Biol. Rev. (2008), 83, pp. 357-399. 357
doi:10.1111/;.1469-185X.2008.00047.x

Assessing the impact of climate variation on

survival in vertebrate populations

V. Grosbois"?*, O. Gimenez!3, J.-M. Gaillard?, R. Pradel!, C. Barbraud?, J. Clobert’,
A. P. Moller® and H. Weimerskirch*

Y Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175, 1919 Route de Mende, F-34293 Montpellier Cedex 5, France

2 Laboratoire Biometrie et Biologie Evolutive, UMR 5558, Bat. Gregor Mendel Universite’ Claude Bernard Lyon 1, 43 Boulevard du 11
novembre 1918, F-69622 Villeurbanne Cedex, France

3 University of St Andrews, the Observatory, Buchanan Gardens, St Andrews, FIFE, Scotland, KY16 9LZ.

4 Centre d’Etude Biologique de Chize, CNRS UPR 1934, F-79360 Villiers en Bots, France

5 Laboratoire Evolution et Diversite’ Biologique, Station Biologique du CNRS a Moulis, Moulis, F-09200 Saint-Girons, France

6 Laboratoire de Parasitologie Fvolutive, CNRS UMR 7103, Universite Pierre et Marie Curie, Batiment A, 7éme elage, 7 quai St. Bernard,
Case 237, F-75252 Paris Cedex 05, France

(Receved 13 February 2007; revised 28 May 2008; accepted 10 Fune 2008)

ABSTRACT

The impact of the ongoing rapid climate change on natural systems is a major issue for human societies. An
important challenge for ecologists is to identify the climatic factors that drive temporal variation in demographic
parameters, and, ultimately, the dynamics of natural populations. The analysis of long-term monitoring data at
the individual scale is often the only available approach to estimate reliably demographic parameters of
vertebrate populations. We review statistical procedures used in these analyses to study links between climatic
factors and survival variation in vertebrate populations.

We evaluated the efficiency of various statistical procedures from an analysis of survival in a population of
white stork, Cicoma ciconia, a simulation study and a critical review of 78 papers published in the ecological
literature. We identified six potential methodological problems: (z) the use of statistical models that are not well-
suited to the analysis of long-term monitoring data collected at the individual scale; (z2) low ratios of number of
statistical units to number of candidate climatic covariates; (zz) collinearity among candidate climatic covariates;
(1) the use of statistics, to assess statistical support for climatic covariates effects, that deal poorly with unexplained
variation in survival; (v) spurious detection of effects due to the co-occurrence of trends in survival and the
climatic covariate time series; and () assessment of the magnitude of climatic effects on survival using measures
that cannot be compared across case studies. The critical review of the ecological literature revealed that five of
these six methodological problems were often poorly tackled. As a consequence we concluded that many of these
studies generated hypotheses but only few provided solid evidence for impacts of climatic factors on survival or
reliable measures of the magnitude of such impacts.

We provide practical advice to solve efficiently most of the methodological problems identified. The only
frequent issue that still lacks a straightforward solution was the low ratio of the number of statistical units to the
number of candidate climatic covariates. In the perspective of increasing this ratio and therefore of producing
more robust analyses of the links between climate and demography, we suggest leads to improve the procedures
for designing field protocols and selecting a set of candidate climatic covariates. Finally, we present recent
statistical methods with potential interest for assessing the impact of climatic factors on demographic parameters.
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I. INTRODUCTION

The modifications of natural systems induced by the
ongoing climate change is a major issue for human societies
(Easterling et al., 2000; Clark et al., 2001; Hulme, 2005;
King, 2005; Schlesinger, 2006; IPCC, 2007). Empirical
investigations of the influences of climate change during the
20th Century on extinction rates (Thomas et al, 2004;
Thomas, Franco & Hill, 2006), range shifts (Harrington,
Woiwod & Sparks, 1999; Parmesan & Yohe, 2003; Hays,
Richardson & Robinson, 2005; Thomas et al., 2006), popu-
lation dynamics (Balmford, Green & Jenkins, 2003;
Forsman & Monkkénen, 2003) and ecosystem functioning
(Smith et al., 1999; Doran et al., 2002; Pefiuelas, Filella &
Comas, 2002; Hays et al., 2005) have developed rapidly over
the last 10 years and have revealed important impacts on
natural systems (Walther e al., 2002; Parmesan & Yohe,
2003; Bohning-Gaese & Lemoine, 2004; Hays et al., 2005;
Parmesan, 2006).

Under realistic socio-economic scenarios, global warm-
ing will go on, possibly at a faster pace, at least until the end
of the 21st Century and will result in dramatic changes in
all regional climates (Easterling et al., 2000; IPCC, 2007). A
major challenge for ecologists is the development of models
to predict the resulting changes in species ranges and ex-
tinction risks (Clark ef al,, 2001; Hulme, 2005; Sutherland,
2006; Jetz, Wilcove & Dobson, 2007). Until now, most
predictive models have relied on a phenomenological (i.e.
non-mechanistic) approach where the future range of
a species 1s defined as the area(s) where climatic conditions
in the future, as predicted by climate models, are similar to
those prevailing in the current range of the species (Peterson
et al., 2002; Thomas et al., 2004; Guisan & Thuiller, 2005;
Hartley, Harris & Lester, 2006). However, models that
explicitly integrate the processes through which climate
influences population dynamics would be much more infor-
mative (Sather, Sutherland & Engen, 2004; Hulme, 2005;
Sutherland, 2006). Process-based models have already been
developed for predicting the future state of the vegetation
component in terrestrial ecosystems (Kleidon & Mooney;,
2000; Chuine & Beaubien, 2001; Guisan & Thuiller, 2005;
Moorcroft, 2006). To our knowledge there has yet been no
attempt to build range prediction models based on
processes for vertebrate species. A prerequisite for their
development is to achieve an understanding of the influence
of climatic factors on temporal variation of the demo-
graphic parameters underlying population dynamics (Coul-
son et al., 2001; Jenouvrier, Barbraud & Weimerskirch,
2003; Dunn, 2004; Moller & Merila, 2004; Sether et al.,
2004; Ludwig et al. 2006; Sutherland, 2006).

Long-term monitoring data collected at the individual
scale, mainly using capture-mark-recapture (CMR) sam-
pling either of live (Clobert, Lebreton & Allainé, 1987;
Lebreton et al., 1992; Sandercock, 2006) or dead individuals
(Brownie et al, 1985), contain information on most
demographic parameters: survival (Lebreton e al., 1992),
transitions among reproductive states (Nichols, 1994;
Viallefont, Cooke & Lebreton, 1995; Cam et al., 1998),
dispersal rates among study sites (Arnason, 1973; Brownie

et al., 1993; Schwarz, Schweigert & Arnason, 1993),

recruitment rate of new breeders into a population (Clobert
et al., 1994; Pradel, 1996; Pradel & Lebreton, 1999, Nichols
et al., 2000), and frequency of reproduction in species with
intermittent breeding (Cam et al., 1998). Analysis of such
data is an efficient, and often the only available, approach
to estimate reliably demographic parameters in free-living
animal populations (Nichols, 1992).

The aim of the present work is to review statistical
procedures to address the impact of variation in climatic
factors on survival of vertebrates through the analysis of
monitoring data collected at the individual scale. We
specifically focus on procedures aiming at (;) detecting
relationships between patterns of temporal variation in
survival and in climatic covariates; () evaluating the chance
that such relationships result from pure coincidence or from
genuine impacts of climatic factors on survival (ve
evaluating statistical support); (z2z) evaluating the impact of
temporal variation in climatic factors on survival in the time
period covered by the empirical data in hand (z.e. evaluating
effect sizes). The statistical tools involved are regression-like
models that in their basic form are routinely employed in
ecological and evolutionary studies (Mitchell-Olds & Shaw,
1987; Sokal & Rohlf, 1995). However, their correct use is
context-dependent. Relating variation in survival estimated
from CMR data to variation in climatic factors implies
avoiding a number of pitfalls that arise from the character-
istics of these two types of data. Beyond the description of
the procedures we thus aim to identify potential problems
encountered in studies of climate impacts on survival and to
provide practical advice to solve efficiently these problems.

We first present the objectives pursued in studies assessing
the link between survival and climatic factors in vertebrate
populations. Second, we summarize the properties of CMR
and climatic data that must be carefully considered in order
to carry out robust statistical analyses. Third, we present the
main types of regression models and associated statistics
that can be used to explore reliably the relationships
between climatic factors and survival. In this section, results
obtained from a simulation study are used to evaluate the
performance of alternative procedures to assess statistical
support. Fourth, we provide advice both for designing field
protocols to collect survival data and for selecting sets of
candidate climatic covariates. Finally, we present existing
but seldom applied or recent statistical methods with
potential interest for assessing the impact of climate change
on demographic parameters.

Throughout the paper, the revisitation of an investiagtion
by Kanyamibwa et al. (1990) of the relationship between
climatic factors and adult survival of white storks Ciconia
cicoma breeding in Baden-Wiirttemberg (Germany), and
a critical review of 78 papers published from 1985 to 2006
included in ecological journals referenced in Current
Contents are used for illustrative purposes. These papers
that address, through analyses of monitoring data at the
individual scale, the influence of climatic factors on the
survival of any age class in free-ranging vertebrates were
gathered from our personal bibliographical databases, and
in the course of our routine survey of the literature.
Although this survey of the ecological literature is neither
exhaustive nor based on rigorous bibliographical methods,
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it certainly constitutes a large and representative sample of
the articles treating our focal subject. We evaluated this
reviewed literature globally, and referred to particular
studies only when they illustrated proper use of statistical
methods. The 78 reviewed papers are listed in Appendix 1
which summarizes the evaluation for each paper of
potential pitfalls in the analysis. We hereafter refer to this
set of reviewed papers as ESR (ie. ecological studies
reviewed). In all the ESR, as well as in all the analyses
presented, correlations between climatic factors and
survival were addressed. However, the methodological
problems identified and the advice expressed here are
relevant to investigations of relationships between climatic
factors and any demographic parameter that can be
estimated through the analysis of monitoring data collected
at the individual scale.

