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ABSTRACT We review methods for detecting and assessing the strength of density dependence based on
2 types of approaches: surveys of population size and studies of life history traits, in particular demographic
parameters. For the first type of studies, methods neglecting uncertainty in population size should definitely
be abandoned. Bayesian approaches to simple state-space models accounting for uncertainty in population
size are recommended, with some caution because of numerical difficulties and risks of model misspeci-
fication. Realistic state-space models incorporating features such as environmental covariates, age structure,
etc., may lack power because of the shortness of the time series and the simultaneous presence of process and
sampling variability. In all cases, complementing the population survey data with some external information,
with priority on the intrinsic growth rate, is highly recommended. Methods for detecting density dependence
in life history traits are generally conservative (i.e., tend to underestimate the strength of density dependence).
Among approaches to correct for this effect, the state-space formulation of capture–recapture models is again
the most promising. Foreseeable developments will exploit integrated monitoring combining population size
surveys and individual longitudinal data in refined state-space models, for which a Bayesian approach is the
most straightforward statistical treatment. One may thus expect an integration of various types of models that
will make it possible to look at density dependence as a complex biological process interacting with other
processes rather than in terms of a simple equation; modern statistical and modeling tools make such a
synthesis within reach. � 2012 The Wildlife Society.

KEY WORDS animal demography, Bayesian methods, density dependence, Kalman filter, population dynamics, state-
space models, wildlife.

The i-state philosophy (Diekmann 2005) describes demog-
raphy at the individual level based on life-cycle stages. This
philosophy naturally leads to describe death, fecundity,
and more generally any transition between stages such as
recruitment or dispersal, through per capita parameters.
If such individual parameters are constant or at least
stationary (in the sense of stochastic processes: affected by
random effects that can be shifted over time and, as such, not
affected by a trend), the population growth is exponential,
generally after a dampening of the effect of initial population
structure, as in matrix models (Caswell 2001) and their
stochastic generalizations (Tuljapurkar 1990). The key
paradigm of exponential growth in population dynamics
(Turchin 2001) is thus intimately linked to the i-state
philosophy.
For more than 2 centuries (Malthus 1798), scientists have

recognized that exponential growth is impossible in the long
term (Turchin 2001), as exponential growth leads to large

population sizes that unavoidably induce depletion of resour-
ces and, in turn, individual performance. This is a broad
definition of density dependence, as a phenomenon that
explicitly has to do with resource and individual perfor-
mance. We loosely use the word density for population
size or local population size (e.g., in the term density
dependence).
Density dependence became a key subject in population

dynamics with the well-known logistic growth curve
(Verhulst 1838). One of the discrete time counterparts is
the discrete time Gompertz model Ntþ1 ¼ lN�b

t Nt with
b > 0. Such models are phenomenological, as they describe
only the population level and do not explicitly consider the
individual level, contrary to mechanistic models, such as
matrix models that translate individual parameters into pop-
ulation level consequences. Since the 19th century, research-
ers have debated phenomenological and mechanistic
approaches to density dependence (see Murdoch 1994,
Krebs 1995) and discussions continue (e.g., Berryman
2004) on the role of limitation by resource availability, an
individual level phenomenon, as supposedly opposed to reg-
ulation by density dependence, a population level result.
A key question is whether density dependence is present in

a population, and if so, how tomeasure its intensity. As usual,
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even if one relies on some statistical significance for detec-
tion, one has some biological significance in mind (i.e., the
idea that density dependence is or is not negligible for the
future fate of the population or relative to other sources of
variation) and thus bears a relationship to its management
(Guthery and Shaw 2012). Indeed, the measurement phase is
often linked with the idea that population projections ac-
counting for density dependence go one step beyond those
based on constant parameters; a strong assumption of sta-
tionarity in the projection still exists but rather than ‘‘as if
parameters were the same as up to now’’, it is ‘‘as if parameters
were varying with density as they have been shown to do up
to now.’’ Estimating the strength of density dependence is
also central in discussions of the relative role and magnitude
of density dependent and density-independent variation in
population size, the subject of a famous controversy in the
1950s (Andrewartha and Birch 1954, Lack 1954).
Not surprisingly, the tension between population and in-

dividual level approaches has been pervasive in the issue of
detection and estimation of density dependence, possibly
because the data themselves can be at the population level
only (e.g., population surveys) or at the level of individual
traits only (e.g., body weight data). Finally, statistical diffi-
culties arise as the arrow of time induces dependencies that
cannot be handled by naı̈ve statistical approaches. Although
a comprehensive review of the literature would be beyond
reach, the issues of detection and measurement of density
dependence have alternatively raised optimistic and pessi-
mistic points of view, and have been a subject of frustration
(Dennis and Taper 1994). Can we take series of data and
estimate in a simple fashion how many show density depen-
dence, as done by Brook and Bradshaw (2006) for 1,198
species, or should we conclude with Krebs (1995) that den-
sity dependence is an unattainable holy grail?
The purpose of this article is to attempt to review the

