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Abstract. A major challenge in statistical ecology consists of integrating knowledge from
different data sets to produce robust ecological indicators. To estimate species distribution, occu-
pancy models are a flexible framework that can accommodate several data sets obtained from
different sampling methods. However, repeating visits at sampling sites is a prerequisite for using
standard occupancy models. Occupancy models were recently developed to analyze detection/
non-detection data collected during a single visit. To date, single-visit occupancy models have
never been used to integrate several different data sets. Here, we showcase an approach that com-
bines two data sets into an integrated single-visit occupancy model. As a case study, we estimated
the distribution of common bottlenose dolphin (Tursiops truncatus) over the northwestern
Mediterranean Sea by combining 24,624 km of aerial surveys and 21,464 km of at-sea monitor-
ing. We compared the outputs of single- vs. repeated-visit occupancy models into integrated
occupancy models. Integrated models allowed a better sampling coverage of the targeted popula-
tion, which provided a better precision for occupancy estimates than occupancy models using
data sets in isolation. Overall, single- and repeated-visit integrated occupancy models produced
similar inference about the distribution of bottlenose dolphins. We suggest that single-visit occu-
pancy models open promising perspectives for the use of existing ecological data sets.

Key words:  bottlenose dolphin; data integration; ecological monitoring; integrated species distribution
models; occupancy models; single-visit models.

sources to estimate species distributions and integrated

INTRODUCTION . .
models refer to the approaches that combine different

In large-scale ecological analysis, several parallel mon-
itoring programs are often carried out to collect ecologi-
cal data (Zipkin and Saunders 2018). Ecological
monitoring programs are conducted by organizations
operating across different time scales, geographic scales,
and funding initiatives (Lindenmayer and Likens 2010).
A major challenge is integrating knowledge from differ-
ent monitoring programs to produce robust ecological
indicators that may be used to inform decision making
(Fletcher et al. 2019, Zipkin et al. 2021). Recently, mod-
eling tools have emerged to combine multiple data
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data sources (Isaac et al. 2019, Miller et al. 2019). The
main purpose of integrated models is to improve the
accuracy of ecological indicators (Fletcher et al. 2019,
Zipkin et al. 2019). Species distributed over large areas
could particularly benefit from integrated models
because they allow for a global coverage of species
occurrence by combining different data sources collected
at different spatial scales (Miller et al. 2019). To estimate
species distribution in the face of uncertainties inherent
to data collection, occupancy models are commonly
used statistical tools (Mackenzie et al. 2002). Occupancy
models have been developed to estimate species distribu-
tion while accounting for false negatives in the observa-
tion process (Mackenzie et al. 2002). Estimating
occupancy when species detection is not perfect requires
performing repeated visits to a set of sites to assess the
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detection probability (MacKenzie 2006). However,
repeating visits is sometimes unfeasible due to associated
costs and logistical issues. In this context, two relevant
developments of occupancy models have been recently
proposed. First, integrated occupancy models combine
data from different monitoring programs to improve the
estimation of species distribution (Nichols et al. 2008,
Fletcher et al. 2019, Miller et al. 2019). Second, Lele et
al. (2012) used occupancy models to estimate species dis-
tribution and detectability while having only one visit at
the sampling site, hereafter single-visit occupancy mod-
els. An increasing number of studies suggest that, under
certain conditions, single-visit models produce robust
estimates of occupancy without repeating visits at the
sampling sites (Lele et al. 2012, S6lymos and Lele 2016,
Peach et al. 2017). Single-visit occupancy also offers the
possibility to work with existing data sets that did not
carry out repeated visits, which is relevant to population
biology and management. In this paper, we develop an
integrated approach that combines two single-visit occu-
pancy models and demonstrate that combining several
data sets into integrated single-visit occupancy models
leads to accurate ecological parameter estimation. We
also investigate the performance of single-visit vs.
repeated-visit occupancy models. As a case study, we
focused on the distribution of bottlenose dolphins (7ur-
siops truncatus) in the northwestern Mediterranean Sea.
We combined aerial surveys and at-sea monitoring into
integrated occupancy models and we compared the out-
puts of integrated occupancy models to occupancy mod-
els using each data set in isolation. Last, we discuss the
advantages of integrated single-visit occupancy models
to deal with existing ecological monitoring programs.