II. OBECTIVES OF INVESTIGATIONS OF
CLIMATIC IMPACTS ON VERTEBRATE
SURVIVAL

In the present paper, we focus on the statistical modelling of
monitoring data at the individual scale that aims ultimately
at describing in the form of mathematical models the
mechanisms through which climatic and other environmen-
tal and intrinsic factors generate temporal variation in sur-
vival in a focal vertebrate population (Burnham & Anderson,
2002; Ginzburg & Jensen, 2004; Johnson & Omland, 2004;
Hobbs & Hilborn, 2006; Stephens, Buskirk & del Rio, 2007).
Such mathematical models can then be used to evaluate the
relative importance of these various factors as drivers of
temporal variation in survival and to predict the impacts of
changes in the distribution (mean and variance) of these
factors on survival. However, the possibility of reaching these
objectives depends to a large extent on the quantity and
quality of the information available on the processes
generating temporal variation in survival prior to the
initiation of the statistical analysis.

In roughly half of the 78 ESR, prior knowledge of the
study system seemed good enough for the investigators to
define a prion a limited set (ie. less than five) of
environmental (including climatic) candidate covariates that
included the main drivers of temporal variation in survival
(e. at least one of the models considered turned out to
account for most of the variation in survival). In such
situations, it is possible to evaluate the relative weight of
evidence in the data for a limited number of models
depicting a priori well-founded competing hypotheses about
the processes through which temporal variation in climatic
factors and other drivers induce temporal variation in
survival (Burnham & Anderson, 2002; Johnson & Omland,
2004; Hobbs & Hilborn, 2006; Stephens et al., 2007).
Furthermore, it is possible to assess the relative importance
of various drivers of variation in survival and to build
predictive models with methods that account for uncer-
tainty about processes when more than one model is
strongly supported by the data (Burnham & Anderson
2002; Hobbs & Hilborn, 2006; Johnson & Omland, 2004;
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Stephens et al., 2007). We will not focus on this type of
situation because the relevant concepts and procedures
have recently been described in detail (see Burnham &
Anderson, 2002 for a full treatment).

In the case of white storks breeding in Baden-Wiirttemberg,
little prior information is available on the processes gen-
erating temporal variation in survival. For instance, the
causes of death are unknown, and so are the time of year when
the highest mortality occurs and the relative importance of
alternative food resources and climatic factors likely to
influence the availability of these resources. Prior knowledge
1s limited to a series of demographic patterns reported in this
and other Western European white stork populations. Like all
Western European white stork populations, the studied
population has declined sharply from the 1960s to the
1990s (Kanyamibwa et al., 1990). These declines have
motivated investigations of the relative impact of climate
variation in the wintering areas and on the breeding grounds
on white stork population dynamics (Kanyamibwa et al.,
1990; Schaub, Kania & Koppen, 2005; Sather et al., 2006).
While the white stork population collapsed, the Sahel region
experienced severe droughts (Grist & Nicholson, 2001). As for
several other bird species wintering in Western Africa (Caveé,
1983; Peach, Baillie & Underhill, 1991; Cowley & Siriwar-
dena, 2005), a relationship between rainfall in the Sahel and
adult survival of white storks has been detected (Kanyamibwa
et al., 1990; Barbraud, Barbraud & Barbraud, 1999).
Furthermore, indications have also been obtained that local
climate in breeding areas could influence the demography of
Western European white stork populations (Schaub et al.,
2005; Sether ¢t al., 2006). Based on this limited knowledge,
many climatic factors can be considered as potential
covariates of adult survival of storks. In addition, the shape
of the relationship linking these potential climatic covariates
to survival remains to be identified. Although most studies
focused on linear relationships, quadratic relationships could
occur if white storks perform best under average climatic
conditions. The white stork survival study is an exploratory
analysis in which a set of potentially influential covariates is
considered rather than a study that would allow challenging
cautiously designed research hypotheses on the processes
(including climatic forcing) that generate temporal variation
in survival (Anderson & Burnham, 2002; Robinson & Wainer,
2002; Guthery et al., 2005; Stephens et al., 2005; Stephens
et al, 2007). Our proximate aims are thus to detect
relationships between patterns of temporal variation in
survival and in candidate climatic covariates; to evaluate
the chance that such relationships result from pure
coincidence or from genuine impacts of climatic factors on
survival (z.e. to evaluate statistical support); and to quantify,
under the hypothesis of genuine effects, the impact of
temporal variation in climatic factors on survival within the
time period covered by the available data (i.e. to assess the
potential biological significance). Ultimately, this type of
study can help to generate hypotheses on the processes
underlying the influence of climatic factors on survival
(Robinson & Wainer, 2002; Guthery et al., 2005; Stephens
etal.,2005; Stephens et al., 2007). However, further evaluation
of these hypotheses would imply either specifically designed
experiments or analyses of independent data sets (Robinson &
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Wainer, 2002; Roback & Askins, 2005; Link & Barker, 2006).
In roughly half of the 78 ESR the investigators could not
restrict the set of potential drivers of temporal variation in
survival to less than five candidate covariates and/or failed to
define a model that accounted for most of the temporal
variation in survival. In the present paper, we emphasize the
numerous and often poorly addressed issues arising in such
exploratory studies. However, most of these issues are also
relevant to situations where prior knowledge of the study
system is good enough for confronting competing hypotheses
about processes.

ITII. DATA CHARACTERISTICS

(1) Survival estimated from encounter histories

In a minority of the ESR (five out of 78), the field protocol
consisted of nearly continuous monitoring of individuals by
radio-tracking, and the information used in the analysis was
the date of death. We will not present the statistical models
for the analysis of such data but refer the reader to the
excellent overview of the models and procedures for
analysing continuous individual monitoring data provided
in Murray (2006). In the majority (73 out of 78) of the ESR
as well as in the Baden-Wiurttemberg white stork popula-
tion, one encounter history for each individual summarized
the outcome (detected/not detected) of discrete capture
occasions. Survival of white storks was thus estimated using
specific statistical methods (hereafter referred to as CMR
methods) in which the likelihood of the encounter histories
of 321 individuals ringed as chicks and resighted at least
once as adults was expressed as a function of survival and
detection probabilities (Lebreton et al., 1992; Nichols, 1992;
Williams, Nichols & Conroy, 2002; Sandercock, 2006).
This type of model must be used whenever the probability
of detection of marked individuals is lower than 1. Statisti-
cal procedures that do not account for the probability
that a marked individual remains undetected were used in
only seven out of the 73 ESR relying on the analysis of
CMR data.

Since survival i1s not measured directly in CMR studies,
the value of a given survival probability is almost never
known with certainty (survival estimates and associated
confidence intervals for the white storks are displayed in
Fig. 1) and the precision with which it is estimated has to be
accounted for when investigating the factors underlying its
variation (Clobert & Lebreton, 1985). In only nine of the 78
ESR, was the precision of survival estimates ignored.
Furthermore, survival and/or detection probabilities can
vary among the individuals sampled. Heterogeneity among
individuals in survival and/or detection probabilities can
lead to biased survival estimates (Carothers, 1973, 1979;
Buckland, 1982; Prévot-Julliard, Lebreton & Pradel, 1998;
Pledger, Pollock & Norris, 2003). For instance, heterogeneity
in detection probability can lead to underestimated survival,
especially towards the end of the time series (Carothers,
1973, 1979) and can thus generate spurious temporal trends
in survival estimates (Devineau, Choquet & Lebreton,

1A
0.9 1
0.8 1
0.7 1
0.6 1
0.5 1
0.4 1
0.3

White stork adult survival

«%qm\m%vb@«%quﬂ,
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Year

Fig. 1. Yearly estimates of adult survival for Baden-Wiirtemberg
white storks Ciconia ciconia. Error bars indicate 95% confidence
intervals.

2006). It is thus important to address heterogeneity among
individuals, in particular with goodness-of-fit tests (see
below), and, if necessary, to account for such heterogeneity
when assessing the impact of climatic factors on survival.

As in all ESR reviewed, the white stork data were
obtained from observations rather than from a strict
experimental design. As a consequence, factors that might
influence survival, but whose impacts are not considered
worth investigating, could not be randomised or kept cons-
tant. Given these uncontrolled conditions, observed varia-
tion in survival estimates might come from the influence
of multiple factors, some unsuspected by the investigator
(Burnham & Anderson, 2002; Schwarz, 2002).

As in most of the ESR (63 out of 78), the time interval
between two successive encounter occasions was one year in
the stork study, so that any variation in survival at finer time
scales could not be measured (but see Lahti ef al., 1998;
Lima et al., 2001; Conroy, Senar & Domeénech, 2002; Lima,
Merrit & Bozinovic, 2002; Piper, 2002; Tavecchia et al.,
2002; Barbraud & Weimerskirch, 2003; Sendor & Simon,
2003; Hallet et al., 2004; Schaefer et al., 2006 for protocols
on vertebrates permitting investigations at seasonal scales).
Then, the number of points available to plot survival against
climatic factors (z.e. the number of statistical units) is usually
the number of years of monitoring. The white stork data set
covered 16 years and thereby provided 16 estimates of
annual survival (Fig. 1). Only six of the 78 ESR covered more
than 30 years and thus provided > 30 estimates of annual
survival (Catchpole et al, 1999; Peach, Siriwardena &
Gregory, 1999; Perdeck, Visser & Van Balen, 2000; Grosbois &
Thompson, 2005; Jenouvrier, Barbraud & Weimerskirch,
2005a; Altwegg et al., 2006). An important limitation when
investigating relationships between survival and climatic factors
is thus the usually small number of years.

(2) Climatic covariates

Local climate is expected to exert a strong, relatively direct
influence on survival in wild populations (Newton, 1998).
Numerous covariates such as temperature, air pressure,
humidity, cloudiness, precipitation, wind direction and
speed are needed for a thorough description of local
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climate. Furthermore several distinct critical periods and
seasonal or monthly covariates may be relevant (Clobert &
Lebreton, 1985; Newton, Wyllie & Rothery, 1992; Franklin
et al., 2000; Cowley & Siriwardena, 2005; Brouwer et al.,
2006; Grosbois ¢t al., 2006; Nevoux & Barbraud, 2006) and
local climatic factors in distinct geographic locations are
important for migratory or highly mobile populations (e.g.
Moller & Szep, 2005; Schaub et al., 2005). Hence, assessing
the relationship between local climate and survival requires
considering large sets of covariates (e.g. Hallett ¢f al., 2004;
Catchpole et al., 1999; Grosbois et al., 2006; Kéry, Madsen &
Lebreton, 2006). Accordingly five or more candidate climatic
covariates were considered in 22 out of the 78 ESR. The
white stork example also illustrates the issue of having to deal
with many candidate covariates. Based on results reported in
the literature (Kanyamibwa et al., 1990; Barbraud et al., 1999;
Schaub et al., 2005; Swther et al, 2006), two geographic
locations (the wintering and the breeding areas) and three
periods of year (the wintering, the pre-breeding, and the
breeding periods) have to be considered for a complete
investigation of the influence of climatic factors on adult
survival of white storks. Moreover, the wintering area
(defined by the location of recoveries of dead white storks;
Kanyamibwa et al., 1990) covers a wide area (10°N-17°N
15°W-10°E) so that rainfall obtained from 15 weather
stations needs to be considered. Finally, whereas rainfall is
likely to be the most influential climatic factor in the Sahel
area, we could not identify a priori the climatic covariate that
was likely to be the most influential in the breeding area. As
a consequence our initial set of covariates included 15 time
series of rainfall for the Sahel region (see Table 1 for a list of
the corresponding weather stations), two series (one for the
pre-breeding period: March to May; and one for the
breeding period: June to August) for rainfall in the breeding
area (r.e. 6°50°-9°50° E / 46°50°-48°50°’N) and two series for
temperature in the breeding area.

