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Abstract: As large carnivores recover throughout Europe, their distribution needs to be studied to determine
their conservation status and assess the potential for human-carnivore conflicts. However, efficient monitoring
of many large carnivore species is challenging due to their rarity, elusive behavior, and large home ranges.
Their monitoring can include opportunistic sightings from citizens in addition to designed surveys. Two types
of detection errors may occur in such monitoring schemes: false negatives and false positives. False-negative
detections can be accounted for in species distribution models (SDMs) that deal with imperfect detection.
False-positive detections, due to species misidentification, have rarely been accounted for in SDMs. Generally,
researchers use ad hoc data-filtering methods to discard ambiguous observations prior to analysis. These
practices may discard valuable ecological information on the distribution of a species. We investigated the
costs and benefits of including data types that may include false positives rather than discarding them for SDMs
of large carnivores. We used a dynamic occupancy model that simultaneously accounts for false negatives
and positives to jointly analyze data that included both unambiguous detections and ambiguous detections.
We used simulations to compare the performances of our model with a model fitted on unambiguous data
only. We tested the 2 models in 4 scenarios in which parameters that control false-positive detections and
true detections varied. We applied our model to data from the monitoring of the Eurasian lynx (Lynx lynx)
in the European Alps. The addition of ambiguous detections increased the precision of parameter estimates.
For the Eurasian lynx, incorporating ambiguous detections produced more precise estimates of the ecological
parameters and revealed additional occupied sites in areas where the species is likely expanding. Overall, we
found that ambiguous data should be considered when studying the distribution of large carnivores through
the use of dynamic occupancy models that account for misidentification.
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Uso de Detecciones Ambiguas para Mejorar las Estimaciones a partir de Modelos de Distribución de Especies

Resumen: Conforme los carnı́voros mayores se recuperan en toda Europa, su distribución requiere ser
estudiada para determinar su estado de conservación y para evaluar el potencial de conflictos entre humanos
y carnı́voros. Sin embargo, el monitoreo eficiente de muchas especies de carnı́voros mayores es complicada
debido a su rareza, comportamiento elusivo y las grandes extensiones de su ámbito de hogar. Su monitoreo
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2 Occupancy Models

puede incluir avistamientos oportunistas por parte de los ciudadanos, además de los censos diseñados.
Pueden ocurrir dos tipos de errores de detección en dichos métodos de monitoreo: negativos falsos y negativos
positivos. La detección de los falsos negativos puede justificarse en los modelos de distribución de especies
(MDE) que manejan la detección imperfecta. La detección de falsos positivos por causa de la identificación
errónea rara vez se justifica en los MDE. Los investigadores usan generalmente métodos con filtración de
datos ad hoc para descartar las observaciones ambiguas previo al análisis. Estas prácticas pueden descartar
información ecológica variable sobre la distribución de una especie. Investigamos los costos y beneficios de
la inclusión de tipos de datos que podŕıan contener falsos positivos en lugar de descartarlos de los MDE
para carnı́voros mayores. Usamos un modelo dinámico de ocupación que justificó simultáneamente los
falsos positivos y falsos negativos para analizar en conjunto los datos que incluı́an tanto las detecciones
no ambiguas como las ambiguas. Usamos simulaciones para comparar el desempeño de nuestro modelo
con el de un modelo ajustado solamente para datos no ambiguos. Probamos los dos modelos en cuatro
escenarios en los que variaron los parámetros que controlan la detección de falsos positivos y de detecciones
verdaderas. Aplicamos nuestro modelo a datos del monitoreo del lince euroasiático (Lynx lynx) en los Alpes.
La suma de las detecciones ambiguas incrementó la precisión de las estimaciones de los parámetros. Para
el lince euroasiático, la incorporación de las detecciones ambiguas produjo estimaciones más precisas de los
parámetros ecológicos y reveló sitios ocupados adicionales en áreas en donde la especie probablemente se esté
expandiendo. En general, encontramos que los datos ambiguos debeŕıan ser considerados cuando se estudia
la distribución de carnı́voros mayores por medio del uso de modelos dinámicos de ocupación que justifican
la identificación errónea.

