unambiguous detection

bp

ambiguous detection
p
b p

1
1

0
(1 )

10

11 11

10

11

Note that for simplicity we assume observation parameters to be
constant, but these could be specified as survey-specific (j), season-
specific (k), site-specific (i) or any combination of these effects. We can
then write the general probability of any detection history h such as:

  

  

  

=

+ + … +

× + + … +

…
⋮
⋮
⋮

×

+ + … +

P h
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where for the sake of simplicity we have dropped the index i for site, D
(θ) is the diagonal matrix with diagonal elements equal to the elements
of the arbitrary vector θ, O(.,yj,k) is the column vector corresponding to
the observation y at the secondary occasion j during primary occasion k,
A0 is the transition matrix with ε = γ=0 and 1N is the column vector
of N ones, with N the number of occupancy states. The likelihood is
then the product of the probabilities of all the site histories (Zucchini
et al., 2016).

In our study on wolves, we focused on static (single-season) models,
such that extinction and colonization events do not occur. The prob-
ability of any site history h can thus be simplified to:

= + + … +P h ΨD O y T D O y T D O y( ) [ (., 1)] [ (., 1)] [ (., 1)]J1 0 2 0

2.2. Occupancy model with heterogeneity in the detection probability

We now show how to incorporate site-to-site (i.e., spatial) hetero-
geneity in the detection process through the addition of a probabilistic
process that assigns any site to a finite number of latent classes (Royle,
2006; Miller et al., 2015). For the sake of clarity, here we only consider
two classes of heterogeneity (class A and B), but more classes could
easily be considered. Like group effects, membership to a heterogeneity
class is a constant feature of a site (i.e., it does not change over time), so
the assignation process occurs at the first modelling step, describing
initial states:

= −Π class A class B
π π[ 1 ]

where π (respectively 1- π) is the probability for any site to be assigned
to class A (resp. to class B). This is the main difference with the model
described above. The following processes, and the associated para-
meters remain the same, except that parameters are now allowed to
vary according to the two classes of sites. We now define four occu-
pancy states: occupied (A), occupied (B), unoccupied (A) and un-
occupied (B). In terms of model parameters, in addition to π, we now
have: ψ1A (resp. ψ1B) the probability of initial occupancy for sites of
class A (resp. B), εA (resp. εB) the probability of local extinction for sites
of class A (resp. B) and γA (resp. γB) the probability of local colonization
for sites of class A (resp. B); pA11 (resp. pB11) the probability of correctly
detecting the species at an occupied site of class A (resp. B), pA10 (resp.
pB10) the probability to falsely detect the species at an unoccupied site A
and the probability b to classify a true-positive detection as un-
ambiguous (Miller et al., 2011).

The next process describes whether a site is initially occupied or not,
but now conditionally on the site’s class membership (A or B). The
pattern matrix that links class membership to the four class-specific
occupancy states is:

=
⎡
⎣

−
−

⎤
⎦

Φ class A
class B

unoccupied A
ψ

unoccupied B

ψ

occupied A
ψ

occupied B

ψ

( )
1

0

( )
0

1

( )

0

( )
0A

B
A

B
1

1
1

1

Here, rows correspond to the two conditioning states (‘class A’ and
‘class B’) and columns represent all possible initial states: ‘unoccupied
(A)’, ‘unoccupied (B)’, ‘occupied (A)’ and ‘occupied (B)’ in columns.

The final vector of initial state probabilities is therefore the product
of the row vector of class-assignment proportions and the matrix of
occupancy probabilities:

Ψ = Π Φ

Because we were interested in incorporating heterogeneity in the de-
tection process only, here we assume = =ψ ψ ψA B1 1 1. The state transi-

tion process remains the same but is distinguished according to the two
heterogeneity classes A and B. This leads us to define the following
matrix for state transition from k to k+1:

The conditional observation process then happens independently at
A sites and B sites. As above, rows describe occupancy states while
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columns represent intermediate latent detection states ‘not detection’,
‘true positive detection’, ‘false positive detection’:

=
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⎢
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Finally, the matrix describing the classification process of true po-
sitives as unambiguous or ambiguous detections remains unchanged
(see matrix B above). Overall, the observation process can be described
by the matrix product O=P B with the occupancy states in rows and
the observations in columns:
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The likelihood, for both static and dynamic models, is written in the
same way as for the model without heterogeneity, only the composition
of the matrices changes. Again, in the rest of this paper, we focus on
static (single-season) models, so that εA = εB = γA = γB= 0.