Teleconnection (i.e. remote connection) indices capture
large spatial-scale patterns in climatic factors that result

Table 1. Meteorological stations in the Sahel region where
rainfall data used in the white stork Ciconia ciconia survival
analysis were collected

Station N latitude E longitude Label
Dakar 14.7 —17.5 Dak
Diourbel 14.7 —16.2 Dio
Gao 16.3 —0.1 Gao
Kandi 11.1 2.9 Kan
Kayes 14.4 —114 Kay
Kita 13.1 —9.5 Kit
Koutiala 12.4 —5.5 Kou
Maradi 13.5 7.1 Mar
Mopti 14.5 —4.1 Mop
Na Titingou 10.3 1.4 Na
Ouahigouya 13.6 —2.4 Oua
Sikasso 11.4 —5.7 Sik
Ségou 13.4 —6.2 Seg
Tahoua 14.9 5.3 Tah
Tombouctou 16.7 —3 Tom
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from global atmospheric and oceanic circulation phenom-
ena (Hurrell, 1995; Holmgren et al., 2001;Ottersen et al.,
2001; Stenseth et al., 2002, 2003). They are increasingly
used in ecological studies as integrative proxies for local
climate. Teleconnection indices have been considered as
candidate covariates in 21 of the 78 ESR (Appendix 1).
Such indices are correlated with numerous local climatic
covariates over large geographic areas, although in different
ways for different sites. Teleconnection indices are often
noisy representations of the actual causal factors (Almaraz &
Amat, 2004), as also are local climatic covariates when they
influence survival indirectly, e.g. through resource availability
(Montevecchi & Myers, 1997; Sather, 1997; Durant, Anker-
Nilssen & Stenseth, 2003). To deal with the large uncertainty
about which climatic factor was likely to be the most
influential on breeding grounds for white stork survival, we
included the pre-breeding season (.. March through May)
and the breeding seasons (i.e. June through August) north
Atlantic oscillation (NAO) in the set of candidate covariates.
We also included December through March NAO (hereafter
referred to as WNAO) because, with its large geographic
coverage and its integrative nature, it was likely to reflect the
climatic conditions encountered during the return trip from
the wintering grounds.

Although interdependency among candidate climatic
covariates 1s to be expected, it is not systematically addressed
in ecological studies. It has indeed been investigated in only
19 of the 62 ESR where several climatic covariates have been
considered. In more than half of these studies, relationships
among covariates have been detected (e.g. Clobert &
Lebreton, 1985; Newton e al., 1992; Catchpole ¢t al., 1999,
2000; Loison, Jullien & Menaut, 1999; Frankhn et al., 2000;
Loison et al., 2002; Tavecchia et al., 2002; Grosbois et al.,
2006; Jenouvrier, Barbraud & Weimerskirch, 2006; Kéry
et al., 2006; Traylor & Alisauskas, 2006). In the white stork
study case, we detected substantial correlations among
rainfall records from the different meteorological stations in
the Sahel region [Pearson correlation coefficient (r): mean for
105 pairs of rainfall time series: 0.34, for 24 out of 105 pairs
r > 0.50] suggesting that the mechanisms that drive inter-
annual fluctuations of rainfall operate at large spatial scales.
Furthermore, the three factors reflecting climatic conditions
during both pre-breeding and breeding periods in the white
stork study were intercorrelated (Table 2). Such correlations
among distinct local climatic covariates in a same location
reflect to some extent the occurrence of different types of
weather (e.g. in the white stork study: warm, dry and high
NAO versus cold, wet and low NAO).

At this stage of the white stork study, we are confronted
with a typical situation in empirical studies of climate
influences on demography in free-ranging vertebrate
populations. Limited knowledge of the system did not allow
us to identify a limited set of candidate climatic factors, so
we were left with 22 different covariates, some of which
were strongly intercorrelated. Using the whole set of
candidate covariates cannot be recommended for two
reasons. First, the large number of covariates (7 = 22) raises
the classical multiple test problem leading to an inflated
probability of detecting spurious correlations (Type I error)
(Garcia, 2004; Rice, 1989; Roback & Askins, 2005). Second,
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Table 2. Correlations among climatic covariates

Correlation pattern

(Pearson’s r below the diagonal; P-value of a ttest for Hy: =0 above the diagonal)

Climatic covariate Label ~ WNAO PBST PBSRFPBSNAOPBSC BST BSRF BSNAOBSC  CNSRFSSRF
North Atlantic WNAO 0.82 0.63 0.64 0.71 0.07 0.57 0.25 0.45 0.06
oscillation, December-February

Temperature anomaly, PBST 0.06 0.07 <0.001 0.89 0.32 0.08 0.26 0.71 0.88
breeding region, March-May

Rainfall anomaly, PBSRF —0.13 —0.63 0.13 <0.001 0.36 0.96 091 0.73 0.92 041
breeding region, March-May

North Atantic PBSNAO 0.13 0.46 —0.4 0.001 0.56 0.64 041 0.79 0.53 0.98
oscillation, March-May

Integrative climatic PBSC 0.13 0.87 —0.84 0.73 0.59 0.57 0.27  0.67 0.91 0.42
index, breeding

region, March-May

Temperature anomaly, BST —0.1 —0.04 —0.25 0.16  0.15 0.005 0.19 <0.001 0.60 0.35
breeding region, June-August

Rainfall anomaly, BSRF 0.47 0.26 0.13  0.15 —0.66 0.03 <0.001 0.95 0.32
breeding region, June-August

North Atlantic BSNAO —0.16 —0.46 —-0.22 —0.29 0.34 —0.55 <0.001 0.28 0.98
oscillation, June-August

Integrative climatic BSC -03 —-03 —-0.09 —-0.07 —0.12 0.82—-091 0.74 0.88 0.42
index, breeding

region, June-August

Central and northern CNSRF 0.2 0.1 —-0.17 —0.03 0.14 —0.02 —0.29 —0.04 0.45
Sahel rainfall index

Southern Sahel SSRF —0.48 —0.04 —0.22 —0.01 0.07 025-027 —0.01 0.22 —-0.21

rainfall index

The two shaded areas highlight two sets of intercorrelated covariates: those describing climatic conditions in the breeding area during the
pre-breeding period and during the breeding period, respectively. Bold type highlights the covariates retained for the analysis of white stork
Ciconia ciconia survival and the correlations among them. To avoid overloading the table, the 15 Sahel rainfall original covariates are not
included here. Instead, we only included the two Sahel rainfall integrative covariates (CNSRF and SRF).

the interdependence among explanatory covariates (here-
after referred to as multi-collinearity) is known to hamper
model selection, parameter estimation, and the interpreta-
tion of results in regression analyses (Draper & Smith,
1981, pp. 327-332; Graham, 2003; Neter et al., 1996).
Several measures exist to assess the degree to which multi-
collinearity affects parameter estimates (Neter et al., 1996),
and once the problem has been detected a strategy is
required to cope properly with this issue. It is possible to
address simultaneously the multiple test and the multi-
collinearity issues by building packages combining several
intercorrelated climatic variables. Such integrative meas-
ures have been used in few of the ESR. However, whenever
this has been done, the detection and the quantification of
the impacts of climatic fluctuation on survival have been
thoroughly achieved (see e.g. Gaillard e al, 1997,
Jorgenson et al., 1997; Singer et al., 1997; Loison &
Langvatn, 1998; Loison et al., 1999; Garel et al., 2004;
Grosbois et al., 2006; Gunnarsson et al., 2006; Jenouvrier
et al., 2006; Kéry et al., 2006; Traylor & Alisauskas, 2006). For
the white stork survival analysis, we combined intercorre-
lated climatic variables by performing three distinct
Principal Component Analyses (PCA), one on the 15 Sahel
rainfall time series, one on the three climatic factors for the
pre-breeding season and one on the three climatic factors

for the breeding season. Principal Components (PC) are
uncorrelated linear combinations of the original covariates
that can be interpreted as synthetic climatic covariates
(Draper & Smith, 1981, pp. 327-332; Graham, 2003). Here,
we retained the first and second PCs for Sahel rainfall
which accounted for 42% and 12% of the variation
recorded at the 15 stations, respectively; and the first PG
for the pre-breeding and breeding seasons, which accounted
for 66 and 68 % of the variation in the corresponding
original climatic covariates. The first Sahel rainfall PC was
positively correlated with rainfall for all the stations
considered but the two southernmost ones, while the
second PC was correlated positively with rainfall in the
two southernmost stations (Fig. 2A). Although the second
PC accounted for a relatively low fraction of total variation
in the Sahel rainfall series, we retained it for rainfall in the
two southernmost Sahel stations to be represented in the set
of candidate climatic covariates. Indeed, when using PCA-
derived indices, variables that could be of biological
importance may not be well accounted for by the first
component (z.e. the component that contribute the most to
total variation). It is thus important to select candidate
covariates among PCs not only based on their contribution
to total variation but also in such a way that all original
covariates are well represented in the set of candidate
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Fig.2. Correlation circles of the principal components analyses (PCA) for building integrative climatic indices. The fifteen
meteorological stations plotted in A are identified in Table 1. Climate covariate abreviations are as in Table 2.

covariates. The two PCs derived from the analysis of the
Sahel rainfall series will hereafter be referred to as CNSRF
(central and northern Sahel rainfall) and SSRF (southern
Sahel rainfall), respectively. The PCs retained for the pre-
breeding season and breeding seasons both correlated
positively with temperature and NAO and negatively with
rainfall (Fig. 2B, C). These two PCs thus reflected the
occurrence in the breeding area of years with warm and dry
local conditions associated with high NAO and of years
with cold and wet conditions associated with low NAO.
They will hereafter be referred to as PBSC (pre-breeding
season climate) and BSC (breeding season climate). In this
example, PCA applied to a large set of interdependent
variables generated few easily interpretable and uncorre-
lated integrative covariates (Table 2; Fig. 2). Non-weighted
sums or averages over sets of climatic variables have
sometimes been used in ecological studies as synthetic
climatic covariates (e.g. Gunnarsson et al., 2006). However,
unlike PCA, such procedures do not generate a set of
independent (uncorrelated) synthetic covariates. Further-

more, as ilustrated with the white stork example, PCA
allows combining variables of different nature (here
temperature, rainfall and NAO; Fig 2B, C) that would
be difficult to sum or average otherwise. We thus ad-
vocate using PCA analyses as a more efficient way of
combining climatic variables than simply summing or
averaging them.