subject of detection and estimation of density dependence
with specific reference to these difficulties and the resulting
confusion. However, we heed the advice of J. B. S. Haldane,
‘‘if you are faced by a difficulty or a controversy in science, an
ounce of algebra is worth a ton of verbal argument’’ (Maynard
Smith 1965). Although we will use many equations, this
review will attempt to avoid technical developments (for a
more technical review, see Lebreton 2009).
We will first review the methods for detection and

estimation of density dependence based on population size
estimates, in 3 steps: 1) an attempt to formalize the role
of resource and density, 2) methods in the absence of
uncertainty in population size, and 3) methods accounting
for uncertainty in population size, a key feature for wild
animal populations. Then we will review methods based
on analyses of individual traits, demographic or not.
Finally, we will discuss new modeling opportunities and
perspectives.
We completed calculations using our own Matlab1

(MathWorks, Natick, MA) code, carefully validated by
a series of cross-checks, and WinBUGS (Lunn et al.
2000). The Matlab1 code is made available online at
www.onlinelibrary.wiley.com.

DETECTING AND ESTIMATING
DENSITY DEPENDENCE BASED ON
POPULATION SIZE ESTIMATES

The Gompertz model Ntþ1 ¼ lN�b
t Nt becomes linear on a

log scale. Denoting xt ¼ Ln(Nt) and r ¼ Ln(l):

xtþ1 ¼ r þ ð1� bÞxt (1)

As recalled by Lebreton (2009), r ¼ Ln(l) is the growth rate
for N ¼ 1, whereas the growth rate for N ¼ 0 is infinite
negative. This bears no consequences on our treatment of
this model and related ones, and we will speak of r as the
intrinsic growth rate.
Under b ¼ 0 (i.e., density independence) the model

reduces to

xtþ1 ¼ r þ xt (2)

As the world is not deterministic, a straightforward
stochastic generalization considers some extra random
variation to represent demographic and environmental sto-
chasticity, leading under density independence and density
dependence, respectively, to:

xtþ1 ¼ r þ ð1� bÞxt þ "t (3)

xtþ1 ¼ r þ xt þ "t (4)

The random terms, represented by Greek letters, have
expectations equal to 0 and, unless otherwise stated, are
assumed to be normally distributed. The latter model is a
random walk; besides the shift r, xt varies through indepen-
dent additive increments. Because of their simplicity, these
models have been used by a number of authors over the years
(see Dennis et al. 2006, Lebreton 2009). One can equiva-
lently test for density dependence either by a test of model (3)
versus model (4), such as a likelihood ratio test, or by a test
of H0 b ¼ 0 in model (3) (e.g., a Wald test). The latter
approach is usually preferred as it can easily be implemented
as a one-tailed test of H0 b ¼ 0 versus H1 b > 0, the
alternative of biological interest.

Density Dependence and Resource Dependence
By rewriting (3) one can make a per capita growth rate
r � bxt þ "t appear:

xtþ1 ¼ ðr � bxt þ "tÞ þ xt (5)

As density dependence occurs through the depletion of
resource of some kind, in the per capita growth rate, the
log population size xt is a proxy for something else. Let’s
assume a single latent variable lt, such as the amount of a key
resource used, is the actual determinant of the growth rate.
Assuming lt can be expressed on the same scale as xt, the
actual growth rate is then r � blt þ "t . The log-population
size xt is then a proxy for lt, with a relationship necessarily
modified by some random variation, lt ¼ xt þ &t , as the
proxy and the latent variable cannot be expected to be
perfectly correlated over time. The random term &t has a
null expectation (i.e., Eð&tÞ ¼ 0). Note that this issue has
nothing to do with uncertainty on xt, a problem that will be
examined later.
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One should thus use xtþ1 ¼ ðr � blt þ "tÞ þ xt or, alterna-
tively,

xtþ1 ¼ ðr � bðxt þ &tÞ þ "tÞ þ xt (6)

Although model (5) (or equivalently 3) is analogous to a
linear regression of xtþ1 on xt (to an extent that will be
discussed later), model (6) is affected by an error-in-variable
(e.g., Fuller 1987). In practice, the latent variable lt is un-
known and so is varð&tÞ; model (6) cannot be readily used
instead of (3). What are the consequences of the error-in-
variable problem on detection and estimation of density
dependence when using (3)? Under H0 b ¼ 0, model (6)
reduces to xtþ1 ¼ ðr þ "tÞ þ xt (i.e., model 4). The distribu-
tion of any estimator of b under H0 remains thus unaffected
by the error-in-variable problem. So, although density de-
pendence is strictly a model concept, testing for it is equiva-
lent to a test of dependence on resource depletion, at least in
the simplistic setting considered here. As far as we know, the
consequences on the estimated slope under H1 b > 0 (i.e.,
the estimated strength of density dependence when present)
remain to be explored.