METHODS

Model description

Latent ecological process.—QOccupancy models estimate
spatial distribution while accounting for imperfect spe-
cies detection (Mackenzie et al. 2002). The formulation
of occupancy models as state-space models allows dis-
tinguishing the latent ecological state process (i.e., spe-
cies present or absent at a grid cell) from the detection
process (Royle and Kéry 2007). We denote z; the latent
occupancy of grid cell i (z=1, presence; z =0,
absence). We assume z; is drawn from a Bernoulli distri-
bution with ¥, the probability that the species is present
at grid cell /

z; ~ Bernoulli(¥;).

We modeled ¥ as a function of some environmental
covariate on a logit scale, say habitat.

logit(¥;) = B, + B, habitat;

where parameters f, and f; are to be estimated.
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Repeated-visit observation process.—In standard occu-
pancy designs, each grid cell is visited J times to estimate
the detection probability. We denote y;; (y;; =0, no
detection; y;; =1, detection) the observations corre-
sponding to the data collected at grid cell i/ during visit j
G=1, ..., J). Repeating visits at a grid cell allows esti-
mating species detectability, with p;; being the probabil-
ity of detecting the species at visit j given it is present at
grid cell i:

Yijlzi ~ Bernoulli(z;p; ;).

Single-visit observation process.—The difference with
repeated-visit occupancy models lies in the number of
sampling occasions, which is J = 1 in single-visit occu-
pancy models. The j subscript is dropped and we
denoted y; the observation corresponding to the data
collected at site i. Subsequently, p; is the probability of
detecting the species during the single visit given it is pre-
sent at site i:

vilzi ~ Bernoulli(z;p;).

Single-visit occupancy models require certain condi-
tions to be fulfilled for estimating detection probabilities
reliably. First, different continuous covariates should be
used to estimate detection and occupancy probabilities
(Lele et al. 2012, Peach et al. 2017). Second, the number
of detections may affect the estimation of occupancy in
the case of rare or ubiquitous species (Peach et al. 2017).
Third, the use of inappropriate link functions to model
the detection process may lead to model misspecification
and biased interpretation (e.g., log-link and scaled logit
link function on detection; Knape and Korner-
Nievergelt 2015). However, most often, the logit link
function is used for detection, which makes the single-
visit approach valid (S6lymos and Lele 2016). Despite
these concerns, simulation studies have showed that situ-
ations where single-visit occupancy models fail are rare
(S6lymos and Lele 2016, Peach et al. 2017) and, in prac-
tice, the conditions for a valid application of single-visit
occupancy models are often fulfilled (S6lymos and
Lele 2016). We detailed the modeling assumptions of
single-visit occupancy models in Appendix S4.
Because the number of detections is an important con-
dition to accurately estimate single-visit occupancy
parameters (Peach et al. 2017), we expect that inte-
grated approaches will be beneficial to single-visit
occupancy modeling by increasing the number of
detections (true occupancy) available.

Integrated occupancy models.—We developed an inte-
grated occupancy model using data from two indepen-
dent monitoring programs, say A and B. The state
process driving the latent occupancy state of site i, z;,
remains unchanged and is drawn from a Bernoulli distri-
bution with probability y, which is modeled as a
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function of environmental covariates. The observation
of the targeted species at site i during occasion j may
take four values with y; ; = 0 for no detection, y;; = 1 for
detection in data set A, y;; = 2 for detection in data set
B, and y;; = 3 for detection in both data sets A and B.
For convenience, we drop the subscripts in the notation
as the formulation of the integrated observation process
is identical whether we consider single-visit occupancy
(i.e., J = 1) or repeated-visit occupancy (J > 1). Assum-
ing that detection methods are independent, the obser-
vation process can be written using detection probability
by the monitoring program A (p4) and detection proba-
bility by the monitoring program B (pg)