A last characteristic of climatic variables that deserves
caution and that results from natural patterns of variability
as well as from greenhouse effect forcing is that they often
present marked linear or quadratic temporal trends over
time series covering a few decades within the 20th Century
(Stenseth et al., 2003). Such trends have been addressed in
only 12 out of the 78 ESR and detected in at least four of
these (e.g. Kanyamibwa ¢t al., 1990; Grosbois & Thompson,
2005; Chamaillé-Jammes et al., 2006; Nevoux & Barbraud,
2006). Within the set of candidate climatic covariates
retained as potentially influencing white stork survival,
CNSRF showed a marked decreasing trend over the study
period (Table 3, Fig. 3).
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Table 3. Analysis of trends over time (linear and quadratic) in
climatic factors

Linear trends Quadratic trends

Covariate R 1R P-value R 1R P-value
WNAO 0.077 0.299 0.192 0.25
CNSRF 0.573 0.001 0.603 0.003
SSRF 0.004 0.81 0.065 0.65
PBSC 0.002 0.89 0.012 0.92
BSC 0.153 0.185 0.167 0.306

Statistics were obtained from linear regression models with the
focal climatic factor as the dependent variable and a linear
temporal trend and, for quadratic temporal trend, that linear trend
squared, as predictors. P-values were obtained from an F-test of
the hypothesis that the slope(s) of the relationship(s) with the
predictor(s) equal zero. R>LR is the coefficient of determination of
the linear regression model. Covariate abbreviations are defined in

table 2.

IV. PROCEDURES FOR ASSESSING THE
POTENTIAL IMPACT OF CLIMATIC FACTORS
ON SURVIVAL

Once a set of candidate covariates has been defined, the
investigation of temporal variation in survival and of the
factors underlying it can be initiated. In a first step,
structural models, ze. models that do not include any
external covariate, are explored with the aim of defining
one or a few reference models that describe satisfactorily
temporal variation in survival without any hypothesis about
the factors underlying it. These reference models can be
used to quantify temporal variation in survival. Further-
more, the models considered in subsequent steps of the
analysis will be evaluated against the reference models. In
a second step, ultra-structural models where variation in
survival is related to climatic drivers are built. Finally, both
the structural reference models and the ultra-structural
models including covariate effects are used to identify the
climatic factors that potentially influence survival and to
quantify their potential impact. Two important, comple-
mentary criteria are involved in this final step of the
analysis: the statistical support for an effect of a climatic
factor on survival and the estimated magnitude of this effect
(Yoccoz, 1991; Nakagawa & Cuthill, 2007). Below, we use
the white stork survival analysis and a simulation study to
describe and evaluate the models, procedures and statistics
involved in each of these three steps.

(1) Defining structural reference models

The first step in investigating variation in survival of white
storks involved selecting a structural model as parsimonious
as possible and still providing an adequate description of the
pattern of temporal variation in survival. The appropriate
CMR methods are now well-known (Lebreton ¢t al., 1992;
Williams et al., 2002; Sandercock, 2006). Furthermore, these
methods are implemented in user-friendly programs such as

MARK (White & Burnham, 1999) and M-surGk (Choquet
et al., 2004). As a consequence, methods applied for building
CMR models in ecological studies are most often correct
(this was the case in 65 of the 73 ESR where CMR data
were analysed). We thus provide a minimal description of
these methods below and refer readers to Lebreton et al.
(1992), Williams et al. (2002), and Sandercock (2006) for
more details. Observed numbers of all possible individual
histories are assumed to be observations from multinomial
distributions with cell probabilities depending on survival
and detection parameters (denoted ¢ and p, respectively). A
model is defined that relates, via a link function denoted f,
the variation in survival and detection parameters to
variation in categorical factors and/or continuous cova-
riates. Once a model has been defined, survival and
detection parameters are estimated by maximizing the
likelihood under the constraints imposed by this model. Let
us denote this likelihood L{@|IM _data) where 6 represents
the vector of parameters in the model, and IM_data the
individual monitoring data. Reliable inference can be
drawn from a model only if a number of assumptions of
homogeneity within and among encounter histories are
verified (Lebreton e al, 1992). Goodness-of-fit tests
(hereafter referred to as GOF tests) implemented in
programs such as MARK (White & Burnham, 1999) and
U-CARE (Choquet et al., 2005) allow checking that these
assumptions are met. Along with each model comes its
relative deviance: Dev = — 2logI{f |IM _data); an impor-
tant statistic that measures the discrepancy between the
predictions of the model and the observations. The lower
the Dey the lower the discrepancy. Other useful statistics are
the Akaike Information Criterion (AIC = Dev+ 2K where K
is the number of estimable parameters in the model) and its
variants (i.e. AICc, QAIC and QAICc; Burnham & Anderson,
2002). AIC is used in the information theoretic approach to
quantify the adequacy of a model in terms of an optimal
compromise between prediction bias and parameter
uncertainty (Burnham & Anderson, 2002, p. 62; see below).
The lower the 4IC of a model, the better the compromise.

Using the methods briefly presented above, we defined
a starting model to describe variation in white stork survival
and detection probability that was general enough for the
assumptions underlying CMR models to be met (Lebreton
et al., 1992). We chose the logit link function because it
ensures obtaining survival estimates in the interval [0; I].
The Cormack-Jolly-Seber model [¢(Fy); p(F); see Table 4
for a description] including fully time-dependent survival
and recapture probabilities (Lebreton et al., 1992) did not
significantly depart from the assumptions underlying CMR
models (x%49 = 38.2, P = 0.64). This model was thus used
as a starting point (Tables4, 5). Then, using AICc (i.e. the
small-sample-corrected version of the AIC), this starting
model was compared to models where recapture probability
and/or survival were constant [p(F,,) or ¢(F,,)] and to
models where survival varied through time according to
a linear or a quadratic trend [hereafter denoted as ¢(Fy)
and ¢(Fr ,); Tables4, 5]. The model including constant
recapture probability and time-dependent survival had the
lowest AICc (model ¢(F); p(F,,); Table5, Fig. 1). In all
subsequent models recapture probability was therefore kept
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Fig. 3. Time series for integrative climatic indices considered as candidate covariates in the analysis of adult survival of Baden-
Wiirtemberg white storks.
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Table 4. Models used for describing survival [f(¢;)]

Label Formulation Description Parameters to be estimated
F, Sf(¢)=a Survival is constant over years — One constant parameter: a
F, Sf(¢) =« Survival varies over years — One distinct parameter, a;, for each time interval

Fr(Fr,) f(¢)=a+bTi(+cT})

Survival varies according to
a linear (or quadratic) trend

7 in the time series

— One parameter, a, for the intercept- One (or two)
parameter(s), b (and ¢), for slopes
of the linear (7;,) [and quadratic (7,%)] trend terms

R, S(@)=a+e Survival shows stochastic variation — One parameter, a, for the mean
over years around a mean — One parameter for the variance ¢of the random
term ¢; that describes stochastic variation over
years around the mean
E, S(9) = a+ bjxi( + ijjQi) Survivalhis totally determi.ned — One parameter a for the intercept
by a linear (or quadratic) — One (or two) parameter(s) b;, (and ¢ for the
relationship with the covariate j relationship with covariate x;
R, S(9) = a+ bjx( + ”jiji) + & Survival is not totally determined by — One parameter a for the intercept

a linear (or quadratic) relationship
with the covariate j. The variation
over years that remains
unexplained is stochastic

— One (or two) parameter(s) b;, (and ¢) for the
relationship with covariate x;

— One parameter for the variance ¢2of the random
term ¢; that describes stochastic variations over

years unexplained by the climatic covariates

Frefers to models including only fixed effects. R refers to models including random effects. Subscripts ¢st, £, T, T_g, co, refer to constant,

time dependent, linear trend, quadratic trend, covariate respectively.

constant and the model where survival was time-dependent
(model F)) was subsequently used as a reference model.
Models ¢(F7); p(F.y) and ¢(Fr ,); p(F.,) had relatively large
AICc as compared to that of model ¢(F); p(F.,). This
indicates that survival of white storks did not show any clear
linear or quadratic trend over time. In the reference model
F,, time appears as a fixed effect in the sense that a distinct
parameter g; is estimated for each time interval. This type of
fixed time effect model was the most often employed in the
ESR to characterize temporal variation in survival (66 out
of 78 studies). Alternatively, in a less often used type of
model (12 out of the 78 studies), time was treated as
a random effect ¢; (model denoted as R;; Table 4), which is
assumed to follow a normal distribution on a logit scale with
mean 0 and variance ¢2(e.g. Milner, Elston & Albon, 1999;
Franklin et al., 2000; Loison et al., 2002; Harris et al., 2005;
Jenouvrier et al., 2005a, 2006; Sandvik et al., 2005; Schaub

et al., 2005). The parameters of interest are now the mean of

f{¢:): a; and the temporal process variance in f{¢;): ¢*(Gould

& Nichols, 1998; Burnham & White, 2002). The estimates a
and ¢*> can be obtained using procedures for building
Generalized Linear Mixed Models (GLMM) in a frequentist
framework (McCullagh & Nelder, 1989; Gould & Nichols,
1998; Burnham & White, 2002). Alternatively, estimates can
also be derived using a Bayesian framework where survival
for a given interval is explicitly considered as a realization of
a random process (Barry ef al., 2003; Link & Barker, 2004;
Gimenez ¢t al., 2008). None of the ESR used this last option.