Methods for Detecting Density Dependence in the
Absence of Uncertainty on Population Size
Model (3) xtþ1 ¼ r þ ð1� bÞxt þ "t can easily be treated by
maximum likelihood, preferably conditional on x1, which
plays no role in the estimation of b (Dennis and Taper
1994:209, Hamilton 1994:123, Lebreton 2009). Because
of the linear structure of the model, the maximum likelihood
estimator (MLE) of 1 � b is obtained by the formula for
estimating the slope of the ordinary linear regression of
xtþ1 with respect to xt. This apparent simplicity is quite

unfortunate, as the estimator does not benefit from the
properties of the regression estimator, because the underlying
statistical model is not the usual linear regression model; the
same variable appears both as an independent and dependent
variable, with a shift in time (i.e., autoregressive model). We
illustrate what happens under H0 b ¼ 0 (Fig. 1); the joint
distribution of the pairs (xtþ1, xt) is aligned along the line
y ¼ r þ x. Samples of this distribution thus, on the average,
have a major axis with slope 1. The regression estimate is
then necessarily, on the average, below 1. As a consequence,
the estimator of b is positively biased (i.e., the naı̈ve approach
tends to detect too often density dependence). Despite re-
peated warnings as early as the 1970s (e.g., Maelzer 1970),
few people realize this bias is present in the absence of
uncertainty on population size (e.g., see abscissa 0 in
Fig. 2 and item 2 of the summary in Freckleton et al.
2006). Asymptotically, the estimate is not biased, just be-
cause the regression line comes closer and closer to the line
y ¼ r þ x as the scatter of points become more and more
elongated since varðxtÞ ! 1 when t ! 1 (Fig. 1) while
varðxtþ1=xtÞ ¼ varð"tÞ remains constant. As, in studies of
wild animal populations, the time series are usually fairly
short, the asymptotic absence of bias offers little consolation.
Two approaches have been proposed to account for this

bias:

1) Using simulation (i.e., parametric bootstrap; Dennis and
Taper 1994). Basically, one generates pseudo-samples
using estimates under H0 b ¼ 0 and uses the appropriate
percentiles of the empirical distribution of the resulting
estimates of b to accept or reject H0. In our model, this
approach would amount to a bias correction, but Dennis

Figure 1. Current log population size xtþ1 versus previous one xt based on the density independentmodel xtþ1 ¼ r þ xt þ "t , under r ¼ 0.3 and varð"tÞ ¼ 0.64.
From top to bottom, simulations over 5, 10, and 20 time occasions, respectively. The regression line of xtþ1 versus xt (dotted lines) progressively converges to the
line xtþ1 ¼ r þ xt (plain lines) as varðxtÞ ! 1 (i.e., the regression slope progressively converges to 1). For all finite sample sizes, this approach points to a model
xtþ1 ¼ r þ ð1� bÞxt þ "t with b > 0 (i.e., to density dependence).
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and Taper (1994) use it with a slightly different, nonline-
ar, model in which the approach also overcomes the
absence of distributional results.

2) Obtaining an expression for the bias. Lebreton (2009),
reformulating results by Saint-Amant (1970), develops a
bias corrected t-test of H0 b ¼ 0, and checks if the
resulting test-level is sufficiently close to the nominal
a. A bias-corrected estimate can also be directly derived
from the general study of the bias of the autocorrelation
coefficient by Kendall (1954, in Sawa 1978) for a time
series of length T, as ~b ¼ b̂� ðð4� 3b̂Þ=T Þ.

Naı̈ve approaches are still commonly used (e.g., Sæther
et al. 2005, Sibly et al. 2005, among others). For a particular
study, they can lead to grossly misleading results. In meta-
analyses, the bias on the density dependence coefficient
induces an overestimation of the prevalence of density de-
pendence. Based on the impossibility of long-term exponen-
tial growth, one gets a faked statistical confirmation of a
plausible result! However, the corrections to bias mentioned
above do not appear to be a general solution to be recom-
mended. Indeed, they largely amount to a useless statistical
exercise, as the assumption of no uncertainty in xt is very
stringent and far from met for most animal population
surveys. We thus strongly recommend approaches not ac-
counting for uncertainty in population size are abandoned.
Handling this uncertainty is the subject of the next section.

Methods Accounting for Uncertainty in Population Size
Bulmer (1975) was the first author to formulate the linear-
ized Gompertz model with uncertainty in population size. In
this formulation, the state of the population is described by

model (3) above, and only a time series of estimated log-
population size yt is observed:

xtþ1 ¼ r þ ð1� bÞxt þ "t (7)

ytþ1 ¼ xtþ1 þ htþ1 (8)