»|z ~Multinomial(1, zx) with

= [pg, P1» P2 D3]
=[pr(y=0), pr(y =1), pr(y =2), pr(y = 3)]

n=[l—pa—pp+PaP> Pa(1 —pg)s Pe(1 —pa), PaPB]-

We modeled monitoring-specific detection probabili-
ties as functions of the sampling effort of each monitor-
ing program

logit(p,) = aoa + ajalog(Seffa)
logit(pg) = oo + aplog(Sefty)

where the parameters apa, o4, Oop, and a;p are to be esti-
mated. For example, if we assume that the detection his-
tory at site i is y; = {2, 0, 1, 2} over J =4 sampling
occasions, i.e., the species was detected by monitoring pro-
gram B only at sampling occasions j = 1 and j = 4, then
went undetected at j = 2, and was detected by monitoring
program A only at j = 3, then for single-visit integrated
occupancy we consider y; = {3} because both monitoring
programs detected the species at site . We ran a simulation
study comparing the performance of single- vs. repeated-
visit occupancy over different scenarios affecting occu-
pancy, and detection probabilities (Appendix S1).

Bottlenose dolphins case study

We aimed at estimating bottlenose dolphin (7ursiops
truncatus) distribution in an area of 255,000 km? cover-
ing the northwestern Mediterranean. The protected sta-
tus of this species within the French seas led to the
development of specific programs to monitor Mediter-
ranean bottlenose dolphins within the implementation
of the European Marine Strategy Framework Directive
(2008/56/EC; MSFD), which involve estimating com-
mon bottlenose dolphin distribution. We considered two
large-scale monitoring programs about bottlenose dol-
phins. We divided the study area in 4,356 contiguous
pixel/grid cells creating a 5’ x 5’ Mardsen grid (WGS 84)
that we used for all the occupancy models we consid-
ered. We used data from at-sea surveys over 21,464 km
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of the French continental shelf (456 grid cells sampled,
10.46% of the total number of grid cells). Observers per-
formed monitoring aboard small sailing and motor
boats to locate and photo-identify bottlenose dolphins
all year long between 2013 and 2015 (Labach et al.
2019). At-sea surveys detected 129 distinct bottlenose
dolphin groups located in 89 different grid cells. At-sea
surveys did not include planned repeated visits, some
grid cells have been visited once, and others have been
visited 50 times. Then, using repeated-visits occupancy
models to analyze the at-sea monitoring data requires
considering only the grid cells sampled multiple times
and hence to drop the data collected in grid cells sam-
pled only once. Single-visit models enable us to include
all data, even data collected in grid cells that were sur-
veyed only once, which make at-sea a relevant candidate
for single-visit model implementation. Besides, we con-
sidered data collected during aerial line-transects cover-
ing 24,624 km of the French Exclusive Economic Zone
(EEZ), targeting marine megafauna, and following a
distance-sampling protocol. The survey sampled 1336
grid cells (i.e., 30.67% of the total number of grid cells).
Aerial surveys produced 130 distinct bottlenose dolphin
detections located in 87 grid cells. Sampling effort for
aerial surveys was homogeneous over the study area with
three or four replicates per line transect between Novem-
ber 2011 and August 2012 (Laran et al. 2017). Because
we used occupancy models, we only considered
detection/no-detection data, which lead to a binary 0/1
data set. Hence, multiple sightings detected in the same
groups were coded as 1. Thus, we obtain the two aerial
and at-sea detection/no-detection data sets that we ana-
lyzed with occupancy models. An important assumption
of single-season occupancy models is that the latent eco-
logical state of a grid cell (the z;s) remains unchanged
between the repeated visits (MacKenzie 2006). When
monitoring highly mobile species, such as cetaceans, the
closure assumption is likely to be violated because indi-
viduals can move into and out of the sampling grid cell.
The size of the grid cells is much lower than dolphins’
range of activity. If individuals’ movement in and out of
the sampling units is random, then the occupancy esti-
mator is unbiased (Kendall et al. 2013). However, it is
unlikely the case for bottlenose dolphins because their
use of space is driven by ecological and environmental
factors, and occupied locations are used only temporar-
ily by individuals (MacKenzie 2006, Neilson et al. 2018).
Closure assumption is crucial to the interpretation of
occupancy model’s parameters. In cases where this
assumption is known to be violated, the parameter is
usually interpreted as the probability that a location is
used by the species as opposed to probability of species
presence. In this situation, the occupancy estimator ¥;
represents the probability that grid cell i is used by the
target species (Kendall et al. 2013), being interpreted as
space use by bottlenose dolphins. Occupancy and space
use refer to distinct ecological concepts. Occupancy
describes the species home range that can be defined as
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the geographic range of occurrence, while space use
refers to the usage made by individuals of the different
components of the home range (e.g., feeding locations,
migratory routes, Johnson 1980). Then, both single-visit
and repeated-visits occupancy models infer the probabil-
ity that a particular grid cell is used by the species. The
detection probability now accounts for both the probabil-
ity of detecting the species given that the species is avail-
able for sampling, and the probability that the species is
using the grid cell during the sampling, reflecting that the
species might occupy the grid cell but not during the sam-
pling occasion (MacKenzie 2006). As stated above,
single-visit occupancy relaxed the closure assumption
because the inference of the detection probability does
not require site closure between the repeated visits. How-
ever, the interpretation of the occupancy parameter is
always space use in the case of our bottlenose dolphin
case study because our data is collected during multiple
years and dolphins are expected to move in and out the
sampling unit area during the sampling period.