Palabras Clave: carńıvoros mayores, detección imperfecta de especies, lince, modelos de ocupación, positivos
falsos
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Introduction

The distribution and abundance of large carnivores in
many parts of the world has been declining for centuries
because of habitat loss and human persecution (Ripple
et al. 2014). Thanks to active conservation measures,
several species of large carnivores have been recently
expanding their ranges substantially in Europe. As a re-
sult, most European countries currently host at least 1
viable population of a large predator (Chapron et al.
2014). This expansion has led to the emergence of con-
flicts with humans (Ripple et al. 2014). In this context,
accurate distribution mapping (i.e., species distribution
models [SDMs]) (Elith & Leathwick 2009) is essential for
determining conservation status and recovery success
(IUCN 2012); targeting potential areas of occurrence;
understanding large carnivore range dynamics; identify-
ing possible areas for future population establishment

(Chapron et al. 2014); and mitigating conflicts associated
with the recovery of large carnivores (Guillera-Arroita
et al. 2015), for example, depredation of livestock by
wolves (Marucco & Mcintire 2010). However, carnivore
rarity, elusive behavior, and low densities render efficient
monitoring difficult (Ripple et al. 2014).

The monitoring of large carnivores in Europe relies
on several survey methods implemented by profession-
als and members of the public (citizens). In particular,
citizen participation increases the ability to survey large
areas over extended periods, an effort that would be
costly if done by professionals only (Molinari-Jobin et al.
2018). A primary goal of citizen science (CS) is to produce
reliable data and information that scientists or decision
makers can use (McKinley et al. 2017), and it is becom-
ing an important tool with which to study the distribu-
tion, abundance, and species richness of plants and ani-
mals (Silvertown 2009; Dickinson et al. 2012). However,
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CS-generated data present potential quality problems, es-
pecially when the goal is to build SDMs.

Difficulty detecting large carnivores means animals can
be missed at sites where they are present (i.e., produc-
ing false-negative observations). Occupancy models were
developed to deal with false-negative errors (Guillera-
Arroita 2017) and are recommended for analyzing CS
data (Isaac et al. 2014). Although data sets produced by
CS are valuable (Kosmala et al. 2016), professionals are
better able to detect or identify species of interest, which
diminishes the risk of identification errors (Fitzpatrick
et al. 2009). False positives can occur when a species
is detected through misidentification at a site where it
does not occur (Miller et al. 2011). Recent studies have
demonstrated the importance of accounting for misiden-
tification for SDMs (Miller et al. 2011, 2013; Chambert
et al. 2015). Ignoring misidentification may lead to overes-
timating a species range (Royle & Link 2006; McClintock
et al. 2010).

Usually large carnivores are surveyed with indirect
methods, for example, observations of tracks, scat, and
prey remains or use of camera traps (Molinari-Jobin et al.
2018). Observations are then filtered by experts to as-
sess the reliability of evidence of the observed presence.
Recent studies of the distribution of European large carni-
vores have been based on only reliable observations, that
is, those remaining after discarding ambiguous detections
and validation by experts (Molinari-Jobin et al. 2018). This
means that some observations are discarded, even though
they may contain relevant ecological information on the
species distribution. This raises the question of whether
this information can somehow be extracted and made
useful in the context of SDMs.

We investigated the pros and cons of removing ambigu-
ous detections in SDMs of large carnivores versus keeping
all records and formally accounting for misidentification.
We used a dynamic occupancy model that accounts for
both false-negative and false-positive errors (Miller et al.
2011, 2013) to jointly analyze unambiguous and ambigu-
ous detections. To assess the performance of this ap-
proach, we performed a simulation study in which we
compared the analysis of unambiguous and ambiguous
detections with the use of unambiguous detections only.

We applied these methods to an SDM of the Eurasian
lynx (Lynx lynx) in the European Alps (Molinari-Jobin
et al. 2018). We expected improved precision in ecolog-
ical parameter estimates when all data were included in
an analysis, despite having to accommodate additional
nuisance parameters to deal with misidentification.

