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Summary. The need to consider in capture-recapture models random effects besides fixed effects such as those of envi-
ronmental covariates has been widely recognized over the last years. However, formal approaches require involved likelihood
integrations, and conceptual and technical difficulties have slowed down the spread of capture–recapture mixed models among
biologists. In this article, we evaluate simple procedures to test for the effect of an environmental covariate on parameters such
as time-varying survival probabilities in presence of a random effect corresponding to unexplained environmental variation.
We show that the usual likelihood ratio test between fixed models is strongly biased, and tends to detect too often a covariate
effect. Permutation and analysis of deviance tests are shown to behave properly and are recommended. Permutation tests are
implemented in the latest version of program E-SURGE. Our approach also applies to generalized linear mixed models.
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1. Introduction
The basis of modern capture–mark–recapture (CMR) mod-
els aiming at estimating survival is the Cormack–Jolly–Seber
(CJS) model (Cormack, 1964; Jolly, 1965; Seber, 1965),
which considers survival and recapture probabilities varying
over time. Based on generalized linear model (GLM) ideas
(McCullagh and Nelder, (1989), models considering linear
constraints on these two types of parameters in the CJS model
have become a standard tool for data analysis in population
biology (Lebreton et al., 1992). The cell probabilities of the
multinomial distributions inherent in the model are functions
of the parameters of interest, generally estimated by numeri-
cal maximization of the likelihood. As a typical example, sur-
vival probabilities φi can be represented as varying over time
(indexed as i) in relation with values of an environmental co-
variate xi through a link function in a fashion analogous to
logistic regression, as logit(φi ) = μ + βxi (North and Morgan,
1979; Clobert and Lebreton, 1985). This type of model pro-
vided for instance evidence of a relationship between survival
and rain in the Sahel wintering area of the white stork popula-
tion breeding in Alsace (Eastern France) (Kanyamibwa et al.,
1990). A shortcoming of this quite useful formulation is to con-
sider that the survival probability is entirely determined by
the environmental covariate value. The time-dependent CJS
model and these constrained models can thus be viewed as
fixed effect models. However, in the CJS model, it seems nat-
ural to consider that the variation over time in survival prob-
ability can be represented by values drawn from a random
distribution rather than by a fixed set of parameter values
(Burnham et al., 1987; Lebreton, 1995; Barker, Fletcher, and
Scofield, 2002; Burnham and White, 2002; Barry et al., 2003).

In the same spirit, when variation in survival is driven by an
environmental covariate, a model more general than the fixed
effect model considers that the variation in only partly driven
by the environmental covariate, as logit(φi ) = μ + βxi + εi .
The last term, representing unexplained temporal variation
in survival, is a random effect. Including such an effect in the
model amounts to considering that the sources of variation in
survival beyond that induced by the environmental covariate
are reasonably randomized over the study years. Moreover,
in nearly all cases, the covariate can be viewed as a proxy to
the actual latent variable driving the variation in survival. In
this case, adaptations of regression models accounting for er-
ror in variable are recommended (Barker et al., 2002), but the
model above appears as a reasonable approximation. The need
to consider random effects beside any fixed effect in capture–
recapture models is well emphasized by Barry et al. (2003)
and Gimenez and Choquet (2010).

The model logit(φi ) = μ + βxi + εi , with a fixed and a ran-
dom effect, is a mixed model, in the usual sense of analysis of
variance (Searle, Casella, and McCulloch, 1992), the sampling
variability coming on top of that represented by εi , through
the capture–recapture sampling. Mixed models are a natu-
ral and often relevant generalization of fixed effect models in
all models in which a GLM philosophy can be developed. It
seems thus natural to give a central role to mixed models in
capture–recapture analyses. In theory, the likelihood of such
models with random effects can be obtained by integrating
the likelihood of the corresponding fixed effect model over
the distribution of the random effects. In practice, technical
difficulties prevent a straightforward implementation of ran-
dom effects, as the multiple integration required is sufficiently
involved to be in general impractical (Johnson and Hoeting,
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2003; see, however, Gimenez and Choquet, 2010; Choquet and
Gimenez, 2011). Burnham and White (2002) propose simple
procedures (available in program MARK, White and Burnham,
1999) for estimating the parameters, deviance, and Akaike
information criterion (AIC) of models with random effects.
However, model selection based on an information criterion
may be not fully appropriate when studying environmental
covariates. First, when a single major covariate is of interest,
a formal test with an a priori P-level may be preferable, in
particular as a one-tailed test when a clear prediction on the
direction of the covariate effect is available. This will often be
the case in the context of climate change, such as, e.g., with
the expected detrimental effect of an increase in sea surface
temperature on the survival of king penguins Eudyptes patago-
nicus (Le Bohec et al., 2008). Second, when several covariates
have to be considered, the number of parameters remains con-
stant whatever the covariate considered. Then, information-
based model selection reduces to preferring the model with the
lowest deviance, and can thus produce grossly misleading re-
sults in a form of data dredging, a trap rather commonly asso-
ciated to excessive confidence in hypothesis testing (Stephens
et al., 2005). A set of tests corrected for multiple testing by,
say, a Bonferroni correction, is then clearly preferable.

