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The species�area relationship (SAR) is one of the most fundamental tools in ecology. After almost a century of
quantitative ecology, however, the quest for a ‘‘best SAR model’’ still remains elusive, with a substantial uncertainty about
the best fitting SAR model frequently being observed. Recent research has required that this uncertainty be addressed, and
a multimodel SAR framework has been devised. Here we introduce the mmSAR R-package, which is a flexible and
scalable implementation of the multimodel SAR framework for species-area datasets, and provide some examples of its
use. This R-package provides functions for fitting SAR models, performing model selection, and the build up of
multimodel SARs.

One of the most ancient and ubiquitous patterns that
has been recognized in ecology is the increase in species
richness (S) with increasing sampling area (A): the species�
area relationship (SAR). The SAR has been mystifying
ecologists for more than 150 years (De Candolle 1855,
MacArthur and Wilson 1967, Connor and McCoy 1979,
Drakare et al. 2006, Southwood et al. 2006) and its
modelling remains a central issue for theoretical ecologists
and conservationists (Rosenzweig 1995, Smith 2010).
Inference about the SAR is mandatory in the wide range
of conservation applications that require the comparison of
diversity patterns when regions differ in area, such as
global scale conservation priority-setting schemes (Brooks
et al. 2006, Lamoreux et al. 2006, Wilson et al. 2007). In
theoretical studies, SARs are considered to be fundamental
properties of biological systems and are, for example,
explained in terms of species abundances and spatial
distribution of individuals (He and Legendre 2002,
Martin and Goldenfeld 2006) and constitute a cornerstone
for macroecological investigations (Šizling and Storch
2004, Drakare et al. 2006). After Arrhenius (1921), the
SAR has mainly been modelled using a power law (S�
cAz, where c and z are constants to be estimated). Despite
this historical hegemony, however, several studies have
highlighted other functional forms for SARs (Gleason
1922, Coleman et al. 1982, Lomolino 2000, Tjørve 2003,
2009). Moreover, quantitative studies focusing on com-
parisons among models have indicated that the power law
SAR is not ubiquitous (Connor and McCoy 1979, Flather

1996, Stiles and Scheiner 2007), stressing the importance
of testing the relative fit of various different models in
SAR analyses (Smith 2010). Furthermore, recent analyses
have often demonstrated substantial uncertainty in select-
ing the best SAR model for a given dataset (Stiles and
Scheiner 2007, Guilhaumon et al. 2008). The multi-
model selection framework (Burnham and Anderson
2002) is an approach that can account for such un-
certainties in inferring the SAR, allowing the investigator
to perform inferences while incorporating variability in
both model selection and parameter estimation (multi-
model SARs; Guilhaumon et al. 2008).

Here, we introduce the mmSAR R-package for the
freeware and open-source R software (R Development
Core Team 2009). mmSAR is a flexible and scalable
implementation of the multimodel SAR framework for
species�area datasets and provides several functionalities:
fitting several relevant SAR models, performing a selection
among this set of models, averaging the prediction of the
SAR obtained from different models to establish a
consensual inference and to provide robust confidence
intervals. The present software note describes the different
components of the multimodel SAR framework, as well as
their implementation in the mmSAR R-package (Fig. 1).
We illustrate the framework with the results of an analysis
of a species�area dataset for the plants of the Galapagos
Islands (Preston 1962). The users interested in the
methodological details of the multimodel SAR framework
are referred to Guilhaumon et al. (2008).
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The multimodel SAR framework

The components of the mmSAR implementation of the
multimodel SAR framework are presented in Fig. 1. Apart
from the species�area dataset itself, mmSAR provides R
objects to handle SAR models, facilitating the fit of SAR
models through non-linear regression and the construction
of consensual prediction for the SAR with associated
confidence intervals (Fig. 1A). Different applications can
be envisaged with the mmSAR components, from simple
model fitting to selection and average across sets of models
(Fig. 1B).

Models

For a given dataset, a multimodel SAR inference is made
simultaneously using the predictions of several non-linear
regression models. Obtaining a consistent set of models
is one of the most important challenges in information-
theoretic analyses (Burnham and Anderson 2002). mmSAR
proposes a comprehensive set of SAR models (Table 1),
including five convex models (power, exponential, negative
exponential, Monod and rational function) and three
sigmoid models (logistic, Lomolino, and cumulative Wei-
bull). This includes convex, sigmoid, asymptotic, and non
asymptotic functions, thus encompassing the various shapes
attributed to SARs in the literature. Note that the linearized
forms (via logarithmic transformations) of the power and
exponential models, which require using log(S ) in place of
S, were not implemented in mmSAR, otherwise precluding
comparisons across the entire set of models. In mmSAR,
models are implemented as R objects and new non linear
SAR models should easily be specified by the user and
added to the available collection.