Methods

Occupancy Model Accounting for Misidentification

Dynamic occupancy models allow estimation of occu-
pancy and its temporal dynamics as a function of local ex-

tinction and colonization probabilities while accounting
for imperfect species detection (MacKenzie et al. 2003).
These models can be formulated as state–space models to
separate the state process (i.e., whether or not a species
is present at a site and how presence changes over time)
from the observational process (i.e., whether a species
is observed at a site during a given period depending on
whether or not it was actually present) (Royle & Kéry
2007). We defined zi,1 as the initial latent occurrence
state of site i (z = 1, presence; z = 0, absence) and zi,t

as the latent state for site i at time t. The state process
is initiated by the initial occupancy probability (ψ i,1) for
site i and governed by colonization probability (γ i,t) (the
probability that a site i that is not occupied at time t will
become occupied at time t + 1) and extinction probabil-
ity (εi,t) (the probability that an occupied site i at time t
will become unoccupied at time t + 1). We modeled zi,1

as a draw from a Bernoulli distribution with probability
ψ i,1. All subsequent latent states zi,t for t > 1 were draws
from another Bernoulli distribution that combines both
possible extinction and colonization events:

zi,t +1|zi,t ∼ Bernoulli(zi,t (1 − εi,t ) + (
1 − zi,t

)
γi,t ). (1)

If a site is occupied in year (or season) t, it will still be
occupied with probability 1 – εi,t or if it is unoccupied, it
will become occupied with probability γ i,t. Each year (or
season), a site is surveyed several times (j) within a year
or season. Site occupancy models rely on satisfaction of
the site-closure assumption, whereby the latent occur-
rence state of a site does not change within a sampling
season, whereas occupancy dynamics (colonization and
extinction) happen between years (or seasons).

In addition to the state process, the observation pro-
cess leads to the data yi,j,t: the observed state of site i
during a secondary survey j within year (or season) t.
Hereafter, we do not use the indices when possible to
ease reading of the model parameters. Here, y = 0 de-
notes no detection, y = 1 an unambiguous detection,
and y = 2 an ambiguous detection. To account for un-
ambiguous and ambiguous detections, we followed the
formulation of Miller et al. (2013). We defined an addi-
tional parameter di,j,t that had a value of 1 if any detection
(ambiguous or unambiguous) was made at site i during
survey j within year t and a value of 0 if there were
no detections. For occupied sites, by definition, d = 1
and denoted a true detection. For unoccupied sites, d =
1 was a false-positive detection. For both occupied and
unoccupied sites, d = 0 meant no detection and thus y =
0. At an occupied site, the possible observations were no
detection (y = 0), unambiguous detection (y = 1| d =
1), or ambiguous detection (y = 2| d = 1). For occupied
sites, the probability of a true detection (i.e., d = 1) during
a secondary sampling occasion (or survey) was defined
as P(d = 1| z = 1) (hereafter p11). The probability that
a true detection will be classified as unambiguous was
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P(y = 1| d = 1) (hereafter b). The probability of an
unambiguous detection was p11b, and the probability for
an ambiguous detection (i.e., y = 2) for an occupied site
was p11(1 – b). For unoccupied sites (i.e., z = 0), by
definition, unambiguous detections (y = 1| d = 1) did
not occur; thus, the only possible observations were an
ambiguous detection (y = 2| d = 1), which in this case is
a false positive, or no detection (y = 0). The probability
of a false positive detection (i.e., d = 1) occurring at an
unoccupied site i during a secondary sampling occasion
(or survey) j was P(d = 1| z = 0) (hereafter p10). Then
the probabilities, unconditional on state z of a site, of
recording the 3 possible observed states (y) were

P
(
y = 0

) = P (z = 1) P
(
d = 0|z = 1

)

+P (z = 0) P
(
d = 0|z = 0

) = ψ
(
1 − p11

)

+ (
1 − ψ

) (
1 − p10

)
for no detection;

P
(
y = 1

) = P (z = 1) P
(
d = 1|z = 1

)
P

(
y = 1|d = 1

)

= ψ p11b for unambiguous detection; and

P
(
y = 2

) = P (z = 1) P
(
d = 1|z = 1

)
P

(
y = 2|d = 1

)

+P (z = 0) P
(
d = 1|z = 0

) = ψ p11 (1 − b)

+ (
1 − ψ

)
p10 for ambiguous detection.

Simulations

We conducted a simulation to examine the performance
of a dynamic occupancy model that accounted for pos-
sible false positives (model unambiguous or ambiguous
[MUA]) relative to a dynamic occupancy model that ac-
counted only for false negatives (fitted with unambiguous
data only) (model unambiguous [MU]). To assess the abil-
ity of both models to estimate ecological parameters, we
tested 4 scenarios in which parameters that control false-
positive detections and true detections varied (Table 1).