(2) Building models relating survival to climatic
factors

In nine of the 78 ESR, survival estimates from structural
CMR models such as model F; were treated as quantities

Table 5. Selection of a reference model for the analysis of white stork adult survival

Survival Recapture Dev K AICe
Time dependent (F)) Constant (£, 249.28 17 1349.50
Linear trend (£7) Constant (F,) 284.1 3 1355.61
Constant (£ Constant (F) 286.60 2 1356.10
Quadratic trend (F7- ) Constant (£7) 283.51 4 1357.03
Time dependent (F) Time dependent (£)) 241.58 31 1371.5
Linear trend (F7) Time dependent (F)) 273.11 18 1375.41
Constant (£, Time dependent (F)) 276.09 17 1376.30
Quadratic trend (F7- ) Time dependent (£) 273.04 19 1377.43

F: refers to models including only fixed effects. Subscripts ¢st, ¢, 7, 7_g, and co refer to constant, time dependent, linear trend, quadratic
trend and covariate, respectively (see also Table 4). Dev: deviance; K: number of parameters; AICc: Akaike Information Criterion corrected

for small sample sizes.
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known with certainty and used in linear regression models
to assess relationships with climatic covariates. Such a pro-
cedure, that consists in doing statistics on statistics, is
misleading because it fails to account adequately for the
sampling variability of the survival estimates (Clobert &
Lebreton, 1985; Link & Barker, 2004). A better and actually
much more often used approach is to build and fit
ultrastructural CMR models relating variation in survival
to that of climatic or other continuous covariates. Two types
of model can be fitted. Fixed-effects models of type F,,
(Table 4) are the most often used (68 out of 78 ESR). In such
models, f{¢;) in the time interval ¢ is related to the value x;
of the climatic covariate x. Two (or three for quadratic
relationships) parameters denoted a4, b (and ¢) are required
in model £, to describe the relationship between survival
and the climatic covariate x. In model F,, it is implicitly
assumed that survival variation over time is entirely
determined by the variation observed in the climatic
covariate. In a less often used alternative to model F,, (11
out of 78 ESR), this assumption is relaxed and time
variation in _f{¢;) not accounted for by the fixed effect of the
climatic covariate x is accounted for by a random effect
gi(model R,; Table 4) which follows a normal distribution
MO, 02) (e.g- Franklin et al., 2000; Gauthier et al., 2001;
Loison et al., 2002; Altwegg et al., 2003, 2006; Schaub et al.,
2005; Sandvik et al, 2005). ¢* is the residual process
variance reflecting variation over time in f{¢; that is not
accounted for by the relationship with the climatic
covariate. As for the random-effects model R, the estimates
d, b, ¢and &* can either be approximated using a frequentist
framework (Gould & Nichols, 1998; Mc-Culloch & Searle,
2001) or derived in a Bayesian framework (Brooks et al.,
2002; Barry et al, 2003; Link & Barker, 2004; Gimenez
et al., 2008). However, the Bayesian technique is still un-
derused 1n ecological studies (none of the 78 ESR).

In our analysis of white stork survival, we built and fitted
all models of type F,, and R,, including only the linear or
the quadratic effect of one of the five candidate climatic
covariates at a time. Each candidate covariate was stan-
dardized so that the mean and variance over its time series
were set to 0 and 1, respectively. We used the program MARK
(White & Burnham, 1999) to fit all models required but the
models built in a Bayesian framework, which were imple-
mented using Markov chain Monte Carlo (MCMC) methods
with program WinBUGS (Spiegelhalter et al., 2002; see
Appendix 2 for details). Note that program M-sURGE (Choquet
et al., 2004) could also be used. Parameter estimates ob-
tained in the white stork survival analysis for the models
introduced above are displayed in Table 6.

(3) Measuring statistical support for the effect
of climatic factors

In studies of climate impacts on vertebrate survival, the
identification of factors that might noticeably influence
survival is most often undertaken based on various measures
of statistical support (i.e. probabilities involving the data in
hand and hypotheses). This was the case in 73 of the 78
ESR. In the five remaining studies the identification of

V. Grosbois and others

potentially influential covariates has been undertaken on
the grounds of estimated effect sizes. Two inferential
approaches have so far been adopted in the ecological
literature to assess statistical support: null hypothesis testing
(in 40 out of 73 studies) and information theory (in 33 out of
73 studies). Bayesian inference provides a third approach
that has great potential but has been applied in none of the
78 ESR. These approaches differ with respect to the
probabilities that are considered in order to identify
influential climatic covariates. However, irrespective of the
chosen approach, the objective pursued is always to
maximize the probability of identifying covariates that
actually exert a genuine influence on survival (ie. to
maximize statistical power) while minimizing the probabil-
ity of concluding that a covariate influences survival when it
actually has no effect (z.e. minimizing type I error). In what
follows we present, for each of the three approaches, the
underlying conceptual framework and their application.
Then we present the results of a simulation study where the
performance of these distinct approaches in terms of
maximization of the statistical power and minimization of
type I error is evaluated.

(a) The null hypothesis testing approach

(2) Conceptual framework. In the null hypothesis testing
approach (hereafter referred to as the NHT approach),
a so-called null hypothesis (hereafter referred to as Hy) is
first defined. This hypothesis stipulates that the focal cli-
matic covariate has no effect on survival. Then, the value
of a test statistic of known distribution under H, is com-
puted for the data in hand. The probability under ), of
a data set yielding a value of the test statistic as extreme
as or more extreme than the one obtained with the data
in hand is computed from the known distribution of the
test statistics. This probability corresponds to the probabil-
ity of the data in hand or of even more extreme events if
the null hypothesis is true. It is referred to as the observed
P-value, and is compared to a predefined threshold
(referred to as the o-level), usually set at 0.05. If the
observed P-value is lower than the oa-level, the null
hypothesis that the focal climatic covariate has no influ-
ence on survival is rejected with the probability that this
hypothesis is indeed correct being equal to o. Although it
is conceptually incorrect to do so (e.g. Cohen, 1994;
Anderson, Burnham & Thompson, 2000), this outcome is
always interpreted in ecological studies as tacit support for
the alternative hypothesis that the focal climatic covariate
influences survival. If the observed P-value is higher than
the a-level, no conclusion can be drawn. The pitfalls asso-
ciated with the application of this procedure have been
the subject of extensive discussions and we refer readers to
the literature for presentations of these issues [e.g Yoccoz,
1991; Cohen, 1994; Anderson ¢t al, 2000; Johnson, 2002;
Robinson & Wainer, 2002; Stephens et al., 2005; Hobbs &
Hilborn, 2006; a list of more than 400 references can also
be found at http://warnercnr.colostate.edu/~anderson/
thompson!.html (accessed 18 February 2008)].

(u) Setting the a-level. In almost all of the 40 ESR stud-
ies using the NHT, no a-level was explicitly determined
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a priori. Most often, observed P-values were confronted to
a conventional interpretation scale: it was usually consid-
ered that P > 0.1 indicates non significant effects; 0.1 >
P > 0.05 indicates nearly significant effects; 0.05 > P >
0.01 significant effects and P < 0.01 highly significant
effects. This approach stems from the initial conception of
the NHT procedure as an exploratory tool (Stephens
et al., 2007; Robinson & Wainer, 2002; Garcia, 2004;
Roback & Askins, 2005). Relying on mere convention for
the interpretation of the outcome of a null hypothesis test
is not a major drawback as long as one considers that
truly solid knowledge comes from repeated confirmation
from numerous studies. From this point of view, the objec-
tive pursued in the NHT approach is to decide whether
or not further experiments intending at falsifying the null
hypothesis are worth undertaking. However, as pointed
out by many authors (e.g. Yoccoz, 1991; Anderson et al.,
2000), the explicit definition of an a-level is necessary for
a rigorous application of the NHT and deserves careful
consideration, even in exploratory contexts. The conclu-
sion of a null hypothesis test is extremely sensitive to the
choice of the a-level. The decision regarding the value to
which 1t 1s set is consequently crucial (Field et al, 2004).
The probability of a type I error and the statistical power
(r.e. the probability of rejecting H, when it is indeed false)
are linked by a trade-off. As a consequence, setting o to
an extremely low value and thereby insuring an extremely
low risk of making type I errors results in decreasing con-
siderably the statistical power for detecting genuine cli-
matic effects. Furthermore, the power for detecting
a genuine climatic effect of a given magnitude decreases
as the size of the sample (usually the number of study
years in analyses of climate impact on survival of verte-
brates) decreases. Small sample sizes (.e. low number of
study years) should thus motivate researchers to set o to
a relatively large value (Yoccoz, 1991; Lebreton et al.,
1992; Field et al, 2004). Finally, in exploratory and
descriptive studies, achieving a relatively high power
should be considered as more important than keeping at
a low level the risk of concluding mistakenly that a covari-
ate influences survival. After all, exploratory analyses aim
at generating working hypotheses that should anyway be
later evaluated, either experimentally or based on the
analysis of independent empirical data, for a robust con-
clusion to be drawn (Robinson & Wainer, 2002; Roback &
Askins, 2005; Link & Barker, 2006). So it is not of prime
importance that all hypotheses generated in an exploratory
analysis get strong statistical support. Given the low sample
size in the white stork data set and the exploratory char-
acter of the study, we thus set o to 0.20 instead of the
conventional level of 0.05.

(ur) The multiple test issue. In 49 of the 78 ESR, several
candidate climatic covariates were considered. When
a dependent variable such as survival is subjected to a series
of null hypothesis tests each of which intends at detecting
the effect of a distinct climatic covariate, the probability of
erroneously rejecting at least one null hypothesis exceeds
the a-level and increases as the number of tests increases
(Rice, 1989). Although this inflation of type I error and the
procedures to prevent it are well known (Moran, 2003;
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Garcia, 2004; Roback & Askins, 2005), such procedures
have been applied in only two of the 49 ESR considering
several candidate covariates (Jenouvrier e al, 2003; Hallet
et al, 2004). The issue has been mentioned but not dealt
with in an additional six ESR (Clobert et al., 1988; Newton
et al., 1992; Catchpole et al., 2000; Jones, Hunter & Robert-
son, 2002; Grosbois et al., 2006; Moller & Szep, 2005). In
these studies the authors mentioned that due to the
absence of correction for multiple tests the climate impacts
detected should be considered with caution.