Both estimation and tests in nonlinear mixed models fre-
quently require specialized approaches, such as Bayesian pro-
cedures (Brooks et al., 2000; Barry et al., 2003), that currently
tend to limit the spread of mixed capture–recapture mod-
els among biologists (Gimenez, 2008). Bayesian approaches
indeed appear as the natural framework to handle capture–
recapture mixed models (King et al., 2009, p. 259 ff) and
should become a privileged approach in the long run. How-
ever, difficulties with the concepts of mixed models and their
implementation in WinBUGS or R (King et al., 2009, chap-
ter 7) may discourage population biologists accustomed to
the flexibility and easiness of fixed effect models implemen-
tation in software such as MARK or E-SURGE. Grueber et al.
(2011) emphasize in a broader context some of the practi-
cal difficulties in using information theoretic approaches with
complex models. Indeed, in a review of CMR applications
linking survival to environmental variables, Grosbois et al.
(2008) found only 2 papers (out of 78) considering a random
effect for unexplained temporal variation. One of these papers
(Milner, Elston, and Albon, 1999) considers the probability of
detection is 1 and thus does not concern a CMR framework,
whereas the other one (Schaub, Kania, and Koppen, 2005)
provides estimates of variance components but does not con-
sider any test or information-based model selection. Indeed,
the few uses of CMR mixed models have been published by
methodologists (e.g., da Silva et al. 2008), population biolo-
gists being far from having gained full autonomy. Finally, all
approaches, whether based on empirical Bayes (shrunk) es-
timates (Burnham and White, 2002), numerical integration
(Gimenez and Choquet, 2010; Choquet and Gimenez, 2011),
or Monte Carlo Markov chain algorithms are based on an
approximation of some kind. It is thus necessary to pursue
the evaluation of such tools and bring new approaches in the
toolbox.

The purpose of this article is to propose and evaluate sim-
ple estimation and test procedures for testing for fixed ef-
fects (such as a test of H0 β = 0 in the covariate model) in

presence of a random effect. The simplicity of the procedures
proposed lies in that nothing is needed beyond the deviance
of fixed effect models. The analysis of deviance (ANODEV)
statistic (Skalski, Hoffman, and Smith, 1993) was proposed
as an alternative to the usual likelihood ratio test (LRT)
statistic to test for a fixed effect in presence of overdisper-
sion, based on an asymptotic F distribution. The ANODEV
statistic has also been used in an ad hoc fashion in the con-
text we consider here, i.e., in presence of unexplained variation
modeled as a random factor (Grosbois et al., 2006; Hénaux,
Bregnballe, and Lebreton, 2007). Moreover some simulations
empirically show that the ANODEV statistic and the corre-
sponding thresholds deduced from a Fisher–Snedecor distri-
bution seems to behave properly in the case we are considering
(Grosbois et al., 2008).

We investigate in what follows distributional properties and
behavior of the LRT and ANODEV statistics in simple CMR
mixed models under simple null and alternative hypotheses,
using a generalized least squares (GLS) approach. GLS have
been already used in the context of random effects in CMR
models, with a focus on estimation, by Burnham et al. (1987),
Gould and Nichols (1998), and Burnham and White (2002).
Our contribution complements that by Burnham and White
(2002) in several respects:

• We incorporate in our approach the statistical depen-
dencies between estimates of the parameters of interest
and the other parameters in the model (such as recapture
probabilities), a point not accounted for by Burnham and
White (2002).

• We show through simple formulas how the deviances and
differences in deviance are modified by the presence of a
random effect, and account for the presence of overdis-
persion, two points not covered by Burnham and White
(2002). We demonstrate in particular that the usual LRT
is biased by the presence of an unaccounted random ef-
fect, and that LRT results can thus be grossly misleading.

• Based on these formulas, we obtain an explicit estimate
of the temporal process variance, simpler than the nu-
merical procedure of Burnham and White (2002).

• We concentrate on test procedures, as a comple-
ment to the focus on AIC by Burnham and White
(2002), because, as discussed above, the potential ef-
fect of environmental variables will often preferably
be examined through a formal test, often one tailed,
rather than through an information-index-based model
selection.

We also examine the performance of permutation tests. We
complement formal calculations by simulations and present
two illustrative examples. Although, for the sake of clarity, we
restrain our attention to a single time-dependent covariate in
simple CJS models, the material presented here can easily be
extended to more general situations, and is also applicable to
GLM models.

2. Models, Parameters, and Notation

Let θ =

[
η
ς

]
be the n x 1 column matrix (vector) of param-

eters of a partly time-dependent CMR model. The two sub-
matrices η and ς have p and q parameters, respectively, i.e.,
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n = p + q. The submatrix η is formed of the time-dependent
parameters. For instance η is a set of logit-transformed time-
dependent survival probabilities, and ς is a set of recapture
parameters. The model is considered to be full rank, i.e.,
to have all its parameters separately identifiable. General-
ized inverses have to be used in the less-than-full-rank case
(Searle et al., 1992, p. 415). We assume overdispersion, with
a coefficient denoted as c, can be present. This coefficient is
estimated as ĉ, in general from goodness-of-fit procedures (Le-
breton et al., 1992). If there is no overdispersion, one simply
uses c = ĉ = 1 in what follows.