Model fitting

mmSAR performs nonlinear regressions to obtain model
parameter estimates by minimizing the residual sum of
squares with an unconstrained Nelder�Mead optimization
algorithm. Assuming normality of the observations, this
approach produces optimal maximum likelihood estimates
of model parameters (Burnham and Anderson 2002). To
avoid numerical problems, such as local minima, and
speed up the convergence process, starting values used to
run the optimization algorithm are carefully chosen. For
directly interpretable parameters (e.g. an asymptote),
corresponding values in the datasets are used (e.g. the
observed maximum of species richness in the case of an
asymptote), otherwise the standard procedures described
by Ratkowsky (1983, 1990) are implemented. Finally,
mmSAR gives the option to provide custom starting
values, allowing users to implement exhaustive searches
for best fits. We provide example fits of the eight SAR
models implemented in mmSAR to the Galapagos Islands
dataset in Fig. 2A1�A8.

Regression validation

Regressions are usually evaluated by statistical examination
of normality and homoscedasticity of residuals. In mmSAR,
two tests for the normality of the residuals are available: the
Lilliefors extension of the Kolmogorov normality test,
which is advocated when sample size is large or when the
data show a substantial variability (e.g. continental scale
studies) and the Shapiro�Wilk test for normality, which
focuses on skewness and kurtosis of the empirical distribu-
tion of the residuals and is useful for small sample size or
when data results from small scale sampling. mmSAR tests

Figure 1. Main components of mmSAR (A) and sample ‘‘use cases’’ (B). B1 simple nonlinear SAR model fitting. B2 multimodel SAR
calculation.
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for homoscedasticity by evaluating the correlation between
residual magnitude and areas or fitted values (Pearson’s
product moment correlation coefficient). Generally, a model
is considered not to be valid for a given dataset if one of
the tests of normality or homoscedasticity is significant at
the 5% level.

Model selection

The information-theoretic framework for model-selection
is based on the evaluation of multiple working hypotheses
(Burnham and Anderson 2002). This evaluation of com-
peting hypotheses, which are each represented by a different
model, is achieved through the estimation, for each, of
the probability to be the best in explaining the data. In

mmSAR, these probabilities are materialized by Akaike
weights (Burnham and Anderson 2002) derived from
information criteria (IC) such as the Akaike information
criterion (AIC) or its correction for small sample bias
(AICc) and the Bayesian information criterion (BIC). AIC
and other model selection criteria that estimate Kullback�
Leibler information are used widely in the ecological
literature, but other criteria such as the BIC are also
commonly used to carry out model selection (see Burnham
and Anderson 2002 for a review of model selection and
multimodel inference). AIC and BIC do not share the same
conceptual bases and penalize differently for the dimension
of the models (BIC tends to select models with fewer
parameters than AIC), and although the results of
(mm)SAR analyses are generally robust as regards the
criterion used for model selection (Guilhaumon et al.

Table 1. Functional forms for the SAR implemented in mmSAR. In these equations, S and A represent, respectively, species richness and area,
while c, z, f and d are fitted parameters. The parameter d is an upper asymptote, except for the rational function for which the upper
asymptote is z/d.

Name Code Formula Number of parameters Shape Asymptotic nature

Power Power S�cAz 2 Convex No
Exponential Expo S�c�zlog(A) 2 Convex No
Negative exponential Negexpo S�d(1�exp(�zA)) 2 Convex Yes
Monod Monod S�d/(1�cA�1) 2 Convex Yes
Rational function Ratio S�(c�zA)/(1�dA) 3 Convex Yes
Logistic Logist S�d/(1�exp(�zA�f )) 3 Sigmoid Yes
Lomolino Lomolino S�d/1�(zlog(f/A)) 3 Sigmoid Yes
Cumulative Weibull Weibull S�d(1�exp(�zAf )) 3 Sigmoid Yes

Figure 2. mmSAR results for a species�area dataset describing the plants of the Galapagos Islands (Preston 1962). (A1�A8) Fit of the
eight SAR functional forms implemented in mmSAR (see Table 1 for equation descriptions). (B) Results of a model selection procedure
(the eight of a bar indicates the probability (i.e. Akaike weights derived from the AICc criterion in this example) of the model being the
best in fitting the data). (C) Model fits (dashed lines), multimodel SAR (black line) and associated non parametric confidence interval
(grey shading).
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2008), mmSAR implements both Kullback�Leibler and
Bayesian strategies for model selection. For a fitted model i,
its weight wi is given by:

wi �
e�1=2Di

XM

r�1

e�1=2Dr

(1)

where M is the number of models in the set and Di is
defined as Di�ICi�ICmin with ICmin the IC value for the
best model.