Because the ecological parameters have an influence
on the amount of detections produced, occupancy prob-
ability was either high or low. In the high occupancy
scenario, we set the initial occupancy probability ψ1 at
0.8, the colonization probability γ at 0.4, and extinction
probability at 0.1 to maintain a high occupancy probabil-
ity. This scenario corresponds to a fairly well-established
species reflected by its high occupancy probability across
time. In the low occupancy scenario, we set the initial oc-
cupancy probability ψ1 at 0.1, the colonization probabil-
ity γ at 0.1, and extinction probability at 0.1 to maintain
a low occupancy probability. This scenario corresponds
to a rare species with a low occupancy probability across
time.

Detection parameters also influence the amount of
false-positive and true-positive detections. True detec-
tions are controlled by p11 and b. Therefore, in both high
and low occupancy scenarios, we considered 2 situations

in which b was either high (i.e., set at 0.8) or low (i.e., set
at 0.5), for a total of 4 scenarios. For all scenarios, we set
p11 at 0.4. When b = 0.8, most of the true detections were
classified as unambiguous. This scenario corresponds to
monitoring of a species that is not easily mistaken for
another or monitoring conducted by people trained to
recognize accurately the presence signs of the species.
When b = 0.5, a larger part of the true detections was
classified as ambiguous. This scenario corresponds to the
monitoring of a species that can easily be mistaken or
done by untrained people, for instance from the general
public. The amount of false-positive detections was con-
trolled by p10. In all 4 scenarios, we looked at how the
models performed under 7 different values of p10 (range
0.01–0.3), for a total of 28 different simulation scenarios.
Finally, because our main objective was to assess the
effect of accounting for ambiguous data, environmental
variation was not included in our simulations. The high
occupancy high b scenario is referred to as HH; the high
occupancy low b scenario is HL; the low occupancy high
b scenario is LH; and the low occupancy low b is LL.

In our simulations, we generated data for 100 sites
over 5 years and 3 surveys. To remain realistic in the
simulations, the number of surveys mimicked the case-
study characteristics. For each scenario, we simulated
500 data sets and fitted both models to each data set.
For the initial occupancy probability, the colonization
probability, and the extinction probability in both models
in each scenario, we calculated the relative bias and mean
squared error (MSE).

Eurasian Lynx Case Study

After its total eradication in the Alps by around 1930, the
Eurasian lynx (Lynx lynx) has been reintroduced multi-
ple times since 1970 in Switzerland, Italy, Austria, and
Slovenia (Molinari-Jobin et al. 2018). In the 1990s, ex-
perts from the 7 Alpine countries set up the international
lynx monitoring program (Status and Conservation of the
Alpine Lynx Population). To ensure coverage of its entire
territory, the monitoring of the elusive lynx relies on
>1300 trained experts (official game wardens and forest
service personnel) in 7 Alpine countries. Hunters, natural-
ists, and other citizens also may be part of the monitoring
network. Professional network members search actively
for signs and check signs that are reported to them by
citizens. We classified signs of presence into 3 reliability
categories: C1, hard facts (e.g., dead lynx, lynx removed
from the wild as a young orphan and put into captivity,
lynx photos, and genetic samples); C2, detections con-
firmed by a lynx expert (livestock killed by lynx, wild
prey remains, and tracks); and C3, data that could not
be verified by experts (unverified tracks and wild prey
remains) and unverifiable data (e.g., sighting, scat, and
vocalization). We treated C1 and C2 data as unambigu-
ous detections, assuming there were no false-positive
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Table 1. Parameter values for the 4 simulation scenarios in which parameters controlling the total amount of false-positive and true detections
varied.

Scenarios

Initial
occupancy

probability (ψ1)
Colonization

probability (γ )

Probability of classifying
a true detection as
unambiguous (b)

False-positive
detection

probability (p10)

High occupancy
high b (HH)

0.8 0.4 0.8 0.01

0.5
0.10
0.15
0.20
0.25
0.30

High occupancy
low b (HL)

0.8 0.4 0.5 0.01

0.5
0.10
0.15
0.20
0.25
0.30

Low occupancy
high b (LH)

0.1 0.1 0.8 0.01

0.5
0.10
0.15
0.20
0.25
0.30

Low occupancy
low b (LL)