Bulmer (1975), in a direct treatment of the model, rewrote it
as

ytþ1 ¼ r þ ð1� bÞyt þ htþ1 � ð1� bÞht þ "t (10)

which clearly shows a further dependency over time induced
by the presence of ht both in the equation for ytþ1 and that
for yt.
Neglecting it (i.e., treating yt by the previous regression-

like method) induces a severe bias (Bulmer 1975) that has
rarely if ever been illustrated. Simulations clearly show how
the faked evidence for density dependence (i.e., the bias in b̂)
increases with the uncertainty in population size, over a range
of realistic values of the coefficient of variation for the
estimated population size (Fig. 2).
The ad hoc tests proposed by Bulmer (1975) were criticized

by Den Boer and Reddingius (1989), in particular because
they are not optimal, statistically speaking. However one
clearly distinguishes in the model above a state (7) and an
observation (8) (i.e., a linear Gaussian state-space model),
which can be treated by specific methods such as the Kalman
filter, as noted by Lebreton (1989). The Kalman filter makes
obtaining the likelihood of the model possible, based on a
series of observations ðy1; y2; . . . ; yT Þ, as presented in a clear
and detailed way by Dennis et al. (2006). The MLE ade-
quately exploits the statistical information available and is

Figure 2. Estimated strength of density dependence (ordinate) in absence of density dependence, when uncertainty in population size (as a coefficient of
variation, abscissa) is neglected. The bias in the estimated strength of density dependence strongly increases with the uncertainty in population size. The
simulated data is based on the density independentmodel xtþ1 ¼ r þ xt þ "t with uncertainty on log-population size represented as yt ¼ xt þ ht . The estimated
strength of density dependence (ordinate) is themaximum likelihood estimate of b in themodel ytþ1 ¼ r þ ð1� bÞyt þ "t over 30 time steps in which y is treated
as the true log population size. In abscissa, SEðyt=xtÞ ¼ SEðhtÞ is the coefficient of variation of the estimated population size. Dotted line: Mean estimate b̂
(5,000 replicates each), vertical lines: 95% limits of the 5,000 replicates.
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definitely preferable to any ad hoc estimate such as the
regression estimate from the previous model or the explicit
formulas proposed by Bulmer (1975). The MLE has to be
obtained numerically, with, according to Dennis et al.
(2006), special care because of potential multiple minima
in the likelihood (see also Polansky et al. 2009). This ap-
proach removes the substantial bias that would have been
present by ignoring the uncertainty in population size
(Fig. 2). However, the MLE is again only asymptotically
unbiased (i.e., suffers from some bias for realistic sample
sizes). As in the absence of sampling error, some bias cor-
rections could be obtained from the results on the autocor-
relation coefficient bias, extended to autocorrelated random
errors by Sawa (1978), based on the model presentation
in (10).
Moreover, the distribution of the MLE under H0 b ¼ 0

cannot be easily obtained (Dennis et al. 2006). Thus, it
cannot be used without care for a test of density dependence.
Dennis et al. (2006) also discuss alternative estimation meth-
ods, based in particular on the first-order differences of the
estimated log-population sizes (yt). Knape and De Valpine
(2012) go one step further with this approach by implement-
ing a test of density dependence based on the likelihood ratio
statistic between model (7, 8) and its density independent
version, obtaining its distribution under H0 b ¼ 0 by
parametric bootstrap, exactly as Dennis and Taper (1994)
did for the model without uncertainty on population size. To
avoid distributional problems with the test statistics, one can
use a Bayesian approach, easily implemented in WinBUGS
(Lunn et al. 2000) or in R via JAGS (Plummer 2003) using,

for example, a 95% credible interval as an admissible set of
parameter values. Bayesian approaches also allow for flexi-
bility in the functional form of the state equation (i.e., the
shape of density dependence) and in the distribution of the
random terms. These approaches currently seem the most
reliable and the handiest ones, even if the underlying prop-
erties of the models (e.g., the degree to which the various
parameters are separately identifiable) do not depend on the
estimation method and still remain often problematic.
Let us briefly examine the performance of these

approaches, first by simulation. Deviance contours from
simulated data (Fig. 3) show no evidence of local minima
at the scale considered. However the estimates of r and b are
strongly correlated for realistic lengths of the time series.
They behave as the estimated intercept and slope of a re-
gression when the dependent variable values are on a same
side of the origin, to an even greater extent because of the 2
levels of uncertainty (process þ sampling) and the depen-
dency over time (equation 10) they induce. The estimate of
the process and sampling standards errors, SEð"tÞ and
SEðhtÞ, are also highly correlated, although to a lesser degree
than the estimates of r and b, whereas the correlation be-
tween the 2 parameter subsets remain moderate. How does
this translate in a real world example?
Let us use as an illustrative example the spring population

surveys of greater snow geese (Chen caerulescens atlantica) in
Quebec from 1973 to 2002 (Gauthier et al. 2007). The
deviance did not show local minima. Out of over 1,000
iterative searches starting from random initial values, only
21 did not fully converge in 1,000 iterations; 15 had practi-