Block matrix notation is used throughout, with straight-
forward notation of dimensions.

We consider three fixed effect models (e.g., Lebreton et al.,
1992):

• Model Ft , in which η is left unconstrained. The max-
imum likelihood estimates (MLEs) of θ is denoted as
θ̂t . Its full-rank estimated variance–covariance matrix
is denoted as ĉΣt , with no circumflex on the ma-
trix for the sake of simplicity. Σt is derived under
the assumption of independence of individuals, i.e., un-
der the standard product-multinomial likelihood of the
CJS model, and is multiplied by ĉ to account for
overdispersion.

• Model Fx in which η is constrained as a function of a co-
variate x. The constraint matrix for η is

[
1p ,1 X

]
=⎡

⎢⎣
1 x1

1 x2

... ...
1 xp

⎤
⎥⎦. The overall constraint matrix for θ is, in

block-matrix notation, the (p + q) × (q + 2) matrix Z =[
1p ,1 X 0p ,q

0q ,1 0q ,1 Iq

]
. Hence, in this model, θ = Z

[
μ
β
ς

]
,

which constrains η as η =
[
1p ,1 X

] [
μ
β

]
and leaves ς

unconstrained. The MLE of θ is θ̂x = Z

⎡
⎣ μ̂

β̂
ς̂

⎤
⎦, with esti-

mated covariance matrix ĉΣx with rank q+2.
• Model Fi in which η is constrained to be constant. The

variable i stands for intercept. The constraint matrix for

θ is, in block-matrix notation, S =

[
1p ,1 0p ,q

0q ,1 Iq

]
. In this

model, η = 1p ,1μ and ς is unconstrained. The MLE of θ is

θ̂i = S

[
μ̂
ς̂

]
with estimated covariance matrix ĉΣi , with

rank q+1.

The deviances at the MLEs are denoted as D(θ̂t ) ≤ D(θ̂x ) ≤
D(θ̂i ), for models Ft ,Fx , and Fi , with n = p + q ≥ 2 + q > 1 +
q identifiable parameters, respectively. Again, these numbers
of parameters for the full rank case can be readily adapted
to the rank-deficient case. The deviances may be relative, i.e.,
have an arbitrary origin, as only differences in deviance will be
used. These three fixed effect models can easily be fitted using
standard CMR software such as MARK (White and Burnham,
1999), M-SURGE (Choquet et al., 2004), and E-SURGE (Choquet,
Rouan, and Pradel, 2009).

Two mixed models are considered:

• Model Mi in which ηi = μ + εi , i = 1,...p, i.e., η = 1p ,1μ +
ε. The random effect vector ε is assumed to be dis-

tributed as Np (0, σ2Ip ). The overall model is θ =

[
η
ς

]
=

N (

[
1p ,1μ

ς

]
, σ2V = σ2

[
Ip 0p ,q

0q ,p 0q ,q

]
), with an obvious

definition of V , and in which the distribution of the last
q components, ς , is degenerate. This model corresponds
in what follows to the absence of a covariate effect, i.e.,
to H0.

• Model Mx in which η =
[
1p ,1 X

] [
μ
β

]
+ ε. The ran-

dom effect ε is again assumed to be distributed as
Np (0, σ2Ip ). If β �= 0, this model corresponds to a covari-
ate effect, i.e., the alternative hypothesis H1. If β = 0,
model Mx reduces to model Mi .

3. LRT and ANODEV Statistics
We want to investigate the properties of the LRT and the
ANODEV statistics (Skalski et al., 1993) when used to test
for H0: β = 0 when σ2 �= 0, i.e., in presence of a random effect
and, possibly, overdispersion. It is a test of H0 β = 0 in model
Mx , or, equivalently a test of model Mx vs model Mialthough
it is based on statistics derived from fitting modelsFt ,Fx , and
Fi .

The LRT statistic is G = D(θ̂i ) − D(θ̂x ). We define H =
D(θ̂x ) − D(θ̂t ) and will use G + H = D(θ̂i ) − D(θ̂t )

The ANODEV statistic is

F =
D(θ̂i ) − D(θ̂x )

(D(θ̂x ) − D(θ̂t ))/(p − 2)
=

G

H/(p − 2)
.

The three quantities G, H, and G+H, are analogous to re-
gression (between), within, and total sums of squares, respec-
tively, in ordinary linear regression and we will indeed approx-
imate them below by quadratic forms. Under the assumptions
of model Fi and in presence of overdispersion only, a different
context, the ANODEV statistic F is considered as asymp-
totically following a Fisher–Snedecor distribution F (1, p − 2)
(Skalski et al., 1993) although, to our knowledge, no formal
proof was ever published.

4. Approximating the Deviance and MLEs by a
Generalized Least Squares Approach

The deviance, calculated in the same fashion under overdis-
persion or not, can be asymptotically approximated from
the asymptotic normal distribution of the MLEs assuming
no overdispersion, as minus twice the log probability den-
sity (Lebreton et al., 1995), which in the full rank case
is (θ̂t − θ)′Σ−1

t (θ̂t − θ) + log(det(Σt)) + (p + q)log(2π), assum-
ing Σt as known without uncertainty, an assumption asymp-
totically acceptable.