2.3. Implementation

Occupancy models formulated as HMMs can be implemented in the
software E-SURGE (Choquet et al., 2009), which allows for the de-
composition of the observation and state processes in multiple steps,
providing more flexible, and often more easily interpretable para-
meterization (Gimenez et al., 2014). We provide in Appendix A and
Appendix B two detailed step-by-step procedure to implement occu-
pancy models accounting for false positives with and without hetero-
geneity in E-SURGE. We also refer to the E-SURGE manual (Choquet
and Nogue, 2011) as well as Choquet (2008) and Choquet et al. (2009)
for additional details. We also provide in Appendix C and Appendix D
the R (R. Core Team, 2013) codes to fit the models described above.

2.4. Simulations

We conducted a simulation study to assess performance of two
models: one accounting for misidentification only and one accounting
for both misidentification and heterogeneity. First, we simulated oc-
cupancy data, including both unambiguous and ambiguous detections,
assuming two classes of heterogeneity for false positive probability p10.
To characterize and compare heterogeneity among the scenarios con-
sidered, we define a heterogeneity coefficient as:

=
−

η σ
μ μ

²
(1 )

with the mean value of the heterogeneity parameter μ = π pA10 + (1-
π) pB10 and the variance between components σ² = π(pA10- μ)² + (1- π)
(pB10 – μ)² (Dorazio and Royle, 2003; Cubaynes et al., 2012). We

considered three scenarios with increasing heterogeneity coefficient, by
varying parameters π and pB10 (Table 1). Other parameters were held
constant: pA10 was set at 0.1; the initial occupancy probability ψ1 was
set at 0.8; probabilities of true positive pA11 and pB11 were both set at
0.5 and b was set at 0.7. For all simulation runs, we used 100 sites with
3 and 10 occasions. For each scenario, we simulated S=200 datasets,
and for each dataset, fitted both models. Simulation and analyses were
done in the software R (see Appendix C and Appendix D). We compared
the two models’ performance using averaged AIC differences, calcu-
lated from the 200 repeated runs. We chose the AIC because it has been
shown to be effective at selecting the number of classes in finite-mixture
capture-recapture models (Cubaynes et al., 2012). For each model, we
also calculated the relative bias defined as:

∑ −

=S
θ θ

θ
1 ( ˆ )

s

S s

1

( )

and root mean square error (RMSE) for occupancy probability esti-
mates:

∑ −
=S

θ θ1 ( ˆ )²
s

S
s

1

( )

We performed a second simulation study, considering the same form
and levels of heterogeneity, but applied to the true detection parameter
p11 instead of the false positive detections parameter p10. We tested
three scenarios with increasing heterogeneity coefficient by varying
parameters π and pB11. Every other aspect of this simulation study was
the same as in the first simulation study (Appendix E).

2.5. Application: wolf data

To illustrate use of our model accounting for both misidentification
and heterogeneity, we analyzed wolves’ detection/non-detection data
collected in France during the year 2013 (Louvrier et al., 2018). Signs of
presence of the species such as tracks, scats, prey remains, dead wolves,
camera trap photos or sightings are being collected thanks to a network
of professional and non-professional observers (Duchamp et al., 2012).
The data consisted of 250 unambiguous detections, 54 ambiguous de-
tections and 12540 non-detections spread over a grid of 3211
10× 10 km cells (Fig. 1). To respect the closure assumption, sites were
visited between December and March, which corresponds to a period
between the two peaks of dispersal events, in spring and fall (Mech and
Boitani, 2010). In a previous study, we found that variability in occu-
pancy probabilities was mostly explained by site’s altitude, while de-
tection probability was primarily driven by sampling effort, defined as
the number of observers per site and per year (Louvrier et al., 2018).
Here, we compared four different models, all of which included altitude
as a covariate on occupancy parameter. A first model accounted for
misidentification only without heterogeneity in the detection process
(MMO); a second model accounted for misidentification with hetero-
geneity in both detection probabilities (MMH); in the last model, we
accounted for some detection heterogeneity using the sampling effort
covariate (on both p11 and p10) (MMS), instead of including a finite-
mixture heterogeneity process. Sampling effort was indeed quite