In the analysis of white stork survival we applied the
procedure that sets at the a-level the expected proportion of
erroneously rejected null hypotheses among all the rejected null
hypotheses (z.e. it controls the false discovery rate; Benjamini &
Hochberg, 1995). We chose this procedure rather than the well-
known sequential Bonferroni approach because it incurs a less
dramatic loss of statistical power (Moran, 2003; Garcia, 2004;
Roback & Askins, 2005). As proposed by Wright (1992) we
corrected the observed P-values and compared these corrected
values to 0.20, the a-level we chose.

() Test statistics derived from fixed-effects models. When, as
in the white stork survival analysis, model F; satisfactorily
fits the data, statistical support for the effect of a covariate
can be assessed by comparing deviances among fixed-
effects models F,, F,,, F, [see Lebreton et al. (1992) for sit-
uations where model F; shows lack of fit]. The likelihood
ratio test (LRT) allows assessing the fit of the covariate
model relative to that of the time-dependent model:

LRT,) = Dev(Fw) — Dev(E) (1)

LRT,,, tests the null hypothesis of absence of variation in
survival over time unexplained by the effect of the climatic
covariate in F,,. It follows asymptotically under /4, a chi-
squared distribution with »-7 degrees of freedom where 7 is
the number of survival estimates obtained from model F,
and f the number of parameters required to describe the
relationship between survival and the focal climatic
covariate. Whatever the covariate and shape considered,
residual unexplained variation was detected by LRT,,, in
the white stork survival analysis (Table 7)

Had the examination of LRT,,, revealed the absence of
residual unexplained variation in a model of type F,,, LRT
between that model and the constant model F,; could have
been used to assess the statistical support for the effect of the
climatic covariate in F,, (Lebreton e al., 1992):

LR‘Tat/co = Dw(}?m/) - DEZ)(E(,) (2)

LRT .y, tests the null hypothesis H, that the climatic
covariate in F,, has no effect on survival. It follows
asymptotically under /4, a chi-squared distribution with -
1 degrees of freedom.

In the analysis of stork survival, the presence of residual
unexplained variation in survival after accounting for the
effects of climatic covariates prevented us from using this
statistic. Instead, the assessment of the fit of the covariate
model relative to that of both the constant and the time-
dependent models was required (Skalski, Hoffmann &
Smith, 1993; Skalski, 1996). The method used to derive this
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statistic is referred to as ANODEV by analogy to ANOVA.
The statistics Flestg )

Deo(Fy) — Deo(F,)
F—1
¢

(3)

F tesjfxt/ o/t =
where ¢ = M is an estimate of variance inflation
in model F,,, tests the null hypothesis H), that the climatic
covariate in F,, has no effect on survival. It follows under H,
a Fisher-Snedecor distribution with -1 and n-7 degrees of
freedom. Using the statistics Flest.y ), in the white stork
survival analysis and applying the procedure proposed by
Benjamini & Hochberg (1995) for dealing with the multiple
tests issue, none of the null hypotheses could be rejected at
the false discovery rate of 20% (Table 7).

In 16 of the 40 ESR using the NHT approach, no
residual temporal variation in survival was detected, so that
LRT . or Flesty )., could indifferently be used to assess
the statistical support for the covariates in model F,. In the
24 other studies, residual variation was either detected (five
instances) or not investigated (19 instances) so that Ftest. /.,
would have been required to assess the statistical support for
the covariates in model F,. In five of these 24 studies,
LRT.,, was used instead, which can lead to a high
probability of selecting spurious effects (Skalski ez al., 1993;
Skalski, 1996).

(v) Test statistics derived from mixed-effects models. ~Although
it is uncommon to do so (this option was adopted in only
one out of the 78 ESR; Milner et al. 1999), the statistical
support for the linear effect of a climatic covariate can be
assessed using the mixed-effects model of type R,: b, the
normally distributed estimator of the slope of the relation-
ship with the climatic covariate and, @ (b), its estimated
standard error can be used to build a test statistic under
Wald’s procedure (Mc-Culloch & Searle, 2001, p. 24).
The statistic:

W(Rm> = ((T(ZZ))Q (4)

tests the null hypothesis Hy: b = 0. It follows under H,
a Fisher-Snedecor distribution with 1 and 7n-2 degrees of
freedom (Mc-Culloch & Searle, 2001, p. 24). Note that the
square root of W(R,) follows under H, a Student’s
t-distribution with n-2 degrees of freedom. Using the
statistics W(R,,) and applying the Benjamini & Hochberg’s
procedure, none of the null hypotheses of absence of linear
relationships could be rejected at the false discovery rate
of 20% in the white stork survival analysis (Table 7). Un-
fortunately, we could not apply the same procedure for
quadratic relationships because a statistical tool is lacking to
assess the statistical support for a quadratic relationship
between survival and a climatic covariate from a mixed-

effects model of type R,,.

() Information-theoretic approach

(2) Conceptual framework. While the NHT approach
focuses on the evaluation of dichotomous hypotheses, the
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information-theoretic approach (hereafter referred to as
the IT approach) allows simultaneous comparisons of
a multitude of models within an a priorz defined candidate
set (Burnham & Anderson, 2002). Several criteria are
available for ranking models in the I'T approach (Link &
Barker, 2006; Buckland, Burnham & Augustin, 1997).
The Akaike Information Criterion (A4/C = Dev+ 2K where
K 1s the number of estimable parameters in the model,
see Burnham & Anderson, 2002) assumes that ‘truth’ is
high-dimensional and thus impossible to depict with a
mathematical model (Anderson & Burnham, 2002), which
is pertinent in the context of demographic studies in free-
ranging vertebrate populations. Indeed, AIC has been
used in all of the 33 ESR using the IT approach. AIC
allows ranking competing models by measuring the quality
of a model in terms of an optimal compromise between
prediction bias and parameter uncertainty, or, equivalently,
between underfitting and overfitting (Burnham & Anderson,
2002, p. 62). The lower the AIC of a model is, the closer to
optimality 1s this compromise, and the better is the approxi-
mation provided by the model of the high-dimensional real-
ity (Burnham & Anderson, 2002, p. 62). Differences in 4IC
among models are usually used as criteria for model selec-
tion. Accordingly, these statistics have been used to identify
potentially influential climatic covariates in 30 out of the 33
ESR using the I'T approach. A simple and widely used rule
of thumb has been proposed by Burnham & Anderson
(2002, pp. 70-72) and allows interpreting the difference in
AIC between two models in terms of relative support in the
data for each of these two models. If two models differ by less
than two AIC points, they can be considered as getting
roughly identical support from the data. On the other hand,
the lower A/C' model can be considered as clearly better sup-
ported by the data when the 4IC difference is greater than
two points. Although this rule of thumb is somewhat arbi-
trary, it has been shown to perform satisfactorily for model
and covariate selection (Richards, 2005) and it has been used
in most of the ESR using AIC differences (20 out of 30 ESR;
the 10 other studies used minimum A/C as a covariate selec-
tion criterion). We thus applied this criterion for the identifi-
cation of potentially influential climatic covariates in the
white stork survival analysis (see below).

Another useful statistic derived from AIC, introduced by
Buckland ¢t al. (1997) and evaluated by Richards (2005) and
Link & Barker (2006) is the 4/C weight of a model (see also
Burnham & Anderson, 2002, p. 75). It quantifies the
strength of evidence in the data for that model relatively to
that of all the other models in the candidate set (z.e. the sum
of weights over a set of candidate models is 1). It is
proportional to the probability of the model given the data.
It is consequently considered as useful, especially for
producing multi-model inferences that account for model
selection uncertainty. It can also be used to evaluate the
evidence ratio of two alternative models. Although AIC
weights were provided for illustrative purposes in some of
the studies we reviewed, they have so far rarely been used as
a decisive criterion for the identification of potentially
influential climatic covariates in studies of survival in
vertebrate populations (only three out of the 33 ESR using
the IT approach; Piper, 2002; Barbraud & Weimerskirch,
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2003; Traylor & Alisauskas, 2006). Furthermore their per-
formances for model selection are in need of evaluation
(e.g- Richards, 2005; Link & Barker, 2006). We thus did not
use AIC weights as decisive criteria for the identification of
potentially influential climatic covariates in the white stork
survival analysis. However, we computed the evidence ratio
relative to the constant survival model F,; for each can-
didate covariate model considered.

() Criteria for identifying wnfluential climatic factors. As in
most of the ESR using the I'T approach, we considered the
effect of a focal climatic covariate on white stork survival as
statistically supported when the model F,, was at least as
well supported as the general model F, and better sup-
ported than the baseline model F,,, (Anderson & Burnham,
2002; Burnham & Anderson, 2002; Guthery et al., 2005).
Assuming that two models can be considered as differently
supported by the data when their AIC differ by more than
two points (see above), we considered that the effect of the
climatic covariate included in the model F,, was statistically
supported if A,/ < —2 and A, < 2 where A,/ =
AICAF,,) —AIC(F,) and A, = AIC(F,,)-AIC(F). Further-
more, we considered that quadratic effects were statistically
supported when the inclusion of the quadratic term to
a model including the linear term for the same candidate
covariate resulted in a drop in 4ICc of at least two points.
Applying these criteria in the white stork example resulted
in concluding that the linear effect of CNSRF and the qua-
dratic effect of PBSC were statistically supported (Table 7).

(¢) Bayesian approach

(2) Conceptual framework. While the classical approach
assumes that the parameters are fixed and have unknown
values to be estimated, Bayesian inference relies on the
a posteriort distribution of the parameters. This distribution
is obtained wvia the Bayes’ theorem, through a process
updating the a priori distribution of the parameters, using
the information in the data, which is summarized by the
likelihood. The prior distribution captures the expert’s
knowledge about the system before collecting data. If
there is no strong prior information on the parameters,
vague priors are usually assigned to the parameters, such
as uniform distributions between 0 and 1 for probabilities.
Because mark-recapture models often have many parame-
ters, the joint posterior distribution is high-dimensional
and cannot be easily displayed. Therefore we need to
summarize this information under the form of interpret-
able point estimates (posterior means or medians) and
uncertainty intervals (credibility intervals). This process
mnvolves calculating multi-dimensional integrals, which is
circumvented by using Markov chain Monte Carlo
(MCMC ) simulations. This class of algorithms is based on
building a Markov chain with stationary distribution equal
to the posterior distribution of interest. Once the chain
has converged, its realisations can be regarded as a depen-
dent sample from the posterior distribution, and standard
Monte Carlo integration can be carried out to obtain
numerical summaries of focal parameters.