The GLS constrained estimates are obtained from θ̂t by
applying Σ−1

t -orthogonal projectors on Im(Z) and Im(S),
PZ = Z(Z ′Σ−1

t Z)−1Z ′Σ−1
t and PS = S(S ′Σ−1

t S)−1S ′Σ−1
t ,

respectively.
The MLE of θ under model Fx , θ̂x is asymptotically equiv-

alent to θ̃x = PZ θ̂t , the GLS estimate derived by projection
from θ̂t , the MLE under model Ft : Similarly, θ̂i , the MLE of
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θ under model Fi , is asymptotically equivalent to the GLS
estimate θ̃i = Ps θ̂t .

The constant terms disappear in differences in deviance and
one may use:

D(θ) ≈ (θ − θ̂t )Σ−1
t (θ − θ̂t ). (1)

Using Σ−1
t -orthogonality, one gets in turn the following

asymptotic approximations:

G = D(θ̂i ) − D(θ̂x ) ≈ D(θ̃i ) − D(θ̃x )

≈ ((PZ − PS )θ̂t )′Σ−1
t ((PZ − PS )θ̂t ),

(2)

H = D(θ̂x ) − D(θ̂t ) ≈ D(θ̃x ) − D(θ̂t )

= ((I − PZ )θ̂t )′Σ−1
t ((I − PZ )θ̂t )

(3)

5. Results
5.1 Distributional Results
We get the following distributional results (see Web Appendix
A).

Under H0 β = 0:

(I − PZ )θ̂t ≈ Np+q (0p+q ,1, (I − PZ )(cΣt + σ2V )(I − PZ )′),
(4)

(PZ −PS )θ̂t ≈ Np+q (0p+q ,1, (PZ −PS )(cΣt + σ2V )(PZ −PS )′),
(5)

and, under H1 β �= 0:

(I − PZ )θ̂t ≈ Np+q (0p+q ,1, (I − PZ )(cΣt + σ2V )(I − PZ )′),
(6)

(PZ − PS )θ̂t ≈ Np+q ((PZ − PS )

[
Xβ
0q ,1

]
,

(PZ − PS )(cΣt + σ2V )(PZ − PS )′). (7)

One can show then (see Web Appendix A) that, if σ2 > 0,
the quadratic forms (2) and (3) cannot be distributed as pro-
portional to χ2. Thus, even in the absence of overdispersion,
the LRT statistic, G, does not follow under the mixed model
assumptions its usual asymptotic χ2 distribution valid under
the fixed model assumptions. Similarly, no distributional re-
sults such as noncentral chi-squared distributions can be ob-
tained under H1. Indeed, Σt is not a multiple of the identity
matrix, inducing complications similar to those arising in ran-
dom or mixed ANOVA models with unbalanced data (Searle
et al., 1992, p. 76).

When σ2 = 0, i.e., under fixed effects only and in presence
of overdispersion:

Under H0 β = 0:

(I − PZ )θ̂t ≈ Np+q (0p+q ,1, c(I − PZ )Σt (I − PZ )′), (8)

(PZ − PS )θ̂t ≈ Np+q (0p+q ,1, c(PZ − PS )Σt (PZ − PS )′), (9)

and, under H1 β �= 0:

(I − PZ )θ̂t ≈ Np+q (0p+q ,1, c(I − PZ )Σt (I − PZ )′), (10)

(PZ − PS )θ̂t ≈ Np+q ((PZ − PS )

[
Xβ
0q ,1

]
,

c(PZ − PS )Σt (PZ − PS )′).

(11)

Then, under both H0 and H1, H is asymptotically dis-
tributed as c times a chi-squared distribution with degrees
of freedom (df) equal to tr(I − PZ ) = p − 2, hence with ex-
pectation c(p − 2). Similarly, under H0, G is asymptotically
distributed as c times a chi-squared distribution with df equal
to tr(PZ − PS ) = 1, hence with expectation c. Cochran’s the-
orem in its general form (Rao, 1952, p. 55 (iii)) ensures the
independence of the chi-squared distributions to which G and
H are proportional. Under H1, the nonnull expectation in (11)
shifts the quadratic form distribution by

U = β2
[
X ′ 0

]
(PZ − PS )′Σ−1

t (PZ − PS )

[
X
0

]

= β2
[
X ′ 0

]
Σ−1

t (PZ − PS )

[
X
0

]
alike a weighted

version of β2SSE(X) in ordinary regression (see below). G is
then asymptotically distributed as c times a noncentral chi-
squared distribution with 1 df and noncentrality factor U/c
(Rao, 1952, p. 57 (vii)). It follows that the ANODEV statistic
F is, under the fixed model assumptions with overdispersion,
asymptotically distributed as a Fisher–Snedecor distribution
with 1 and p-2 df, centrally and noncentrally, under H0 and
H1, respectively. This provides to our knowledge the first
formal proof of the rationale for using ANODEV in presence
of overdispersion, as proposed by Skalski et al. (1993). The
central point is that H/(p − 2) provides an estimate of the
overdispersion coefficient c asymptotically independent of
G. When another independent estimate of c is available,
derived, e.g., from goodness-of-fit statistics, one can pool the
estimates and modify the F-test accordingly. The increase
in the df of the denominator will tend to increase power.
However, data sparseness often tends to bias toward low
values the estimate of the overdispersion coefficient deduced
from goodness-of-fit statistics. When sparseness is a concern,
the original ANODEV test might then be preferable, and the
user will have to exert his or her judgment. We show below
that the issue is also complicated by potential unexplained
environmental variation, i.e., when σ2 > 0.