Because at-sea and aerial surveys were performed dur-
ing different years, we considered them as independent.
In 2018, recent Mediterranean scale aerial monitoring
program sampled French Mediterranean following the
same line-transect protocol as the aerial data set we ana-
lyzed (ACCOBAMS Survey Initiative 2018). Preliminary
and unpublished results from the 2018 program esti-
mated similar common bottlenose dolphin distribution
to that of 2011-2012. Then, we assumed that space use
remained unchanged during the monitoring period (i.e.,
2011 to 2015). Besides, we neglected the seasonal varia-
tion in the bottlenose dolphin space use in this case
study. Concerning the ecological process, we used two
environmental covariates to estimate the space use of
bottlenose dolphins: (1) bathymetry, which is expected
to have a positive effect on bottlenose dolphins’ occur-
rence (Bearzi et al. 2009, Labach et al. 2019), and (2) sea
surface temperature (SST, AQUA MODIS | NASA
2019; data available online),® which is locally related to
dolphins’ prey abundance and hence expected to affect
local distribution of bottlenose dolphins (Bearzi et al.
2009). We extracted average SST between 2011 and 2015
value in each grid cell, making SST a cell-specific covari-
ate. Similarly, bathymetry had a single value per grid cell.
We checked for correlation between the two covariates
and the Pearson coefficient was <0.3. Then, we modeled
¥ as a function of bathymetry, SST, and the interaction
between bathymetry and SST on a logit scale

logit(¥;) = P, + B; bathymetry; + p, SST;
+ B3 bathymetry, SST;.
Regarding the observation process, we calculated the
transect length (in km) prospected by each monitoring

protocol within each grid cell during a time period. Sam-
pling effort was therefore a grid-cell-specific and time-

Shttps://neo.sci.gsfc.nasa.gov/
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specific covariate; Seffs refers to the sampling effort of
the aerial monitoring program while Seffs refers to the
sampling effort of the at-sea monitoring program. We
modeled monitoring-specific detection probabilities as
functions of the relevant sampling effort

logit(p,) = ap + alog(Seffa)
logit(p,) = ap + a; log(Seffs).

Regarding the repeated-visit occupancy models, we
divided the detection/non-detection data sets into four
sampling occasions (J = 4): winter (January, February,
March), spring (April, May, June), summer (July, August,
September), and autumn (October, November, Decem-
ber). For the single-visit occupancy models, we considered
the entire monitoring program in a single occasion. For
example, let us assume that the detection history at site 7
is y; =10, 1, 1, 0} in repeated-visit occupancy, i.e., the spe-
cies was detected at sampling occasions j = 2 and j = 3,
and went undetected at j = 1 and j = 4, then for single-
visit occupancy we have y; = {1}. In addition, the single-
visit sampling effort in a grid cell was equal to the sum of
the sampling effort over the four sampling occasions of
the repeated-visit occupancy model.

Performances of integrated models.—To assess the added
value of combining aerial and at-sea data sets into inte-
grated single-visit occupancy models, we analyzed three
data sets: (1) the aerial data set, (2) the at-sea data set,
and (3) the two data sets together into an integrated
occupancy model. For each of these data sets, we applied
repeated-visit and single-visit occupancy models. Besides
the case study, we also carried out a simulation study to
test for the performances of integrated occupancy mod-
els (Appendix S2). In Appendix S5, we go through a
worked example of the likelihood functions for single-
visit, repeated-visit, integrated repeated-visit, and inte-
grated single-visit occupancy models. In Appendix S4,
we listed the modeling assumptions required to run the
different occupancy models.