Figure 3. Deviance (�2 � log-likelihood) contours of simulated trajectories of increasing number of time steps (T ¼ 10, 20, 50, and 100) of the density-
dependent model xtþ1 ¼ r þ ð1� bÞxt þ "t with uncertainty on log-population size represented as yt ¼ xt þ ht . The parameters used in the simulations are
r ¼ 0.1, b ¼ 0.3, SEð"tÞ ¼ 0.2, and SEðhtÞ ¼ 0.4. The deviance is represented under SEð"tÞ ¼ 0.2, SEðhtÞ ¼ 0.4 as a function of b (in abscissa, from�0.3 to
0.7) and r (in ordinate, from �0.5 to 0.7). The contours clearly show that in presence of uncertainty on population size, the likelihood and the maximum
likelihood estimates are well behaved in the absence of model misspecification; and for a realistic number of time steps (<50), the estimates of r and b will
be strongly positively correlated, making it difficult to distinguish between low intrinsic growth rate and light density dependence versus high intrinsic growth
rate and strong density dependence.
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cally converged; and 6 were still not at the global optimum.
They concerned searches starting from large sampling stan-
dard error and small process standard error, a combination
mimicking a short, instable time series.
The MLEs of r and b are highly correlated (0.9989,

Table 1), and the MLE of r (0.3191) seems unrealistic
(Table 2, second row) as it corresponds to a 37.6% increase
per year. These 2 features combined make the estimate of the
coefficient of density dependence (b) suspicious.
The correlations between estimates (Table 1) emphasize

the difficulty to separately estimate the sampling and process
variance, and even more, r and b, which are nearly not
separately estimable. The latter point makes practical sense;
similar population trajectories can arise as the result of a high
intrinsic growth rate and a strong density dependence, or a
weaker intrinsic growth rate and a low density dependence
(Fig. 4). The set of 4 parameters nearly appears as a set of 2
macro-parameters, 1 for the deterministic trajectory, the
other 1 for the uncertainty. Based on our simulations
(Fig. 3) and a variety of unpublished examples, we think
this situation is general. It immediately leads to consider the
use of external information to improve the identifiability.
Bayesian approaches using appropriate prior distributions on
the parameters appear then as a necessity, rather than just an
algorithmic convenience.
An estimate of the sampling standard error will often be

available, for example, when the population size estimates
come from capture–recapture (e.g., Dennis and Otten 2000,
who do not account for this uncertainty in their analysis),
from stratified sampling (as is the case with the greater snow
goose), or more directly, through replicated population sam-
pling (Dennis et al. 2010). However, because of the high
correlation with the estimated coefficient of density depen-
dence, and because of the unrealistic estimate often obtained,
as in the snow goose example, the main target for external
information is certainly the intrinsic growth rate, r. We
strongly suspect that a fair part of published examples corre-
spond to unrealistic estimates of r, without being able to
check, as the estimates of r are rarely given in published
examples because of the focus on the coefficient of density
dependence, b.
Assuming in the snow goose example a Gaussian prior

distribution for r with mean 0.20 and standard error 0.06
(i.e., with 95% of the density between 0.12 and 0.28), con-
straining r to a realistic value for such a species (Niel and
Lebreton 2005, their Table 2) did improve the results
(Table 2, third and fourth row) and provided evidence of
very weak density dependence, with nearly no biological
significance.

The population size survey appeared as fairly precise, as the
MLE of the standard error of the log population size (coef-
ficient of variation was 0.0607) was comparable in magnitude
to the field estimate (10% or less; Gauthier et al. 2007:1422).
This fairly good precision limited the bias of the naı̈ve
regression approach (Table 2, first row), with a 95% confi-
dence interval for the coefficient of density dependence
encompassing 0, despite its bias. Accounting for uncertainty
in population size not only removes a bias, but also increases
the precision on the coefficient of density dependence by
reducing the estimate for the process standard error.
Contrary to Dennis et al. (2006) and Knape and De

Valpine (2012), we found no pervasive presence of local
minima in the likelihood, although we agree that care should
be exercised on this point (Knape 2008). The sampling
correlation between the estimates of r and b and the resulting
near non-identifiability is, for us, the main problem. Results
from simulated data (Fig. 3, and unpublished results on
shorter time series) and a few other unpublished examples
indicate similar general properties of what remains in the
words of Dennis et al. (2006) a ‘‘minimal model.’’ The
improvement brought by using a prior for the intrinsic
population growth rate encourages refining the model and
combining it with further pieces of external information, to
improve its moderate performance. It gives a central role to
Bayesian approaches, which also bring a great deal of flexi-
bility. We do not think considering a value of b̂ significantly
differing from 0 as a fair evidence for density dependence
without checking if the associated r̂ value makes sense. We
currently recommend, as a minimal step, a careful look at the
estimated intrinsic growth rate, and the use of a prior for r
based on comparative demography approaches (e.g, Niel and
Lebreton 2005).

From a Minimal to Realistic Models
Besides the difficulties just mentioned, the minimal model
above may be inappropriate in practice for a variety of reasons
(Lebreton 2009). The most prominent issues are:

1) Environmental covariates have to be taken into account to
reduce the residual standard error and enhance power
and, if negatively autocorrelated, to distinguish their
effect from that of density dependence (e.g., Lebreton
1990).

2) Age structure (e.g., with delayed recruitment) may require
considering dependency over several time steps in com-
ponents of population size.