5.2 Expectations under Mixed Models
In the absence of straightforward distributional results under
the mixed model assumptions, one remaining possibility is
to get expectations. A classical result on the expectation of
quadratic forms and trace is (Seber, 1977, p. 13):

ifE(Y ) = ν and if the covariance matrix of Y is Σ, then:
E(Y ′AY ) = tr(AΣ) + ν ′Aν

Then, under H0:

E(H) = tr(Σ−1
t (I − PZ )′(cΣt + σ2V )(I − PZ )), (12)

E(G) = tr(Σ−1
t (PZ − PS )′(cΣt + σ2V )(PZ − PS )), (13)

and, under H1:

E(H) = tr(Σ−1
t (I − PZ )′(cΣt + σ2V )(I − PZ )), (14)

E(G)=tr
(
Σ−1

t (PZ −PS )′(cΣt + σ2V )(PZ −PS )
)

+ U, (15)
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with again U = β2
[
X ′ 0

]
Σ−1

t (PZ − PS )

[
X
0

]
.

After some algebra, under H0:

E(G) = c + σ2tr(V Σ−1
t (PZ − PS )), (16)

and, under both H0 and H1:

E(H) = c(p − 2) + σ2tr(V Σ−1
t (I − PZ )). (17)

As a consequence, under H0, E(G + H) = c(p − 1) +
σ2tr(V Σ−1

t (I − PS )).
As apparent in (16), the expectation of the LRT statistic,

G, is thus inflated compared with its value under the fixed
model assumptions as soon as σ2 > 0. It departs thus from
the fixed model χ2 distribution in a severe fashion, even in
the absence of overdispersion.

The relevance of equations (16) and (17) to the conjec-
ture E(G)/E(H)/(p − 2) ≈ 1 under H0, as expected for an F-
statistic under H0, comes from tr(PZ − PS ) = rk(PZ − PS ) =
1 and tr(I − PZ ) = rk(I − PZ ) = p − 2. Were V Σ−1

t equal to
αIp+q , the result would hold exactly. One can thus expect it
to hold approximately. Under H1, E(G) is further increased by
a term proportional to β2, and in turn, as expected for a test
statistic in this case, E(G)/E(H)/(p − 2)is a monotonously
increasing function of |β|. Often, a one-sided test will be rel-
evant, based on predictions of the expected direction of an
environmental covariate effect on the demographic trait un-
der investigation.

The distribution of the ANODEV statistic when used to
test for a covariate effect can thus be expected to be ap-
proximated at least grossly by a Fisher–Snedecor distribution,
whatever the inflation of the LRT statistic induced by unex-
plained environmental variation and the level of overdisper-
sion. Because we are dealing with statistical tests, the quality
of the approximation has in particular to be checked for the
tails of the distribution, and is the subject of simulations be-
low.

Provided an estimate ĉ of c is available, equations (16)
and (17) lead also to straightforward empirical estimates
of σ2. One gets the estimates σ2 = G +H −ĉ (p−1)

tr (V Σ−1
t

(I−PS ))
and σ2 =

H −ĉ (p−2)
tr (V Σ−1

t
(I−PZ ))

, under H0 and H1, respectively. In the absence

of overdispersion, one has to use ĉ = 1. As underdispersion is
infrequent in practice (McCullagh and Nelder, 1989, p. 73)
and cannot be generated by dependencies or heterogeneities
among individuals, there are no reasons to use an estimate
ĉ < 1.

5.3 Permutation Distributions
Another approach is to obtain the distribution of the statis-
tic of interest over permutations of the fixed effect X, i.e.,
of the p covariate values. The resulting test is distribution
free and bears a relationship to the previous approach by the
fact that the usual F-tests in linear models are asymptotically
permutation tests (Kazi-Aoual et al., 1995). The combinato-
rial approach by Kazi-Aoual et al. (1995) failed here to lead
to explicit results for the moments of the ANODEV and LRT
statistics under the permutation distribution. One thus has to
use a complete enumeration of all permutations when feasi-
ble, or a random subsample of the p! permutations. D(θ̂t ) and
D(θ̂i ), the deviances of the fixed models Ft and Fi , respec-

tively, are fixed under any permutation of X. The ANODEV
F-statistic is then a monotonous function of the deviance of
the fixed model with covariate D(θ̂x ). Hence D(θ̂x ) or the
LRT-statistic G = D(θ̂i ) − D(θ̂x ) can be used equivalently to
the ANODEV statistic in a permutation test. The paradox is
solved by noticing that the expectation of the LRT statistic is
widely inflated by the random effect, and cannot be referred
to a χ2, even as an approximation, whereas the expectation
results and, as shown below, simulation results suggest the
Fisher–Snedecor distribution is a reasonable approximation
for the ANODEV statistic. However the threshold of the AN-
ODEV and LRT statistics and, as a consequence, that of the
conditional ANODEV–LRT test lead to the same rejection
and acceptance regions under permutation distributions. The
performance of permutation tests is examined in the two ex-
amples below.