0.1 0.1 0.5 0.01

0.5
0.10
0.15
0.20
0.25
0.30

detections in these data, and C3 data as ambiguous
detections. From 1995 to 2014, 8415 observations (67%)
were classified as unambiguous detections and 3991
(33%) as ambiguous. If unambiguous and ambiguous de-
tections occurred at a site, we accounted for the unam-
biguous detections only. Nondetections were obtained
on sites that were sampled but where no lynx presence
was reported during a survey within a year. Molinari-Jobin
et al. (2018) fitted a dynamic occupancy model with un-
ambiguous detections only (i.e., they used our model MU)
to assess the effects of environmental covariates on dif-
ferent parameters of the model and to assess distribution-
based population trends. A 10 × 10 km grid was used
to define the distribution units that corresponded to the
approximate home range size of a female lynx in the
Alps (Molinari-Jobin et al. 2018). Surveys were defined
as 3 replicated 2-month periods: November–December,
January–February, and March–April. We used the same
data set as Molinari-Jobin et al. (2018), but we added
the C3 data and fitted a dynamic occupancy model that
combined both unambiguous and ambiguous detections

(MUA). We used the same covariates for the parameters
that were common to the models MU and MUA. We con-
sidered the effects of forest cover and distance to the
release site on ψ1; the effects of year, forest cover, and
number of observed occupied contiguous neighbors on
ε; and the same effects plus that of human density and
elevation on γ .

For the new parameters in MUA, p11 and p10, we used
the effect of elevation and forest cover and a random
site-by-winter effect to accommodate unmodeled spatial
heterogeneity in detection rates in every combination of
site and winter. A network covariate was also included to
account for heterogeneity in sampling effort in time and
space. This covariate took the following values based on
the amount of effort for the location and time period: 0,
no information available regarding the sampling effort, in
which case we assumed it was small but never null be-
cause of the presence of at least game wardens and forest
service agents who have not been trained in the recog-
nition of lynx signs but report suspect cases (Molinari-
Jobin et al. 2012); 1, presence of trained members of the
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lynx monitoring network on the site; and 2, members of
the lynx monitoring network actively searching for lynx
signs. We also considered a linear year effect (i.e., an
annual trend) on p10 to investigate whether this probabil-
ity decreased as observers gained experience over time.
Finally, we kept the probability b to classify a true positive
detection as an unambiguous constant. We considered
the effect of a covariate significant if its 95% credible
interval (CRI) did not overlap 0.

To evaluate the added value of incorporating the C3
data (ambiguous detections) into the analysis, we com-
pared the maps of occupancy produced by the 2 models
by calculating and mapping the difference in the site- and
year-specific estimates of realized occurrence ẑi,t (MU) –
ẑi,t (MUA).

Codes to run the simulations and fit the models de-
scribed above are in Supporting Information.

Results

Simulations

For MSE, MUA performed better than MU in all 4 sce-
narios when p10 � 0.15 (Supporting Information). Above
this value both models performed equally well except
in 1 scenario and for 1 parameter when estimating the
ecological parameters: MUA estimated the colonization
probability γ less precisely than MU only in the HL sce-
nario for values of p10 between 0.20 and 0.30. The MSE
was highest (range 0.04–0.25) in the HL scenario and
ranged from 0.04 to 0.14 in the HH scenario. The MSE
was lowest in the LH scenario and ranged from 0.02 to
0.06 and 0.02 to 0.11 in the LL scenario.

Both models estimated ψ1 and γ with biases below or
equal to 5% in the HH, HL, and LH scenarios (Supporting
Information). In the LL scenario, MU estimated ψ1 with
a bias above 5% (up to 8%) and MUA had a lower bias
than MU. For ε, MUA performed better or equivalently
above 5% in terms of bias in the scenarios HH and HL
and worse or equivalently above 5% in the LH and LL
scenarios.

Lynx Case Study

When we fitted the MUA with both unambiguous and
ambiguous detections (i.e., for C1, C2, and C3 data), p11

was higher on sites with a high forest cover and appeared
to vary according to the season and network (Table 2).
Elevation had no effect on p11. The p10 was higher on
sites with a high forest cover and varied according to
network (Table 2). Although elevation and season had no
significant effect on p10, this probability decreased over
time (Table 2). Both models gave similar estimates for
ψ1, ε, and γ , but MUA produced more precise estimates
than MU (Supporting Information).