Akaike weights are a straightforward means of interpret-
ing the IC values of each model, as model likelihood, and
provide the basis of multimodel inference. For the
Galapagos Islands data set, the best fitting model was
exponential but three others models (power, negative
exponential, and Monod) had almost equivalent probabil-
ities in explaining the data (AICc Akaike weights in
Fig. 2B). The four remaining models (rational function,
logistic, Lomolino, and cumulative Weibull) have negligible
likelihood and should contribute only marginally to the
multimodel SAR (AICc Akaike weights in Fig. 2B).

Model averaging and confidence interval
building

In the model selection framework, model selection un-
certainty arises when the dataset support several models with
a similar strength (i.e. for a given dataset, no wi is higher
than 0.9; Burnham and Anderson 2002), as this is the case
with the data from the Galapagos Islands (Fig. 2B). In such
cases, it is not adequate to rely exclusively on the best model
only; multimodel inference can construct a more robust final
inference (Burnham and Anderson 2002). As advocated for
differently parameterized models, mmSAR implements
model averaging and considers the weighted average of all
valid model predictions (see Regression validation), with
respect to model weights, to construct multimodel SARs:

Ŝ̄ �
XM

i�1

Ŝiwi (2)

where Ŝ̄ is the multi-model averaged species richness and Ŝi

is the species richness inferred from model i, M is the
number of valid models. The multimodel SAR for the
Galapagos Islands data set is presented in Fig. 2C.

Finally, in mmSAR, confidence intervals incorporating
uncertainty regarding both model selection and parameter
estimation can be constructed using the percentile method
and a non-parametric bootstrap scheme (Efron 1979,
Buckland et al. 1997). For a given species�area dataset, a
large number of bootstrap samples are obtained in the
following manner: 1) one of the SAR models included in
the analysis is selected with a probability equal to its weight
as calculated from eq. 1. 2) The selected model is fitted to
the observed dataset under study. 3) The vectors of inferred
species richness (regression line) and residuals are obtained
from the regression and the residuals are standardized. 4)
The residuals are sampled with replacement until sample
size reaches that of the dataset, to form a vector of modified
residuals. 5) The vector of modified residuals is added to the

vector of inferred species richness, to form the resample
(bootstrap set of pseudo responses).

A collection of multi-model SARs inferred from each of
the resamples is gathered by applying the whole procedure
of model selection and averaging, while the bootstrap
estimates of species richness are sorted in ascending order
to provide the percentile confidence intervals (Buckland
et al. 1997): the limits of an approximate (1�a)100%
confidence interval are given by picking the rth and sth
values in the ordered vector of bootstrap estimates, such
that r�(b�1)a and s�(b�1)(1�a).

For the Galapagos Islands dataset, the number of
resamples was fixed to 9999, thus the limits of the 95%
confidence interval for a point estimate of species richness
(Fig. 2C) are given by the 250th and the 9750th values.

The mmSAR R-package may have potential uses in both
theoretical and conservation analyses. For example, in
theoretical applications such as investigations about how
SARs may differ among different systems, model selection
patterns (i.e. relative likelihoods of different SAR shapes)
can be compared for the different systems. Allowing one,
for example, to state about the saturation or non satura-
tion of species richness with increasing area. These kind
of analyses may help to extend discussions beyond
the comparison of slopes of log-linear power SARs
(Guilhaumon et al. 2008). In conservation applications,
multimodel non-parametric confidence intervals can
inform about the reliability of the multimodel SAR for a
given dataset but also have more practical applications.
For example, these confidence intervals were used by
Guilhaumon et al. 2008 to rank regions of a dataset with
respect to their biological richness. By positioning the
observed richness of each region in the associated vectors
of ordered bootstrap species richness estimates (the higher
the position of the observed species richness in the vector
of bootstrap estimates the higher the ecoregion in the
ranking), these authors were able to devise a hotspot
ranking methodology that was robust to the underlying
form of SARs.

The mmSAR R-package and a detailed user’s guide is
available at the R-Forge website <http://mmsar.r-forge.
r-project.org>.

To cite mmSAR or acknowledge its use, cite this
Software note as follows, substituting the version of the
application that you used for ‘‘Version 0’’:

Guilhaumon, F., Mouillot, D. and Gimenez, O. 2010. mmSAR:
an R-package for multimodel species�area relationship
inference. � Ecography 33: 420�424 (Version 0).
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