The development of the MCMC machinery along with
the availability of powerful personal computers has led to an

increasing number of Bayesian applications in ecology
(Ellison, 2004; Clark, 2005; McCarthy, 2007), the analysis
of mark-recapture data making no exception (Link &
Barker, 2004; Gimenez et al., 2008). Besides, flexible and
reliable software applications are now available allowing
relatively easy implementation of complex models. Here we
use the program WinBUGS (Spiegelhalter et al, 2002),
which implements up-to-date and powerful MCMC
algorithms. It is freely available at http://www.mrc-bsu.
cam.ac.uk/bugs/.

() Criteria for dentifying winfluential climatic factors. The
issue of model selection in a Bayesian framework is not
easy to deal with. There is a myriad of procedures, and
none of them seems to be as consensual as NHT and IT
are in the population ecology literature. Several methods
produce a value for each candidate model to be compared
among a set of pre-selected models [Bayes factor — Kass &
Raftery, 1995; mean square predictive error — e.g. Ghosh &
Norris, 2005; deviance information criterion (DIC) —
Spiegelhalter et al., 2002; Bayesian information criterion
(BIC) — e.g Link & Barker, 2006]. These methods are
popular but are sometimes difficult to implement due to
theoretical and computational difficulties (Gelman et al.,
2003). Recently, extensions of standard MCMOC algo-
rithms have been developed, which perform an automatic
exploration of the model space (Gibbs variable selection —
George & McCulloch, 1993; Reversible Jump MCMC —
Green, 1995). One may feel uneasy about exploring
hundreds of potential models as it might look like data
dredging, but in the case of variable selection, we have
found that Reversible Jump MCMC in particular is rele-
vant to determine the best combination of covariates
(Gimenez et al., 2008). Interestingly, these methods can
all be implemented in WinBUGS, pending some effort
though.

Given so many procedures, the issue of choosing the right
method is of particular concern for the user, e.g. the
biologist (Gimenez, 2008). This open question would
deserve a proper treatment in itself and is therefore beyond
the scope of this paper. Besides, none of the ESR has used
a Bayesian model selection method. For the white stork
survival analysis, we based our conclusions on the statistical
support for climatic covariate effects on the examination of
the 95% credible interval of the parameters involved. Note
that Bayesian credible intervals and frequentist confidence
intervals are inherently different and may lead to contrast-
ing conclusions (McCarthy, 2007). A 95% credible interval
provides a 0.95 probability that the true value of the
parameter is within that interval, whereas a 95% confidence
interval gives, if the sampling is repeated many times,
a proportion equal to 0.95 of confidence intervals built from
each sample that contain the true value of the parameter.
We considered a linear effect of a climatic covariate upon
white stork survival as statistically supported when 0 was
outside the 95% credible interval of the posterior mean of
the slope of the relationship. We considered the quadratic
effect as statistically supported when the 95% credible
region of posterior means of the slopes of linear and
quadratic terms did not include [0; 0]. Using these criteria
resulted in concluding that the linear effect of CNSRF and
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the quadratic effect of PBSC were statistically supported
(Table 7; Fig. 4).

(d) Detecting influential climatic factors in the presence of temporal
trends

The situation where survival time series show a trend over
time deserves further comment. In order to address linear
or quadratic trends in survival time series, it is necessary to
build models of the type Fzor Fz, respectively (Table 4).
Investigation of trends can then be undertaken with the
statistics introduced above to assess the statistical support
for the effect of a covariate (e.g. Flests or AIC differences). As
already mentioned in Section IV.1, neither a linear nor
a quadratic trend were detected in the white stork survival
time series (the P-values associated with Flest, 7/, and
Fest,y/1 47 were 0.59 and 0.33, respectively, and, 44/, and
A4,/ were equal to 7.64 and 6.03, respectively; see also
Table 5). Furthermore, it is difficult to evaluate how often
survival time series of vertebrates show temporal trends
because these are not systematically addressed (only 17 out
of the 78 ESR). Let us nonetheless consider a situation
where, for instance, a linear trend is detected (see e.g.
Newton et al., 1992; Grosbois & Thompson, 2005; Kéry
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et al., 2006). In such a situation a relationship between
survival and a climatic covariate can be detected only
because this covariate also exhibits a linear trend over time.
Such a relationship, that results solely from the co-
occurrence of a trend, is particularly likely spurious for
two reasons. First, the trend in the time series of survival
can be an artefact resulting from the presence of
heterogeneity in the survival and/or the detection param-
eters (Carothers, 1973, 1979; Buckland, 1982; Pledger ¢t al.,
2003; Devineau et al., 2006). Second, assuming that the
survival time series shows a genuine trend, it is difficult to
rule out the possibility that this trend results from
a relationship with some overlooked causal factor that
would also exhibit a trend, rather than from a causal
relationship with the focal climatic covariate (see Coulson,
2001, for an example on density dependence). Our advice,
when the survival time series and the focal climatic
covariate both show a trend is to test whether the climatic
covariate considered accounts for a significant fraction of
the variation in survival about the trend. This can be done
using the residual regression technique (Graham, 2003).
The first step is to remove the temporal trend from the
climate covariate x. Let us refer to this de-trended covariate
as x;. The value of x; at each date ¢ can be worked out as
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Fig.4. 95% joint credible region obtained with a Bayesian approach for the slopes of the linear and quadratic terms in
relationships between white stork Ciconia ciconia survival and five climatic covariates. For descriptions of climatic covariates see

Table 2 and Fig. 2.
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xi=x — (G + 87}); where @ and 3 are the estimates,
obtained from a linear regression model, of the parameters
of the relationship between the climatic covariate x and
a linear trend 7. In a second step the following model is
built:

S(;) = a+ b1 T; + boxy; - model Fr 4, (3)

Ftestr/ 7+ aos allows testing the null hypothesis Hy: b, = 0.
This null hypothesis states that there is no relationship
between the variation in survival about a trend and the
variation in the climatic covariate about a trend. Under an
IT approach, the evidence for such a relationship should be
obtained by examining A 74 g, /7 and A1y g0/

Exploration of the relationship between the variation in
survival and the variation of a climatic covariate in presence
of a trend has been undertaken in only three of the ESR
(Newton et al., 1992; Grosbois & Thompson, 2005; Kéry
et al., 2006). In two of these studies, the authors concluded
that the effect of a time-varying covariate could not be
differentiated from that of a simple trend (Newton e al.,
1992; Grosbois & Thompson, 2005). Because in most ESR
the presence of temporal trends in the survival and climatic
covariates was simply not addressed, it 1s difficult to assess
how often effects of climatic factors could have been de-
tected because of the co-occurrence of trends in survival
and in the candidate climatic covariates. We believe that
this issue should be examined on a more systematic basis in
the future.

(4) Performances of distinct statistical
approaches for detecting potentially influential
climatic factors from statistical support:

a simulation study

Different conclusions as to which climatic covariates
influenced white stork survival were reached when different
statistical procedures were used. Such a discrepancy could
be expected for at least two reasons. First, in only one of the
statistical approaches (i.e. the NHT) was a procedure for
controlling the false discovery rate applied. Not surprisingly,
because procedures that control type I error incur a decrease
of statistical power (Moran, 2003; Garcia, 2004; Roback &
Askins, 2005), none of the candidate climatic covariates
could be considered as potentially influential according to
the NHT procedure. By contrast, two climatic covariates
were detected as potentially influential when the I'T or the
Bayesian approaches were adopted. However, with the
latter approaches, the risk of type I error was not controlled
and might be high when large numbers of candidate
covariates are considered (Burnham & Anderson, 2002, pp.
3743, 244-248; Stephens et al. 2005). Second, as stated
above, the concepts underlying statistical support differed
among the procedures used (Stephens ez al., 2005; Hobbs &
Hilborn, 2006; Stephens et al., 2007). In the NHT, in-
fluential climatic covariates are identified based on the
probability of the data or of more extreme data if the null
hypothesis of no climatic influence on survival is true. In
the Bayesian approach, influential climatic covariates are

identified by examination of the posterior distribution of the
parameters describing the relationship between survival and
climatic covariates. With the IT approach, influential
climatic covariates are detected based on an evaluation of
the relative quality of the approximation of the complex
reality provided by models. Although these conceptual
differences are understood, no clear guideline has yet
emerged about which paradigm is better adapted to a given
case study. Below, we present the results of a simulation
study where the performance of these distinct approaches is
evaluated in terms of maximization of the statistical power
and minimization of type I error. In order to rule out the
multiple test issue, the influence of only one virtual climatic
covariate was included in this simulation study.

(a) Methods

We addressed two characteristics of statistical criteria
introduced above for detecting potentially influential
covariates. These characteristics were the probability of
considering as statistically supported an effect that does not
exist (test level or type I error in the NHT approach), and
the probability of considering as statistically supported an
effect that does exist (test power in the NHT approach; it is
also the complement to one of type II error). For each of 36
possible scenarios of variation in survival over years, we
simulated 500 CMR data sets with 17 capture occasions
and 50 newly marked individuals released at each occasion
(these features were comparable to those of the white stork
data). The scenarios differed with respect to the slope, b, of
the linear relationship between survival (on a logit scale) and
a virtual climatic covariate in which values over the 16 time
intervals were drawn from a normal distribution with
a mean of 0 and a variance of 1 (a distinct set of values was
drawn for each simulated data set). Six values of b were
considered ranging from 0 (no influence of the covariate) to
0.5. This range was centred on the estimate of b obtained
in the white stork example for the linear effect of CNSRF
(= 0.25). Translated in terms of the size of the effect, the
maximum value considered for the slope (b = 0.5)
generated, for a decrease in the virtual climatic covariate
by one and two standard deviation units, a reduction in
survival odd ratio of about 40% and 60%, respectively.
The scenarios also differed with respect to the residual
process temporal variance in survival ( ¢ of model R,,) that
ranged from 0 (no residual process variance) to 0.3. This
range was similar to that used by Burnham & White
(2002) introducing random-effects models for the analysis
of survival and included the estimate of ¢* obtained in the
white stork survival analysis (=~0.1). Furthermore, it cov-
ered the range of process temporal variance of adult and
juvenile survival reported for birds (Seether & Bakke, 2000)
and for large mammals (Gaillard & Yoccoz, 2003). The data
sets were generated under the hypothesis of constant
recapture probability (p = 0.9 as estimated in the white
stork analysis). The computation of survival used to simulate
a data set was performed in two steps: the 16 survival values
given by the linear relationship with the virtual climatic
covariate were first computed; random numbers drawn
from a normal distribution with a mean of 0 and a variance
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o2 were then added to each of these 16 survival values. For

each of the 500 CMR data sets generated, models F,, F,,
I, were fitted by maximum likelihood and R,, was fitted
using the method of moments (Burnham & White, 2002)
and a Bayesian approach. Although the maximum likeli-
hood method (Lebreton ef al., 1992) and the method of
moments (Burnham & White, 2002) are available on
standard softwares such as MARK, we implemented them
in Matlab® to allow looping over the 500 simulated data
sets. Coherence between estimates obtained using Matlab®
with those obtained using MARK was checked for the white
stork data set. We used the software WinBUGS (Spiegel-
halter et al., 2002) to implement the Bayesian approach
(MCMC method) for building model R,, (see Appendix 2
for details) by calling it from software R through the
package R2ZWinBUGS (Sturtz, Ligges & Gelman, 2005).
Priors and likelihood are specified within WinBUGS, while
managing the simulated data, setting initial values, and
post-processing the results appears easier in practice using
R. The results obtained on the 500 simulated data with
fixed-, random- and mixed-effects models were then used to
estimate the distribution of the various statistics used to
assess the statistical support for an effect of a virtual climatic
covariate for each of the 36 scenarios. For tests, the a-level
was set at 0.05, the most commonly used value in the
ecological literature.