3) Further structure such as spatial cells may have to be con-
sidered, for example, to model local density dependence

Table 1. Sampling correlations between the maximum likelihood estimate of the parameters of the stochastic Gompertz model for the greater snow goose data
from Gauthier et al. (2007).

Parameters
(as rows and columns)

Sampling
standard error, SE(ht)

Process
standard error, SE(et) Intrinsic growth rate, r

Coefficient of
density dependence, b

SEðhtÞ 1.0000 �0.7063 0.2955 0.2910
SEð"tÞ �0.7063 1.0000 �0.2947 �0.2900
r 0.2955 �0.2947 1.0000 0.9989
b 0.2910 �0.2900 0.9989 1.0000
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(Murdoch 1994) or dependence on some components of
population size.

4) The response to density may be nonlinear and more
complex functional forms may have to be considered
(e.g., Dennis et al. 2006). Comparative explorations of
the functional form based on naı̈ve regressions neglecting
uncertainty in population size (Sibly et al. 2005) appear as
highly questionable.

Neglecting any of these issues may result in a model mis-
specification, and thus in biases of the estimate of the inten-
sity of density dependence and the corresponding tests or
diagnostics of density dependence.
Although in the original presentation by Bulmer (1975) the

minimal model was presented as a specific statistical object,
the state-space model point of view opens a number of
perspectives (De Valpine 2002). For instance, generalizing
the state equation to account for an environmental covariate,
zt, as xtþ1 ¼ r þ ð1� bÞxt þ czt þ "t is relatively easy. Good
examples are provided by Jacobson et al. (2004) and Pasinelli
et al. (2011). It is also possible to adapt the model to
particular life cycles. A good example of a model with a
seasonal life cycle is provided by Stenseth et al. (2003). In all
such models, the main potential bias of the slope for density
dependence is removed by incorporating the population size
uncertainty in the observation equation. However, the slope
remains biased for finite sample sizes to an unknown degree.
The likelihood for such models can be multimodal (Polansky
et al. 2009) and as a consequence the MLE can often be
difficult to obtain.
Parametric bootstrap for such realistic models (e.g., with

age structure, with covariates) may be tedious and remain
thus confidential until a specialized user-friendly piece of
software is produced. Restricted maximum likelihood
approaches based on first order differences found promising
by Dennis et al. (2006) could be useful, but have yet to be
investigated in such a more complex setting. A Bayesian
approach seems the most straightforward treatment. As an
alternative to Markov chain Monte Carlo algorithms, the
posterior distributions can be obtained through numerical
integration (De Valpine and Hastings 2002), and explicitly
in simple cases under Gaussian distributions.

An Overview of Methods Based on Time Series of
Estimated Population Sizes
The first clear recommendation is to abandon all methods
not accounting for uncertainty in population size, as they are
unavoidably biased when used with real world, noisy esti-
mates of population size. This conclusion, although devel-
oped here based on a simple model, applies to any similar
approach, such as the regression of observed growth rate,
ytþ1 � yt, versus observed population size yt as well illustrat-
ed by Freckleton et al. (2006; Fig. 1c). The resulting bias is
particularly vicious in meta-analyses, in which the estimated
proportion of populations subject to density dependence will
unavoidably be overestimated. This was suspected in the
analysis of Brook and Bradshaw (2006), by Lebreton
(2009), and demonstrated for these same data by Knape
and De Valpine (2012). Brook and Bradshaw concludeT
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density dependence in more than 75% of the cases studied,
whereas, accounting for uncertainty in population size esti-
mates and using a Bayesian approach, Knape and De Valpine
conclude significant density dependence in only 16% of the
case studied. Similarly, based on reliable tools, Jamieson and
Brooks (2004) conclude weak to moderate density depen-
dence among American ducks. We still suspect part of these
conclusions would not resist a close examination of the
resulting intrinsic growth rate estimates.
The state-space model formulation provides a sensible

approach to account for uncertainty in population size
(Dennis et al. 2006), to develop specific models accounting
for environmental covariates, age structure, etc., and to test
these models for density dependence in presence of such
potentially confounding effects.
Two intermingled issues severely limit the potential of such

models if used by themselves:

1) Numerical issues (multiple maxima to the likelihood or
sensitivity to priors, depending on the type of algorithms
used) and problems of bias associated with finite sample
size, which currently make such models difficult to use
without specific help from a specialist.

2) Low power and identifiability problems as a result of the
shortness of the time series and the 2-level uncertainty, in
particular if further complexities are brought in the mod-
el, at an unavoidable cost in terms of number of param-
eters to be estimated.We would rarely expect evidence for
density dependence with fewer than 30 points and we
think external information on the intrinsic growth rate
has to be seriously considered in any such analysis, unless
one wishes to keep the grail inaccessible.

The situation is somewhat similar to that of capture–
recapture models for closed populations, whose status rapidly

moved in the last few years from an innocuous, fairly stan-
dard approach to that of delicate, specialized models with
severe issues of bias and robustness (Link 2003).
We will come back in greater detail in the general discus-

sion to the potential of state-space models.