5.4 Simulation Results
We present in Web Appendix B an examination through simu-
lation of the quality of the Fisher–Snedecor approximation for
the ANODEV statistic, by investigating the P-levels obtained
by using rejection thresholds based on the Fisher–Snedecor
distribution. We also check the performance of the LRT, and
that of the conditional test using either the ANODEV or the
LRT, respectively, depending upon H > p − 2 or H ≤ p − 2,
respectively.

In presence of unexplained environmental variation:

• The level of the ANODEV always remain close to
nominal;

• The level of the LRT is biased whatever the amount of
data and time intervals;

• The conditional test brings no further advantage: i.e.,
the moderate departure of ANODEV from the nominal
level does not seem to result from an accidentally low
denominator; and

• These results do not depend on the continuous or discrete
character of the covariate.

The departure of the LRT from the nominal test level
rapidly increases with the process standard error σ. The
ANODEV resists much better, with again, no clear advan-
tage brought by the conditional test, and no difference be-
tween a continuous and discrete covariate. As expected, the
LRT can thus be quite misleading, rejecting too often the null
hypothesis.

The power of ANODEV rapidly increases with the slope
value, and is quite high even under high levels of unexplained
environmental variation. Under σ > 0, the apparent power of
the LRT is high even for low values of the slope, because, as
the P-level, it is biased, a result emphasizing again the risk of
misleading conclusions.

6. Illustrative Examples
6.1 Dipper
Our first example is based on the CMR data obtained by
Marzolin (1988) in a study of the European dipper Cinclus
cinclus, and used by Lebreton et al. (1992) as a simple exam-
ple of constrained CMR modeling (see also Marzolin, Char-
mantier, and Gimenez, 2011, for a treatment of more extensive
data). A total of 254 adult dippers were ringed, released, and
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Table 1
Results for the three fixed effect and the two CMR mixed models for the dipper data (see text)

Survival Relative Number of identifiable AIC=
probability Model deviance DEV parameters NP DEV+2 NP

Time dependent Ft 659.730 7 673.730
Logit-linear relationship with flood covariate Fx 660.103 3 666.103
Constant Fi 666.838 2 670.838
Mixed model with flood covariate Mx 660.103∗ 3∗ 666.103
Mixed model, constant Mi 661.274∗ 4.531∗ 670.336

∗Based on the approach by Burnham and White (2002).

Table 2
Results for the three fixed effect and the two CMR mixed models for the white stork data (see text)

Survival Relative Number of identifiable AIC=
probability Model deviance DEV parameters NP DEV+2 NP

Time dependent Ft 1314.760 17 1348.760
Logit-linear relationship with Sahel rain covariate Fx 1345.318 3 1351.318
Constant Fi 1352.082 2 1354.082
Mixed model with Sahel rain covariate Mx 1317.751∗ 12.968∗ 1343.687
Mixed model, constant Mi 1317.362∗ 13.149∗ 1343.660

∗
Based on the approach by Burnham and White (2002).

Figure 1. Permutation distribution of the LRT statistic for the effect of the Sahel rain covariate on white stork survival,
referred to the standard χ2(1) distribution. The inflation of the LRT distribution due to the presence of unexplained variation
among annual survival probabilities is obvious.

Figure 2. Permutation distribution of the signed square-root ANODEV statistic for the effect of the Sahel rain covariate
on white stork survival, referred to a Student distribution t(p-2) = t(14). The unexplained environmental variation is totally
accounted for, as shown by the excellent match.

recaptured each spring from 1981 to 1987, i.e., over seven
occasions of capture (six intervals). We start from model
Ft with time dependence in survival and constant proba-
bility of capture, which fits the data, to investigate if sur-

vival probabilities over the second and third intervals were
influenced by a flood that took place around the third occa-
sion of capture. This potential flood impact can be examined
as a potential logit-linear effect of an indicator variable on
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time-dependent survival. The CMR data and covariate val-
ues are given in Web Appendix C. The discreteness of the
environmental covariate, the moderate number of individuals
released, and the low number of occasions make this example
an extreme case for applying the techniques proposed here.
From the table of the three relevant fixed effect models (Ft ,
Fx , and Fi ; Table 1), fitted using M-SURGE (Choquet et al.,
2004), one gets G = D(Fi ) − D(Fx ) = 6.7349, df = 1 and
H = D(Fx ) − D(Ft ) = 0.3725, df = p-2 = 4, from which one
deduces F = 72.3211. The quadratic approximations (equa-
tions 2 and 3) compare quite favorably, with G = 6.6894,
H = 0.3755 and, in turn, F = 71.2586. The LRT between
models Ft and Fx (χ2(4) = 0.0375, P = 0.9998) indicates
there is nearly no unexplained variation in survival left be-
yond the flood effect. This low value is indeed extreme and
is discussed below. The LRT is thus adequate, and is indeed
selected in the conditional test. It indicates a significant flood
effect (χ2(1) = 6.7349, P = 0.0095). The probability level of
the ANODEV statistic based on the Fisher–Snedecor distri-
bution is Pr(F(1,4) > 72.3211) = 0.0010488. An interesting
feature of this example is that because of the low number
of occasions, the distribution of the statistics over all 6! =
720 permutations of the covariate values over the years can
be examined. The P-level of the permutation test is 0.0667,
as 48 out of the 720 permutations have an F-value at least
equal to the observed one. This P-level is affected by the dis-
creteness of the covariate, as the same maximum F value is
obtained for the 48 = 2! × 4! permutations that place the
two values of the covariate equal to one on intervals 2 and
3. In spite of this discreteness problem, it is clear here that
in relation with the evidence for the absence of unexplained
environmental variation, the LRT behaves better than the
ANODEV, with a P-level closer to the permutation
test P-level. The estimated variance σ2 = H −ĉ (p−2)