Bayesian implementation.— We ran all models with three
Markov chain Monte Carlo chains with 100,000 itera-
tions each in JAGS (Plummer 2003) called from R (R
Core Team 2015) using the r2jags package (Su and
Yajima 2015). We checked for convergence calculating
the R-hat parameter (Gelman et al. 2013) and reported
posterior means and 95% credible intervals (CI) for each
regression coefficient of covariates affecting space-use
probability (Fig. 1). Hereafter, we considered effect size
of a covariate as the estimate of its regression coefficient.
We discussed the effect of a covariate whenever the 95%
CI of its associated parameter did not include 0. From
covariates’ effect size, we calculated the predicted space
use by bottlenose dolphins (i.e., ¥, Fig. 2). We reported
maps of standard deviation of ¥ (Fig. 2B). On the maps,
we displayed mean and standard deviation of ¥ for
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coastal and pelagic seas according to a 500 m deep
boundary that corresponds to the separation of conti-
nental shelf from the abysses. Data and codes are avail-
able in Data S1.

REsuLTS

All models produced similar predictions of space
used by bottlenose dolphins (Fig. 2). The 95% CI of
SST, and of the interaction between SST and bathyme-
try included 0 in all models (Fig. 1). The probability of
space use increased with decreasing bathymetry for all
models (Fig. 1). Bathymetry ranges from altitude of
0 m to —3,488 m deep, hence a positive influence of
bathymetry referred to a preference for a high seafloor
(e.g., 0-200 m depth). Overall, maps showed greater
probabilities of space use on the continental shelf
(mean ¥ = 0.76, SD = 0.17) than on the high seas
(mean ¥ = 0.40, SD = 0.15), although magnitudes of ¥
were different between models (Fig. 2). Bathymetry
posterior means were highest for at-sea occupancy
(although the 95% CI of effect size included 0), which
resulted in models using only at-sea survey data pre-
dicting the highest contrast between the continental
shelf and the high-seas. Bathymetry effect size was the
lowest for aerial occupancy while maps from integrated
occupancy models displayed moderate contrast of
space use between shelf and pelagic waters (Fig. 2).
Single-visit occupancy models exhibited similar covari-
ates estimates to those of repeated-visit occupancy
models (Fig. 1). For aerial occupancy, we noticed simi-
lar space-use prediction between single- and repeated-
visit models (Fig. 2A). For at-sea, predicted space-use
probabilities were different between single-visit and
repeated-visit occupancy models (Fig. 2).
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‘When considering the covariates’ effect size (Fig. 1), the
widths of the 95% CI were not smaller for integrated occu-
pancy than for occupancy models using data sets in isola-
tion. However, when looking at the standard deviation of
the predicted probability of space use, integrated occu-
pancy models had a better precision than aerial or at-sea
occupancy models separately, (Fig. 2B). The use of inte-
grated single-visit occupancy models also improved preci-
sion in predicted space use compared to single-visit
occupancy built from aerial and at-sea data sets separately
(Fig. 2B). Inspecting the simulation results, we found that
(1) integrated occupancy models produced more precise
estimates of covariates effect size than occupancy models
fitted to a single data set (Appendix S2), and (2) single-
visit occupancy models produced similar results to
repeated-visit occupancy models (Appendix S1).

Discussion

Integrated single-visit occupancy models provide reliable
ecological inference

Ecological inference from integrated occupancy mod-
els lied within the range of the estimates obtained with
each data set separately (Fig. 1). Across all occupancy
models, the effects of environmental covariates were sim-
ilar and consistent with previous studies. Bottlenose dol-
phins were more likely to use shallower seas (Bearzi
et al. 2009, Labach et al. 2019), and depth had a stron-
ger effect than SST on the use of space by bottlenose
dolphins (Torres et al. 2008). However, we found varia-
tions among models in the estimation of the probability
of space use by dolphins (Fig. 1). In particular, at-sea
occupancy models predicted that dolphins make little
use of the pelagic seas compared to the continental shelf,

IOM SV —— IOM SV —— IOM SV ——

IOM RV —— |IOM RV —teo— IOM RV —e—
©
E .
£ At-sea SV O At-sea SV At-sea SV °
>
%)
5 At-sea RV