DETECTING AND ESTIMATING
DENSITY DEPENDENCE BASED
ON TRAITS

By contrast, one clear type of evidence for density depen-
dence concerns the response of life history traits to changes in
population size. Surprisingly, most such studies are observa-
tional, correlative studies relating particular traits to observed
changes in population size over time. Some qualify as quasi-
experiments, as based on a clear population crash or explosion
(e.g., Ashley et al. 1998). Despite the current development of
experimental ecology, few manipulative experiments of den-
sities have ever taken place. The few such studies with nest
boxes (Alatalo and Lundberg 1984, Torok and Toth 1988),
although quite convincing, do not take full advantage of an
experimental setting, notably in terms of block design and
replication (see also Newton 1994). Bartmann et al. (1992)
provide a good example of an experimental study of density-
dependent compensatory mortality in the mule deer
(Odocoileus hemionus) with several replicates.
The traits investigated in a search for density dependence

can be morphological, such as body weight (e.g., Gaillard
et al. 1996), and are then relatively simple to study.
Demographic traits, such as fecundity, can be studied in a
similar fashion (e.g., Arcese and Smith 1988). Demographic
traits less directly measurable, such as survival, require more
sophisticated approaches such as capture–recapture models
(Lebreton et al. 1992, roe deer [Capreolus capreolus];
Catchpole et al. 2000, Soay sheep). A full review of studies

Figure 4. Reconstructed log spring population size for the greater snow goose, based on the relationship xtþ1 ¼ r þ ð1� bÞxt . Plain line: maximum likelihood
estimates of r and b; dotted line: estimates under a Gaussian prior distribution for r with mean 0.20 and standard error 0.06. The ability to discriminate among
pairs of values (r, b) is obviously very low, as different pairs of values give closely similar curves.
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relating estimated population size to life history traits,
whether demographic or not, is beyond the purpose of
this article. Bonenfant et al. (2009) provide a broad review
of density dependence in mammals, discussing trait response
to density, as well as different responses by different seg-
ments of the population, such as males and females or age
classes. Newton (1998) reviews a number of trait–density or
trait–resource relationships in birds.
In all analyses of traits, one has to deal with some kind of

linear model between the density or population size (possibly
transformed, to log, to discrete categories), xt, and the trait at
time t in individual j, ztj:

ztj ¼ aþ bxt þ "t þ htj (11)

The model may have to incorporate further effects, as the 2-
level sampling (individuals and yrs) raises some specific issues
(whether for instance the same individuals are sampled over
several years or not). Environmental covariates can easily be
incorporated as additive effects (Lebreton et al. 1992, roe
deer; Gaillard et al. 1996 for morphometric traits; Catchpole
et al. 2000 for survival; Crespin et al. 2006 for recruitment).
The prominent point common to all approaches is again that
the density is always a proxy for something else and is always
knownwith some uncertainty (i.e., we are again faced with an
error-in-variable problem). Model (11) should be accompa-
nied by an observation equation, yt ¼ xt þ &t . When using
the regression model ztj ¼ aþ byt þ "t þ htj , attenuation of
the slope estimate towards 0 (McArdle 2003) is unavoidable.
Clearly, any test on the slope will be conservative (i.e.,
contrary to methods based on population size, the presence
and intensity of density dependence is not overestimated),
which is good news. As we usually do not have much control
on the uncertainty in population size, several possibilities are
available to account for the error-in-variable problem, of
which most remain to be explored:

1) Use an error-in-variable model (Fuller 1987); however, all
such models are weakly identifiable, through stringent
distributional assumptions, as they exploit differences in
distribution in the e and the h terms to estimate their
relative effect on the variation in the response variable.

2) Correct for bias. Barker et al. (2002), develop such an
approach in the context of capture–recapture survival
models. They develop 2 examples with seabird data
that provide no evidence for density dependence.

3) Use information on the precision of population estimates,
that is, an estimate or a prior distribution for varð&tÞ, to
improve identifiability in the error-in-variable model.

4) Recast the capture–recapture model as a state-space mod-
el (Gimenez et al. 2007) and consider an observation
equation yt ¼ xt þ &t in addition to the observation equa-
tions needed for representing the recapture process. In
such an approach, survival for instance is represented as
state equations made of Bernoulli (0/1) random variables,
and the detection/recapture process as observation equa-
tions also made of 0/1 random variables.

5) Use instrumental variables, a tool commonly used in
econometrics (e.g., Stock 2001). An instrumental variable

will be, in our context, a variable uncorrelated with the
random term for estimated population size, &t , and cor-
related with true population size. Alternatively, indepen-
dent estimates of population size could be good
candidates (for an example using multiple surveys; see
Fromentin et al. 2001).

The impact of the error-in-variable problem is clearly
relatively limited and, although some statistical care should
be exercised (notably with capture–recapture methodology),
the assessment of density dependence based on traits is
relatively straightforward.