tr (V Σ−1
t

(I−PZ ))
=

0.3725−4
tr (V Σ−1

t
(I−PZ ))

= −3.6275
56.1921 = −0.0646 is negative, leading to as-

sume σ2 = 0. This will always happen for H < p-2, i.e., when
the LRT between models Ft and Fx points to the absence of
unexplained environmental variation and overdispersion. The
Burnham and White (2002) estimate of the process variance,
−0.0511, is also negative, leading too to assume σ2 = 0. One
may thus consider that the survival probability is entirely de-
termined by the flood effect. The AIC for model Mx is then
indeed equal to that of model Fx (Table 1). Indeed, model
Mx under σ2 = 0 is not anymore nested in model Mi under
σ2 �= 0 and the resulting number of identifiable parameters is
lower for model Mx than for model Mi .

The origin of the low H value is unknown. In this partic-
ular case as well as in a general fashion, there is no reason
to believe in underdispersion: some departure from indepen-
dence between individuals is expected, in particular because
of a tendency to simultaneously recapture both members of
each pair, but would tend then to induce overdispersion, by a
factor close to 2. The conditional test here protects again an
optimistic P-level by ANODEV, and appears thus as conser-
vative. From our simulations, we conclude it will be a fairly
rare case. Finally, the smooth tail of the F-distribution does
not perfectly approximate the extremely discrete permuta-
tion distribution of the ANODEV statistic, as would happen
in any context, e.g., in that of usual linear regression.

Figure 3. relationship between the first PCA of Sahel rain
amounts (abscissa) and estimated survival probability (or-
dinate) (see Table 3). Points: estimates from model (ϕt , p)
also denoted as Ft ; Plain line: logit-linear relationship; Dotted
lines: logit-linear relationship ±1 and ±2 random unexplained
environmental variation standard error.

6.2 White Stork
Our second example concern resightings as breeders of white
storks Ciconia ciconia in Bäden-Wurttemberg (Kanyamibwa,
Bairlein, and Schierer, 1993), kindly made available by
F. Bairlein. The birds were ringed as chicks and the first re-
sighting as a breeder was considered as the first capture. The
resulting data consist of 321 individuals over 17 years, from
1956 to 1972. In relation with a strong decline in the west
European populations of the white stork in the 1960s, several
papers examined the relationship between survival and mea-
sures of rain amount in the Sahel (Kanyamibwa et al., 1990,
1993). We use here as a covariate the first component of a
principal component analysis (PCA) of five standardized an-
nual amounts of rain (in Kayes, Segou, Sikasso, Tombouctou,
and Mopti) that is positively correlated with all five variables
(Grosbois et al., 2008, p. 263). The CMR data and the covari-
ate are given in Web Appendix C. One expects that increas-
ing drought, i.e., a decrease in the amount of rain, tends to
decrease survival, inducing thus a positive slope (for further
analyses of the same data, see Grosbois et al., 2008; Gimenez
et al., 2009). The covariate being continuous and the number
of occasions fairly large, one expects a fair behavior of the
approaches proposed here, in particular ANODEV, despite a
moderate number of individuals. The overall goodness-of-fit
test (χ2(42) = 38.2147, P = 0.6379) and its components in-
dicated that the CJS model (ϕt , pt ) was a satisfying starting
point from which to proceed to model selection. In a first step,
the capture probability could be considered as constant, i.e.,
model (ϕt , p) is our model Ft in what follows.

For the fixed models (Table 2), G = D(Fi ) − D(Fx ) =
6.7640, df = 1, and H = D(Fx ) − D(Ft ) = 30.5580, df = p-2 =
14, from which F = 6.7640/(30.5580/14) = 3.0989. The
quadratic approximations (equations 2 and 3) are reasonably
close (G = 6.7563 and H = 27.0055) and lead to F = 3.5026.