Table 1
Results of the simulation study to assess the performance of the misidentification occupancy model accounting for heterogeneity (MMH) vs. the model without
heterogeneity (MMO). The first column corresponds to the heterogeneity coefficient calculated with π the proportion of sites of class A and pA10 the probability of
making false positive on sites of class A and pB10 the probability of making false positive on sites of class B. The differences of AIC (ΔAIC) between the two models,
obtained from 200 simulations for each scenario, are provided. Estimation accuracy (RMSE) and relative bias for the occupancy probability are both provided as
measures of model performance.

Heterogeneity coefficient π pA10 pB10 ΔAIC Sd (ΔAIC) RMSE(ψ1) MMH RMSE(ψ1) MMO Relative bias(ψ1) MMH Relative bias(ψ1) MMO

0.24 0.2 0.1 0.7 6.66 8.62 0.09 0.05 6.35 4.28
0.49 0.5 0.1 0.8 28.15 13.61 0.05 0.10 3.04 12.00
0.53 0.8 0.1 0.9 45.59 19.58 0.05 0.12 2.43 12.23
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heterogeneous across space, with areas around the Alps subject to much
higher sampling effort than the rest of the study area. We expected
sampling effort to capture most of the heterogeneity in the detection
parameters, which would translate in close AIC values for MMH and
MMS and a lower AIC value for MMO. Finally, we fitted a fourth model,
including both the finite-mixture process (for unobserved hetero-
geneity) and the sampling effort covariate (MMHS). This last model
allowed assessing the relative fraction of heterogeneity due to sampling
effort.

Using the parameter estimates from MMH, we finally built a map
depicting the estimated assigned classes of heterogeneity for the 3211
sites of the study area. This was done with the Viterbi algorithm (Rouan
et al., 2009), an approach that allows estimation of latent states from
HMMs. Although the Bayes’ theorem could be used in this situation
where no time series structure is involved, the Viterbi algorithm is a
general approach that can be used in a dynamic occupancy framework.

3. Results

3.1. Simulations

Results from the simulations with 10 occasions showed that when
heterogeneity in false positive probability increased (coefficient η going
from 0.24 to 0.53), the ΔAIC between MMO and MMH (ΔAIC=AICMMO

– AICMMH) increased from 6.66 (−10.23; 23.55) to 45.59 (7.21; 83.97).
While both models showed low RMSE, in terms of occupancy estima-
tion, MMH clearly outperformed MMO as heterogeneity increased.
MMO produced increasingly biased parameters when heterogeneity
increased while the bias in MMH always remained low (Table 1). We
found similar results when we considered heterogeneity in the true
detection probability p11. MMH clearly outperformed MMO in terms of
AIC, bias and RMSE as heterogeneity increased. The bias for MMO did
not increase but remained important across the range of heterogeneity
coefficients (Appendix E). Finally, with 3 occasions, MMH appeared to
perform worse than MMO, highlighting the need to consider a minimal
sampling effort to distinguish false positives and heterogeneity (Ap-
pendix F).

3.2. Wolf case study

We found evidence for heterogeneity in the detection process
(Table 2), with MMO having a much larger AIC (2209.49) value than
MMH (2084.14). Most of this heterogeneity was explained by spatial
variation in sampling effort, as suggested by the fact that MMS had a
lower AIC value (2071.51) than MMH, but, even after accounting for
sampling effort, there remained some unobserved heterogeneity, as
evidenced by the fact that MMHS still had a lower AIC value (1953.26)
than MMS.

Fig. 1. Map of the unambiguous detections (green) and ambiguous detections (red) cumulated for the year 2013. Sites were defined as 10× 10 km cells within a grid
covering all detections (Louvrier et al., 2018). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article).
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Overall, all four models estimated a low occupancy probability
(Table 2). All four models estimated a very low probability of false-
positive detection p10 (Fig. 2). MMHS estimated that for 70% of sites,
p10 was equal to zero, while for the remaining 30% p10 strongly in-
creased with sampling effort. MMS results also suggested that p10
strongly increased with sampling effort. According to MMH, 81% of the
sites had a value of p10 similar to the one estimated from MMO. For the
remaining 19% p10 was equal to zero, indicating that virtually no false-
positive errors occurred at these sites. As we could expect, both MMS
and MMHS results suggested that true detection probability p11 strongly
increases with sampling effort for both classes of sites. MMH estimated
p11 quite low, at around 0.04 (0.02; 0.06) for 81% of the sites and high
in 19% of the sites (Fig. 3). Finally, the sites with high detectability
corresponded to sites with high sampling effort (Fig. 4).