The b was estimated at 0.81 with high precision (CRI
0.79–0.83). At the beginning of the study period, in the
winter 1995 and 1996, we estimated the mean ψ over
all sites at 0.04 (CRI 0.03–0.07), p11 at 0.11 (CRI 0.10–
0.25), and p10 at 0.006 (CRI 0.004–0.01). For the end of
the study period, winter 2013 and 2014, we estimated
the mean ψ at 0.1 (CRI 0.0899–0.11), p11 at 0.17 (CRI
0.09–0.24), and p10 at 0.007 (CRI 0.003–0.010). MUA
estimated a few more occupied sites than MU for both
winters 1995 and 1996 and 2013 and 2014 (4 [1995 and
1996] to 13 [2013 and 2014]) (Fig. 1) and estimated oc-
cupied sites that were estimated occupied by MU too.
The additional sites that were estimated occupied from
MUA were sites where ambiguous detections occurred
(Fig. 1).

Discussion

Assessing the distribution of large carnivores at large
scales is vital information for assessing their conservation
status and abundance (IUCN 2012; Jedrzejewski et al.
2018), identifying potential conflict areas (Marucco &
Mcintire 2010), and, for successful management, under-
standing the mechanism behind distribution dynamics
(Eriksson & Dalerum 2018). Producing more precise and
less biased estimates by adding ambiguous data with a
model accounting for false-positive detections can bring
new insights to the distribution of species where get-
ting unambiguous data is challenging. Due to the large
areas involved, the monitoring of large carnivores in Eu-
rope relies on a large network of both professional and
nonprofessional observers (Louvrier et al. 2018; Molinari-
Jobin et al. 2018). Although false-negative detections
have received much attention in the literature of species
distribution modeling with the rise of occupancy mod-
els (MacKenzie et al. 2003; Bailey et al. 2014), dealing
with ambiguous detections has been studied much less
(Miller et al. 2011; Chambert et al. 2015). Here, our
simulations demonstrated that jointly analyzing unam-
biguous and ambiguous detections with the appropriate
dynamic occupancy models can lead to increased preci-
sion in the estimates of ecological parameters when p10

is low. When this probability was >0.20, both models
estimated ecological parameters with almost equivalent
precision, which varied between its highest values in
the high occupancy scenarios and its lowest values in
the low occupancy scenarios. Both models produced
estimates of ecological parameters with low bias ex-
cept for one ecological parameter in one specific sce-
nario. When looking at the results of the lynx analy-
sis, adding ambiguous data helped produce more pre-
cise estimates and provided additional spatial informa-
tion that improved inference in areas where the species
likely occurred at very low density (e.g., at a colonization
front).
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8 Occupancy Models

Figure 1. (Top row) Locations of Lynx observation (i.e., raw data) in the winters of 1994 and 1995 and 2013 and
2014 (black sites, unambiguous detections occurred; gray sites, ambiguous detections occurred); (middle row)
estimated lynx distribution (probability of occurrence 0–1) in the Alps in the winters of 1994 and 1995 and 2013
and 2014 for the model with ambiguous data (not used on figure) (black sites, sites with a probability of
occupancy of 1; white sites, sites with a probability of occupancy of 0); (bottom row) and mapped differences in
occupancy estimates between the model with unambiguous data only (value on the right in key) and the model
with unambiguous and ambiguous data for the winters 1994 and 1995 (left) and 2013 and 2014 (right) (value
on left) (gray sites, model with ambiguous data predicted a higher occupancy probability than the model with
unambiguous data only).
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Simulation Lessons

MUA performed better than MU in most of the scenar-
ios. Two factors seemed to have an influence on mod-
els’ performances: the false-positive probability and the
occupancy probability. In terms of precision, MUA per-
formed better when p10 was low and performed equiva-
lently when p10 was high. In the case of a low occupancy
probability, the estimates of extinction probability were
more biased positively under the MUA than the MU, lead-
ing to an overestimation of ε and the distribution. For the
other parameters and the other scenarios, MUA produced
estimates with low biases. Whether a species occurs at
high or low occupancy probability can often be evalu-
ated prior to the analyses based on the knowledge of the
species ecology or on previous studies. We recommend
always including ambiguous data because in most of the
scenarios MUA performed better than or equivalently to
MU in terms of both precision and bias for the ecological
parameter estimates.