DISCUSSION

The first part of our review, on methods for detecting density
dependence based on population size surveys, leads first to
several straightforward recommendations, to avoid the per-
vasive risk of overestimating the strength of density depen-
dence. The first recommendation is that methods neglecting
uncertainty in population size should definitely be aban-
doned. The second is that the Bayesian approach to simple
state-space models, such as the linearized Gompertz model,
accounting for uncertainty in population size should be used,
with some caution because of practical difficulties. We rec-
ommend also a reasonable prior based on external compara-
tive information is used for the population growth rate. Even
when these difficulties are correctly handled, which may
require the assistance of an applied statistician with good
knowledge of these models and their tricks, the simplest
models may remain strongly misspecified because they ne-
glect a number of features such as environmental covariates,
age structure, and a particular functional form of density
dependence. Moving away from such minimal models is
alike moving from simple regression to more sophisticated
linear or nonlinear models. One cannot avoid a trade-off
between the improvement brought by a better adaptation of a
more complex model to the data (such as a decrease in
residual variance), and the loss of precision implied by a
greater number of parameters: modeling remains the art
of oversimplification. Again, in this context, a Bayesian
approach is probably the preferable approach, with caution
exercised. In spite of their statistical and practical difficulties,
methods based on population size surveys remain very at-
tractive as they immediately translate into population pro-
jections. They are often the only practicable analyses of
density dependence when population size surveys only are
available, a common situation for managed wildlife popula-
tions. However, time series with fewer than, say, 30 time
steps (i.e., in most cases, yrs) have little power. One has to
recall that when the power drops down to values close to the
test level a, the analysis boils down to deciding for density
dependence or no density dependence on the basis of a
random number.
When moving from methods based on population size

surveys to methods for detecting density dependence on
traits, one is, in some sense, moving from pattern to process
(Swihart et al. 2002). The most straightforward methods for
traits, such as using density as a covariate in capture–recap-
ture models, are conservative (i.e., tend to underestimate the
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strength of density dependence), which means that the evi-
dence for density dependence is reliable when present.
Several perspectives to correct for the conservative effect
of uncertainty in population size will probably be explored
in the near future. The most promising is the use of the state-
space formulation of capture–recapture models (Gimenez
et al. 2007), completed by an observation equation for
population size to properly model density dependence.
Although they can thus be used more confidently than
approaches based on population size surveys, methods for
density dependence in traits do not easily lead to population
projections. Even when the traits under study are demo-
graphic, they can only be translated into projections through
a projection model such as a matrix model. Nevoux et al.
(2011) examine the consequences of density dependence in
different traits of the Mauritius kestrel (Falco punctatus) by
integrating these different traits and their density-dependent
relationships into a nonlinear discrete time model, studied
independently from the trait analyses. In the absence of
correction for attenuation, the results of such models should
be looked at with a critical eye. Moreover, deterministic
models do not account for the interplay of density depen-
dence and various forms of stochasticity.
As the state-space formulation can easily encompass pro-

jection models (e.g., Gauthier et al. 2007) and as it brings
decisive advantages for assessing density dependence wheth-
er from population surveys or in studies of traits, the future of
density dependence modeling clearly lies with state-space
modeling.
One can easily foresee what could be a state-space model

incorporating density dependence in a wildlife population,
based on integrated monitoring covering both population
size surveys and individual longitudinal data (i.e., capture-
mark-recapture data in the broad sense). Such a model has to
combine different types of state equations with, possibly at
some stage, the need to account for the lack of independence
between the marked individuals and the overall population:

1) Multinomial distributions of individual trajectories on a
Markov chain (reducing to Bernoulli equations in the case
of survival), with parameters possibly dependent on pop-
ulation size (i.e., density dependent).

2) Equations to iterate a population vector submitted to
demographic stochasticity.

The corresponding observation equations are:

1) Discrete variables such as Bernoulli for the capture–re-
capture process.

2) Equations for the uncertainty in the observation for pop-
ulation size (as a vector or total number).

A model on these lines is proposed by Abadi et al. (2012).
Rotella et al. (2009) go one step in this direction by examin-
ing Weddell seal (Leptonychotes weddellii) population size
estimates derived together with demographic parameters
from a capture–recapture analysis within a stochastic
Gompertz model. The demographic parameters are, howev-
er, not examined for density dependence and the estimated
intrinsic growth rate is not given.

The first consequence of this evolution is that detecting and
estimating density dependence has already started moving
from a push-button procedure to a full size modeling exer-
cise. A second consequence is that the gap between projec-
tion models and statistical models is progressively filled. In
such a promising state of the art, one may also expect a
progressive integration of models based on mechanism at
the individual levels, in the spirit of individual-based models,
but based on state-space models deriving from the classical
phenomenological approach to population dynamics
reviewed here (e.g., Stephens et al. 2002).
This evolution is fortunate because density dependence as a

complex biological phenomenon has no reason to be uni-
formly reduced to a simple omnibus model, apart from a
theoretical point of view that makes the logistic growth curve
(Verhulst 1838) so useful. We have to think of density
dependence as a complex biological process interacting
with other processes rather than in terms of a simple equa-
tion; modern statistical and modeling tools make such a
synthesis within reach.
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