4. Discussion

While heterogeneity in detection probability has long been studied
in the capture-recapture literature (review in Gimenez et al., 2017), less
attention has been given to this issue in occupancy modeling (Miller
et al., 2015). We developed single- (static) and multi-season (dynamic)
occupancy models that account for both heterogeneity and false-posi-
tives, benefiting from the flexibility of HMM frameworks to decompose
a complex likelihood structure in multiple simpler components more
amenable to biological interpretation (Zucchini et al., 2016). Using si-
mulations, we showed that, when ignored, detection heterogeneity in-
duces biases in occupancy estimators. On a case study on wolves, we
also found that finite-mixture models of detection could be used to

capture part of the heterogeneity due to variable sampling efforts. We
note that, although such mixture models are very useful to account for
unobserved detection heterogeneity, the associated parameters remain
difficult to interpret (Gimenez et al., 2017).

4.1. Advantages of the HMM framework

The HMM formulation of occupancy models provides a great flex-
ibility in the way detection heterogeneity and misidentification can be
specified. First, the HMM formulation provides a straightforward mean
to modelling the ecological and the observation processes separately
(Pradel, 2005). Besides, each process can be split in multiple steps that
match exactly the underlying, relevant ecological or observation events,
making the modeling exercise and interpretation more intuitive to the
biologist. This latter feature has been illustrated in several capture-re-
capture studies (Pradel, 2005; Sanz-Aguilar et al., 2011; Avril et al.,
2012) but it is fairly new for occupancy models (Gimenez et al., 2014).

In this study, we focused on issues of heterogeneity in the detection
process, but the framework provided can equally be used to model
heterogeneity in occupancy probabilities (Gimenez et al., 2014). We
may also allow a site to change heterogeneity status by introducing a
transition parameter from class A to class B (Pradel, 2009; Gimenez
et al., 2012). This model could be useful in the wolf case study to ac-
commodate an increase in sampling effort over time and the possibility
for some sites with low detectability to get a higher detectability. The
use of finite mixtures allows capturing relevant levels of heterogeneity
without the need to include a large number of explanatory covariates. It
is however important to keep in mind that parameter redundancy can
become an issue as we add more classes of heterogeneity and/or choose
to apply finite mixtures on several parameters (Gimenez et al., 2014).
For instance, if we wanted to consider classes of heterogeneity for all
parameter (occupancy, true detection and false detection), our model
could quickly become too complex (Gimenez et al., 2014). If parameter
redundancy is suspected, it could be assessed using the methods that

Table 2
Estimated parameters for the model with misidentification and heterogeneity
and sampling effort on detection probabilities (pA11, pB11, pA10 and pB10)
(MMHS), the model with misidentification only with sampling effort on both
detection probabilities (p11 and p10) (MMS), for the model with misidentifica-
tion and heterogeneity (MMH) and the model with misidentification only
(MMO). The Akaike Information Criterion (AIC) value is given for each model
as well as the lower (CI-) and upper (CI+) limits of the 95% confidence in-
terval.

Model with misidentification and heterogeneity with
sampling effort on detection probabilities (MMHS)

AIC 1953.26

Parameter Value CI- CI+
Proportion of sites in class A π 0.70 0.62 0.78
Probability of occupancy ψ 0.05 0.03 0.10
Probability to classify a true-positive detection as

unambiguous b
0.89 0.84 0.92

Model with misidentification only with sampling effort
on both detection probabilities (MMS)