Accounting for Ambiguous Data When Studying Distribution
of Large Carnivores

Our SDM exercise with lynx allowed assessment of trends
in the distribution of the species, and these trends can
be used to inform their conservation status (Guisan &
Thuiller 2005). Our covariate effects were similar in di-
rection and magnitude to those estimated by Molinari-
Jobin et al. (2018), who fitted the simpler MU to the
lynx data with unambiguous detections only (Table 2).
(See Molinari-Jobin et al. [2018] for a detailed description
of these effects and their possible biological interpreta-
tion.) Our results showed that the probability of a false-
positive detection decreased over time. This could be
due to observers remaining in the network becoming less
likely to make false-positive detections over time as they
became more experienced in recognizing the species
(Jordan et al. 2012). This was corroborated by the fact
that the number of ambiguous detections decreased over
the study period (Molinari-Jobin et al. 2012). Additionally,
the use of camera trapping has increased over time and
has led to an increased number of C1 detections and
therefore diminished the proportion of C3 in the data
sets (Molinari-Jobin et al. 2018). The learning process
of citizens in scientific monitoring programs has been
studied (Dickinson et al. 2012; Jordan et al. 2012). The
general public not only learns through participation, but
also becomes more aware of the general ecological is-
sues and more prone to understand scientific research
(Bonney et al. 2009). We found that the probability of
making a true detection was similar to the probability
of detecting the species in MU fitted by Molinari-Jobin
et al. (2018). This makes sense because the probability of
detecting the species in MU was equal to the probability
of making a true detection multiplied by the probability

of classifying a detection as unambiguous. We also found
that there was a probability of 0.8 of classifying a true
detection as unambiguous. This may be due to the fact
that observers in the network were highly competent at
detecting the species and producing reliable data. This
finding may also reflect that it is relatively easy to identify
the signs of presence of lynx because there is almost no
confusion possible with other species present in the area.
Whenever the focus species can be mistaken for another
species, if the quality of data is not sufficient (e.g., dog
tracks in the snow mistaken for wolf tracks), true de-
tections can be classified as ambiguous. There can also
be false-positive detections from misidentification when
b is low. In this case, the amount of true detections in
ambiguous data will not be negligible. In a case where
b is low and only unambiguous data are used, a large
part of true presences can be missed and the resulting
distribution will be underestimated (Miller et al. 2011).

The occupancy estimates under both models suggest
the lynx case study corresponds to the LH simulation
scenario (compare Table 1 with Supporting Information).
For the distribution maps produced by MUA, adding am-
biguous detections brought new and useful information.
Some sites were estimated as occupied by MUA, whereas
these same sites were estimated as unoccupied by MU
(Fig. 1). Because of the low occupancy of the lynx and
its elusive behavior, the number of times the species was
detected was very low. Because the probability to clas-
sify a detection as unambiguous b was high, only a few
true detections were classified as ambiguous, which may
explain why adding them did not change the parameter
estimates but helped produced more precise estimates. In
turn, adding ambiguous detections provided new insights
related to management of a protected species (Guillera-
Arroita et al. 2015). The sites we found to be occupied
because of the incorporation of ambiguous detections
could likely represent areas where the species is currently
expanding. These same sites also may be places where
lynx have not occurred before and negative interactions
may occur due to the novelty of lynx presence. Sites that
appeared occupied after including ambiguous data can
inform the prediction of location of potential conflicts.
Finally, if the objective is to map the colonization front to,
for example, mitigate conflicts, ambiguous data should be
included.

Recommendations

Dynamic occupancy models in general provide a power-
ful and natural analytical framework for changing species
distributions (Kéry et al. 2013). More specifically, dy-
namic occupancy models accounting for misidentifica-
tion represent a powerful method to deal with detections
that cannot be categorized as certain in species distri-
bution modeling. We recommend careful categorization
of field observations into unambiguous or ambiguous
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detections, for instance by using several experts to clas-
sify the detections and a standardized filtering classifica-
tion process to avoid false-positive detections mistakenly
classified as reliable data. This filtering process also allows
rejecting detections that can be identified easily as false
positives. If some detections cannot be checked by ex-
perts for instance and cannot be classified as unambigu-
ous, observers may need to visit the sites where these
detections were made to get more reliable detections.
Even though occupancy models can deal with ambiguity,
survey should be designed and data collected so as to
avoid the production of false-positive detections or at
least reduce their proportion. In the case of data from
CS projects, models accounting for false-positive detec-
tions are a relevant tool to assess species distribution if
a classification of detections is made (e.g., unambiguous
vs. ambiguous). In the case of a species occurring at low
density, such as the Eurasian lynx, additional information
can provide new insights into the species distribution
and help target specific sites where the species is likely
to occur in the future.
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