The P-levels of ANODEV and the LRT, at this stage as
two-tailed tests, are equal to 0.1002 and 0.0053, respectively,
showing thus a major discrepancy. However the LRT compar-
ing Fx and Ft (χ2(14) = H = 30.5580, P= 0.0064) clearly in-
dicates some among-year variation unexplained by the covari-
ate. The significance of this test invalidates model Fx and the
LRT between model Fx and Fi , the LRT chi-squared distribu-
tion being valid only under the assumption that both models
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Table 3
Estimates from fixed and mixed CMR models, based on various approaches, for the white stork data

Fixed Burnham and GLS approximation Bayesian
Estimates model Fx White (2002) (this article) (MCMC) approach

Intercept 0.634 0.647 0.585 0.675
Slope of rain index+ 0.177 0.164 0.183 0.166
Process s.e. — 0.335 0.341 0.356
Process variance — 0.113 0.116 0.127

fit the data. The ANODEV–LRT conditional test points here
to the ANODEV. The permutation distribution (sampled over
10,000 random permutations) clearly shows the inflation of
the LRT statistic compared to the chi-squared distribution
(Figure 1). A test assuming the existence of a random effect
on top of the potential variation induced by the covariate is
needed, and this is where the ANODEV statistic is useful.

We obtained a permutation P-level of the ANODEV (and
LRT) statistics equal to 0.1013. As it was estimated from
10,000 random permutations, its standard error, based on
a binomial distribution, was ≈

√
1013

10000 = 0.032. The resulting
95 % confidence interval [0.0951, 0.1075] contains the Fisher–
Snedecor P-level, 0.1002. In this example, under H0, based
on equations (16) and (17), the ratio E (G )

E (H )/ (p−2) increases
from 1 to 1.04 when σ varies from 0 to 0.4, remaining thus
very close to 1. The F-test can be converted into a t-test,
as t = sgn(β̂)

√
F , suitable for one-tailed tests. Indeed, the

permutation distribution of the t-statistic closely matches
a Students distribution with 14 df (Figure 2), confirming
that the ANODEV adequately accounts for unexplained ran-
dom variation in logit-linear relationships. The one-tailed re-
sulting P-level is 0.0506 (permutation test) or 0.0501 (Stu-
dents distribution), at the limit of significance at the usual
0.05 level. The resulting evidence for an effect of rain is thus
much weaker than under the—misleading—usual chi-squared
based LRT.

Burnham and White (2002) use shrunk estimates of sur-
vival probabilities to obtain the deviance of mixed models and
a matrix trace to obtain an equivalent number of parameters.
An approximate AIC value can be deduced from these two
quantities. Although the resulting AIC points to the mixed
models (with or without covariate), the approximation inher-
ent in the shrunk estimates gives ambiguous results as the
estimated deviance of the mixed model without covariate is
lower than that for the model with a covariate, although the
latter is nested in the former (Table 2). Hence, the difference
in deviance between models Mx and Mi cannot be used to get
an equivalent of our tests.

The variance component estimate σ2 = H −ĉ (p−2)
tr (V Σ−1

t
(I−PZ ))

=
30.5580−14
142.8288 = 0.1159 is valid even in presence of a covariate

effect. This process variance and the intercept and slope es-
timates closely match the estimates based on more sophisti-
cated approaches (Table 3).

The relationship between survival and the covariate based
on the fixed model estimates and our explicit estimate of the
process variance is given in Figure 3. In this example, using
blindly the LRT would have lead to a strongly exaggerated
level of significance for the covariate of interest and the AIC
would have lead to prefer a model without covariate, whereas

the ANODEV test based on a Fisher–Snedecor distribution
and the permutation test provide in a coherent fashion fair
evidence for a covariate effect.

7. Discussion
For biologists to extract the full information from mark–
recapture studies, it is important that software for random
effects models is developed and is widely distributed (Barker
et al., 2002). For such progress, we advocate the use of the sim-
ple and straightforward approaches used here, which amount
to using asymptotic normal distributions to simplify other-
wise impractical likelihood integrations. In particular, the
ANODEV F-test will clearly behave properly in most cases,
and the amount of departure from the nominal levels will be
quite alike that observed in unbalanced linear mixed mod-
els. The dipper example is a counterexample, in which the
severe appearance of underdispersion would deserve a deeper
investigation.

Altogether we recommend a permutation test is used when-
ever possible, and the ANODEV F-test (or its t-test ver-
sion when a one-sided test is suitable) is used in other cases.
Permutation tests are implemented in the current version of
E-SURGE (Choquet et al. (2009).

Following Skalski et al. (1993), and as proved for the
first time formally here, the ANODEV also offers protection
against overdispersion.

Although the statistics used here are those obtained from
the fixed effect models, the conclusions can be markedly dif-
ferent from that based on a naive AIC-based model selection
among fixed models. Although Burnham and White (2002)
provide approaches to AIC for mixed capture–recapture mod-
els, the approximation inherent in their approach and the fo-
cus on covariate effects may often lead to prefer formal tests
to information theoretic approaches. Although the interest
of the GLS approach has been largely recognized for esti-
mation purposes in CMR models, to our knowledge, it had
never been used to investigate properties of test procedures.
Finally we note that our approach equally applies to GLM
as our results rely on general quantities such as the deviance
and rank of models, and never on the peculiarities of CMR
likelihoods.

8. Supplementary Materials
Web appendices on (A) distributional results, (B) simulation
results, and (C) the data used in examples referenced in sec-
tions 5 and 6 are available under the Paper Information
link at the Biometrics website http://www.biometrics.tibs.
org/.
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