AIC 2071.51

Parameter Value CI- CI+
Probability of occupancy ψ 0.06 0.04 0.08
Probability to classify a true-positive detection as

unambiguous b
0.91 0.87 0.94

Model with misidentification and heterogeneity (MMH) AIC 2084.14

Parameter Value CI- CI+
Proportion of sites in class A π 0.81 0.75 0.86
Probability of occupancy ψ 0.03 0.02 0.06
Probability of false-positive detection in sites A pA10 0.00 0.00 0.00
Probability of false-positive detection in sites B pB10 0.00 0.00 0.00
Probability of true-positive detection in sites A pA11 0.04 0.02 0.06
Probability of true-positive detection in sites B pB11 0.56 0.47 0.64
Probability to classify a true-positive detection as

unambiguous b
0.86 0.81 0.90

Model with misidentification only (MMO) AIC 2209.49

Parameter Value CI- CI+
Probability of occupancy ψ 0.03 0.02 0.03
Probability of false-positive detection p10 0.00 0.00 0.00
Probability of true-positive detection p11 0.42 0.37 0.47
Probability to classify a true-positive detection as

unambiguous b
0.91 0.86 0.94

Fig. 2. Estimates of false positive detection from the model accounting for
misidentification and sampling effort on the detection probability (MMS; red
line) and the model accounting for misidentification and heterogeneity with
sampling effort on detection probabilities (MMHS; green line); Lighter shades
represent the estimated 95% confidence interval. The estimate of p10 for sites of
class A was on average zero in the MMHS. In both models (MMHS and MMS)
sampling effort had a positive effect on p10 in the MMS and on pB10 in the
MMHS. When the sampling effort increased, pB10 increased but remained below
0.5. The probability p10 in the MMS model increased as well when sampling
effort increased but p10 remained below pB10. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article).
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Fig. 3. Estimates of true positive detection from the model accounting for misidentification and the standardized sampling effort (number of observers per site per
year) on the detection probability (MMS; red line) and the model accounting for misidentification and heterogeneity with sampling effort on detection probabilities
(MMHS; green lines) (left panel), the model accounting for misidentification and heterogeneity (MMH; blue lines) and the model accounting for misidentification
only (MMO; yellow line). Lighter shades represent the estimated 95% confidence interval. Sampling effort was defined as the number of observers per cell per year. In
both models (MMHS and MMS) sampling effort had a positive effect on p11 in the MMS and on pA11 and pB11 in the MMHS. When sampling effort increased, pB11
increased as well, before almost reaching a plateau for the maximum values of sampling effort. pA11 increased as well but remained below 0.4 when sampling effort is
at the maximum value. With (left panel) or without (right panel) sampling effort as a covariate on this probability, pA11 was much lower than pB11. On the right panel,
no covariate was used in the detection probabilities, which explains the flat lines. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).

Fig. 4. Visualizing heterogeneity. Left: Map depicting the class of heterogeneity to which each site belongs to (obtained through the use of the Viterbi). Sites within
the study area that are colored in white correspond to sites where sampling effort was null. Sites colored in blue are sites affiliated to class A, and sites colored in red
are sites affiliated to class B. Right: Map of the sampling effort defined as the number of observers per site per year for the year 2013. The grey rectangle represents
the study area where we defined our 10 x 10 km sites (Louvrier et al., 2018). Sites of class A, which correspond to the ones with a null false positive probability pA10
and a very low true detection probability pA11 are the sites represented in light blue where sampling effort is very low as well. In opposition, sites of class B seemed to
be mainly where sampling effort was important. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article).
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have been developed for this purpose (Choquet and Cole, 2012).

4.2. Simulations

We considered three scenarios in which the heterogeneity coeffi-
cient increased with the proportion of sites of class A and the prob-
ability of false-positive detections in sites B. As expected, models ig-
noring heterogeneity produced biased and imprecise occupancy
estimates when heterogeneity was actually increasing. Those results are
the same whether heterogeneity occurs in probabilities of false positive
detections or true detections. Previous studies have emphasized the
importance of incorporating covariates, when available, on the true
positive probability to avoid underestimating occupancy parameters
(Miller et al., 2015). In absence of measurable candidate covariates, we
recommend using the finite-mixture approach described in this paper.
An alternative to finite mixtures is to consider a site random effect
(Gimenez et al., 2014). An advantage of finite-mixture models is that
they can easily be fitted in a frequentist or a Bayesian framework. In
contrast, site random effects are naturally fitted in a Bayesian frame-
work, but at the cost of higher computational burden; in the frequentist
framework, site random effects require a specific, non-trivial treatment
of the likelihood (e.g., Gimenez and Choquet, 2010).