= — & —|—
% At-seaRV — —f—@0—— At-sea RV —]—— sea
3
O .
Aerial SV —
Aerial SV ——— Aerial SV —10—
Aerial RV
Aerial RV —— Aerial RV 10—
-3 -2 -1 0 1
0 1 2 3 4 -2 0 2 Effect size of interaction
Effect size of bathymetry Effect size of SST between SST and bathymetry
Fic. 1. Effect size of bathymetry, sea surface temperature (SST), and interaction between SST and bathymetry on the probabil-

ity ¥ that a site is used by bottlenose dolphins (Tursiops truncatus). The posterior mean is provided with the associated 95% credible
interval. SV refers to single-visit occupancy models, RV to repeated-visit occupancy models, and IOM stands for integrated occu-
pancy models, in which aerial surveys and at-sea surveys are combined. Estimates are given on the logit scale.
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Fic. 2. (A) Probability of predicted space use by bottlenose dolphins (Zursiops truncatus) over the northwest Mediterranean

Sea. Using the posterior mean of covariates effect size, we estimated the probability that a grid cell was used by bottlenose dolphins.
For each occupancy model, we added the mean space-use probability (¥) for coasts (bathymetry <500 m) and pelagic seas (bathy-
metry >500 m). (B) Standard deviation of predicted space use. Using the posterior standard deviation of covariates effect size, we
estimated the standard deviation associated with the space-use probability. For each occupancy model, we added the mean standard
deviation (SD) associated with ¥ for coasts (bathymetry <500 m) and pelagic seas (bathymetry >500 m). IOM stands for integrated
occupancy models, in which aerial surveys and at-sea surveys are combined. Repeated-visit occupancy maps refer to occupancy
models with four sampling occasions. Single-visit maps refer to occupancy models considering one sampling occasion.

while aerial occupancy models predict more homoge-
neous space use between coasts and pelagic seas. Aerial
surveys detected several dolphin groups in the high
depths while at-sea surveys detected none. Detecting off-
shores groups tempered the preference for low-depth
seafloors in aerial occupancy models (Appendix S6).
Besides, we recommend caution in interpreting predicted
maps of space use as predicted space use was sensitive to
the mean value of covariate effect size. Therefore, depth
being the only covariate that affect space-use probability,
maps of predicted space use were mostly driven by
bathymetry effect size, and did not account for precision
associated with space-use prediction. Because depth pos-
terior mean was similar between occupancy models, dif-
ferences between predicted space-use maps do not
provide a relevant illustration to compare occupancy
models performances, nor they reflect the uncertainty
associated with the occupancy models’ estimates. To
study the benefits of single-visit and integrated occu-
pancy models to accommodate existing ecological data
sets, we emphasize standard deviation maps and the
credible intervals of covariates effect size (Figs. 1 and
2B). Integrated occupancy models had a better precision
in space use than models using aerial or at-sea surveys

separately (Fig. 2). This result was supported by our
simulation study, which demonstrates the better perfor-
mance of integrated occupancy models at estimating
covariate effect size compared to occupancy models from
a single data set (Appendix S2). Single-visit occupancy
models gave similar estimates to those obtained with
repeated-visit occupancy models, although repeated-visit
occupancy models exhibited better precision (Figs. 1 and
2B), as well as in our simulations (Appendix S1). In the
bottlenose dolphins case study, we considered two exist-
ing monitoring programs that were not initially designed
for occupancy modeling. In the at-sea monitoring,
repeated line transects were not implemented, nor were
the high depths sampled, which made at-sea occupancy
unlikely to exhibit precise estimates at our spatial extent.
The two data sets exhibit complementary features. While
aerial surveys covered a larger spatial scale than at-sea
surveys, at-sea surveys exhibited a better detection rate.
Detection probability was greater for at-sea surveys
(p = 0.18, SD = 0.04) than for aerial surveys (p = 0.10,
SD = 0.03). Regarding the aerial data set, the number of
occurrences was low despite the important coverage of
the monitoring design (i.e., bottlenose dolphins were
detected in 6.5% of sampled grid cells), which might
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hinder the implementation of single-visit occupancy when
the number of occurrences is less than 10% of the sam-
pling units (Peach et al. 2017). However, the at-sea data
set had occurrences in 19.5% of sampled units. Using
integrated occupancy models enables to combine low-
frequency occurrence data like the aerial data set with
another data set to increase the amount of information
about the ecological state process and helps mitigating
the issue of low number of occurrences.