4.3. Wolf case study

We found strong evidence of among-site heterogeneity in the de-
tection probability of wolves. This heterogeneity was mostly explained
by spatial variation in sampling effort. As expected, the probability of
true positive detection increased with sampling effort. In this study,
more sampling effort occurs at the core of the species’ distribution,
around the Alps and in the North-Eastern part of France (Fig. 1). This
variable effort is explained by the fact that in France, the first re-
colonizing wolves were detected in the Alps, before they started
spreading out (Valière et al., 2003).

Average values of detection parameters estimated by the MMH were
close to the average values estimated by the MMS and the MMHS,
highlighting the similarities between these models. However, the MMH
and MMS provided slightly different estimates of occupancy prob-
ability. AIC comparison between these two models revealed that sam-
pling effort explains most of the variation in detection probabilities. A
previous study (Louvrier et al., 2018) had also found strong support for
this covariate, and the authors had shown that ignoring the effect of
sampling effort leads to underestimating occupancy probabilities,
especially at sites with low effort. Results from the MMHS confirm this
hypothesis as the estimate of occupancy probability was close to the
one provided by the MMS. Sampling effort is thus an important cov-
ariate to account for, but the fact that MMHS had the lowest AIC sug-
gests that some unobserved detection heterogeneity remains. If sam-
pling effort cannot easily be measured, models accounting for
unobserved heterogeneity could be used as an alternative to control for
detection variability and avoid estimation biases. Such an approach
should prove especially useful for analyses of opportunistic monitoring
data collected by large networks of citizens, which rely on protocols
that rarely include explicit measures of sampling effort.

The fact that the estimated probability of false positive detection
was low suggests that the continuous training, over the years, of the
observers of the network (Duchamp et al., 2012) has been efficient. The
low value of the false positive detection could also mean that the fil-
tering process of observations was effective. Part of this filtering process
consisted in rejecting detections that could be identified as false posi-
tives to avoid noise in the data. We can conclude that most false posi-
tives may very well have already been rejected during this filtering
process. Based on this fact and the value of the probability to classify a
true detection as unambiguous b we could conclude that most of the
ambiguous data were actually true positive detections, which could be
considered as unambiguous detections and analyzed with standard

occupancy models. However, running the model accounting for false
positives would still be a necessary step to ensure that false positive
probability is extremely low, before we decide to treat ambiguous data
as true detections.

In our wolf study, winter observations consisted mostly of tracks
found in the snow, scats, carcasses and camera trap photographs
(Duchamp et al., 2012), which were all observations that could easily
be verified. However, on the colonization front, a larger proportion of
detections consisted of visual sightings, and because these types of data
could not be verified they were therefore classified as ambiguous. Here,
integrating these ambiguous data is especially interesting because it
brings new information about the wolf distribution on the colonization
front. These data could thus provide new insights in the context of
managing an expanding protected species where new identified sites
could help understanding the processes underlying the recolonization
of wolves (Guillera-arroita et al., 2015).

We found from the Viterbi algorithm that the sites having the higher
true positive probability were those where the sampling effort was high.
However, the fact that the estimated number of sites of class B from the
Viterbi algorithm is lower than what the MMH estimated can be due to
the low value of the occupancy probability. This low occupancy esti-
mate can lead to a greater uncertainty in assessing the class of a site
(Rouan et al., 2009). Despite this fact, it is possible to see the link be-
tween sampling effort and the two classes of heterogeneity. Sites be-
longing to the heterogeneity class A, which were primarily found on the
colonization front of the species (Louvrier et al., 2018), had a lower
detection probability p11 than sites of class B. This strongly suggests
that the species is less likely to be detected on the colonization front,
where new conflicts with human activities can arise.

In conclusion, we recommend devoting efforts in the monitoring
process to minimize heterogeneity across sites, and possibly identifying
and measuring covariates that may affect detection probability such as
the sampling effort. If not possible, we recommend using occupancy
models accounting for detection heterogeneity if covariates possibly
explaining site-to-site variation cannot be measured in the field. The
HMM formulation we propose allows an easy implementation of these
models.

Data accessibility

We provide the scripts to simulate the data in the Appendix B and
Appendix C as well as the wolf data in the Dryad Digital Repository:
https://doi.org/10.5061/dryad.g9s1d
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