Ecological implications and perspectives

Overall, we illustrate that (1) integrating data sets into
occupancy models improves the precision of space-use
estimates and (2) single-visit occupancy models can reli-
ably accommodate the lack of repeated visits that occurs
frequently. Integrated occupancy models produced more
reliable estimates than occupancy models using data sets
in isolation in both the bottlenose dolphin data analyzes
and the simulations. Our finding on the bottlenose dol-
phins case study is a good illustration of the well-known
benefit of combining data sets into integrated species
distribution models to increase precision in ecological
inference (Fletcher et al. 2019). Although we adapted a
standard multinomial detection process of integrated (or
multi-methods) occupancy models, some advanced
developments allow combining data sets to estimate
occupancy parameters at multiple spatial scales (Nichols
et al. 2008, Pavlacky et al. 2012). Besides, integrated
occupancy modeling has also been used to evaluate eco-
logical monitoring programs prior to their implementa-
tion (e.g., comparing capabilities of different detection
devices; Otto and Roloff 2011, Haynes et al. 2013). Here,
we emphasize the benefit of considering integrated
methods combined with single-visit occupancy modeling
after data collection. When the species of interest either
occurs over a large spatial scale or is a highly mobile spe-
cies (such as bottlenose dolphins), considering multiple
sampling methods is effective to monitor the entire pop-
ulation making the most of each device (Zipkin and
Saunders 2018). In particular, integrating a large volume
of data, such as those that can be leveraged through
citizen-science programs or with dedicated NGOs over
the years can make the most of ecological monitoring
programs for the furthering of many applied situations
(Zipkin et al. 2019). One could also extend integrated
occupancy models to more than two data sets. However,
caution should be taken as integrating data is not always
beneficial and requires additional modeling assumptions
according to the particularity of each data set to include
(Lele and Allen 2006, Dupont et al. 2019, Fletcher et al.
2019, Farr et al. 2021, Simmonds et al. 2020). Although
repeated-visit occupancy models remain statistically
more precise, there are benefits in using single-visit occu-
pancy models. The ability of single-visit occupancy to
relax the closure assumption is appealing, because this
assumption is often incompatible with the behavior of
mobile species and for numerous monitoring programs
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of animal populations (Rota et al. 2009, Issaris et al.
2012, Lele et al. 2012, Kendall et al. 2013, S6lymos and
Lele 2016). However, in a single-visit occupancy model
that integrate multiple data sets, one need to account for
site closure during the time span of the monitoring pro-
grams. In this study, the closure assumption is unlikely to
be valid for bottlenose dolphins over the time span of the
two monitoring programs, because dolphins obviously
would not remain into the same grid cell, hence we inter-
preted the occupancy parameter as space use. Besides,
when financial or logistical costs are limited, implement-
ing a single-visit monitoring design could provide robust
ecological inference while explicitly accounting for imper-
fect species detection (Lele et al. 2012, Dénes et al. 2017).
Overall, increasing quantity and types of biodiversity data
are becoming available (Isaac et al. 2019). Numerous
monitoring programs do not rely on protocols imple-
menting repeated visits like, e.g., historical monitoring
programs or citizen science programs (Tingley and Beis-
singer 2009, Zipkin and Saunders 2018). Then, using
single-visit occupancy models helps making efficient use
of available data, which is of great interest in many eco-
logical applications (Nichols and Williams 2006, S6lymos
and Lele 2016). In this context, Miller et al. (2019)
encouraged further developments of methods mixing
standardized and non-standardized data sets. To illus-
trate, we built an integrated occupancy model mixing
repeated-visit occupancy models for aerial surveys and
single-visit occupancy models for at-sea surveys
(Appendix S3). The flexibility of occupancy models
provided a relevant framework to combine monitoring
programs and to accommodate different types of data
collection. Integrated and single-visit occupancy mod-
els contribute to widen the scope of possibilities. We
emphasize the usefulness of both integrated and single-
visit approaches to deal with existing data sets. We
anticipate that their combination into integrated single-
visit approaches will be of most interest for many par-
ties in ecological research.
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