() Results

Using either Flest;/,,, or LR1.,,, according to whether
significant residual variation was detected or not, the
probability of detecting spurious effects of climatic cova-
riates was close to the a-level (= 0.05) for most levels of
residual process variance, o2, although it slightly exceeded it
for intermediate levels (P = 0.08, 0.07 and 0.06 for ¢°=
0.03, 0.05 and 0.1, respectively; line in Table 8A with 4 = 0).
In this respect, the systematic use of Flest,,,.,; instead of
using it only when residual process variance was detected
ensured that the probability of detecting spurious effects of
climatic covariates never exceeded the a-level (line in
Table 8B with 4 = 0). However, the probabilities of detecting
genuine effects of climatic covariates were slightly higher
when the procedure involving the use of either Flest, ./, or
LRT,,,,, was preferred over the systematic use of Flest. ./

The statistical performance of W(R,,) derived from esti-
mates obtained from a mixed-effects model built using the
method of moments were very similar to those of Fest,, .0/
(Table 8C).

The Bayesian procedure presented the advantage that
probabilities of detecting genuine effects of climatic covariates
were high relative to that achieved with other approaches.
However an important drawback was that probabilities of
detecting spurious effects were high especially for high process
variance (Table 8D where b = 0 and ¢ > 0.01).

The IT approach was best adapted to situations where the
level of residual process variance was low. In these situations,
the probabilities of detecting spurious and genuine effects of
climatic covariates were relatively low and high, respectively
(columns in Table 8E where o < 0.03). However, the IT
approach performed poorly when the residual process
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variance was high: the probability of detecting genuine
effects was then relatively low (columns in Table 8E where o
> 0.01).

(¢) Conclusions

The simulation study has shown that all procedures
perform well (ze. incur low probabilities of retaining
spurious effects and provide relatively high probabilities of
detecting genuine effects) in situations where the unex-
plained process variance ¢ is low. Such situations are likely
to occur when variation in survival is low and/or when
prior knowledge on the study population is good enough for
defining models including climatic factors that account for
most of the temporal variation observed in survival.
However, as in the white stork example, data are usually
collected in wild populations in which survival is most likely
influenced by multiple factors (Burnham & Anderson, 2002;
Schwarz, 2002). In this context, relatively large variation in
survival 1s expected, and the definition of a model
accounting for most of the temporal variation in survival
through relationships with climatic or other covariates
cannot always be achieved. For instance, residual variation
in survival after the effect of climatic covariates had been
accounted for was detected in 15 of the 53 ESR in which it
was addressed. The results of the simulation study showed
that in such situations the NHT approach provides statistics
such as Flest,y/.,s; and W(R,,) that allow testing effects of
climatic covariates with reasonable statistical power and
limited risks of retaining spurious effects. Such statistics
were used in four of the 15 studies mentioned above while
in 10 other studies, the I'T approach was used to assess the
statistical support for climatic covariates. The results of our
simulation study suggest that comparison among fixed-
effects models using the I'T procedure is inefficient in such
situations. In our understanding this poor performance of
the I'T approach makes sense. When variation in survival is
large and prior knowledge on the study population is limi-
ted, there is a risk that among the set of candidate models
that relate variation in survival to variation in climatic
factors none describes the data satisfactorily (Burnham &
Anderson, 2002, p. 62, pp. 310-317; Guthery e al., 2005;
Stephens et al., 2005; Hobbs & Hilborn, 2006). In such
situations the only candidate model describing satisfactorily
survival variation will often be a structural model with
many parameters, such as model F,, that brings little insight
into the ecological factors underlying survival variation
(Burnham & Anderson, 2002, pp. 328-330). Still, according
to model selection criteria such as AIC, F; will often
outperform models including effects of climatic factors that
account for a fraction of the observed variation in survival,
but that fail to account for most of it. In such situations AIC
comparison among fixed-effects models 1s thus not an
efficient procedure for identifying effects of climatic
covariates (Anderson & Burnham, 2002; Burnham &
Anderson, 2002, pp. 328-330; Stephens ¢t al., 2005).

With a relatively large estimate of the unexplained pro-
cess variance, o2, around 0.1, the white stork example
perfectly illustrates the situation in which the hypothesis test-
ing approach was best adapted and the statistics Ftest. e,/
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Table 8. Performances of statistical procedures used to assess statistical support for effects of climatic covariates

Residual process variance over years (0°)

Slope (b) ¢ 0.01 0.03 0.05 0.1 0.3
A) NHT, fixed-effects models: Pr(rejection of Hy: b = 0, by LRT,,,,, if LRT,,,, NS and by Flest.y/.,,, if LRT,,;, S)

0 L 0.04 0.05 0.08 0.07 0.06 0.05
0.1 Pw 0.45 0.39 0.32 0.30 0.16 0.11
0.15 Pw 0.77 0.72 0.55 0.42 0.32 0.17
0.2 Pw 0.92 0.89 0.74 0.71 0.45 0.20
0.3 Pw 1.00 0.99 0.95 0.90 0.76 0.46
0.5 Pw 1.00 1.00 1.00 1.00 0.98 0.84

B) NHT, fixed-effects models: Pr(rejection of Hy: b = 0 by Flest, /.0,

0 L 0.05 0.05 0.06
0.1 Pw 0.40 0.35 0.26
0.15 Pw 0.71 0.66 0.50
0.2 Pw 0489 0.87 0.71
0.3 Pw 099 0.98 0.95
05 Pw 1.00 1.00 1.00

0.05 0.05 0.05
0.26 0.15 0.11
0.39 0.31 0.17
0.68 0.44 0.20
0.89 0.76 0.46
1.00 0.98 0.84

C) NHT, mixed-effects models: Pr(rejection of Hy: b = 0 by W(R,,))

0 L 0.04 0.04 0.06 0.05 0.05 0.06
0.1 Pw 0.38 0.33 0.28 0.21 0.17 0.10
0.15 Pw 0.70 0.62 0.48 0.41 0.28 0.14
0.2 Pw 0.90 0.84 0.75 0.59 0.46 0.19
0.3 Pw 098 0.99 0.95 0.91 0.77 0.41
05 Pw 1 1 1 1 0.97 0.80
D) B: Pr(0 is not in the 95% credible interval)
0 0.03 0.04 0.09 0.09 0.11 0.19
0.1 0.36 0.39 0.32 0.28 0.26 0.27
0.15 0.71 0.66 0.53 0.49 0.4 0.32
0.2 0.89 0.86 0.81 0.66 0.59 0.37
0.3 0.99 0.97 0.96 0.94 0.85 0.63
0.5 1.00 1.00 1.00 1.00 1.00 0.89
E) IT: Prd,,/<-2 and, 4,,/,<2)
0 0.04 0.05 0.11 0.11 0.04 0.00
0.1 0.46 0.42 0.32 0.24 0.08 0.00
0.15 0.74 0.73 0.54 0.35 0.10 0.01
0.2 0.92 0.89 0.65 0.49 0.12 0.00
0.3 0.98 0.95 0.72 0.48 0.15 0.00
0.5 1.00 0.97 0.74 0.56 0.18 0.00

NHT, null hypothesis testing; B, Bayesian; I'T, information theory; L, level; Pw, power; Pr, probability; H,, null hypothesis; NS, non
significant; S, significant . LRT,,, A, Flest,;,,., W(R,,) are statistics to assess statistical support (Table 7 and Sections IV.1-IV.3).

or W(R,,) should be used. Using these statistics and applying
the correction for multiple tests, none of the relationships
considered was statistically supported (Table 7).

(5) Measuring the magnitude of the effects of
climatic factors

To our knowledge, no survey of statistical power in
demographic studies of vertebrate populations has so far
been undertaken. However, this has been done in the field
of behavioural ecology by Jennions & Moller (2003) who
concluded that statistical power was low 1n a large majority
of studies. Because empirical studies of climate impacts on

vertebrate survival, as illustrated by the analysis of white
stork survival, are almost always characterized by low
sample sizes, poor prior knowledge of the underlying
processes, and high variability, we can confidently claim
that the statistical power to detect effects of climatic factors
should often be dramatically low. This is especially true
when, as in the application of the NHT paradigm on the
white stork survival analysis, one applies procedures that
control the risk of type I error. For this reason, we suggest
that in the context of exploratory analyses the estimated
magnitude of an effect could be used as the decisive
criterion for identifying within a set of candidate climatic
factors those that might influence survival (Yoccoz, 1991;
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Nakagawa & Cuthill, 2007; Stephens ¢ al., 2007). Statistical
support should nonetheless be provided along with
estimated magnitude as an indication of the confidence in
the effect of the covariate being genuine, but not as
a decisive criterion. Conversely, when, as is almost always
the case in ecological studies, statistical support is used as
a decisive criterion to identify potentially influential
covariates, the magnitude of their potential effect should
always be estimated and presented because it is the proper
measure of their potential biological importance (Yoccoz,
1991; Nakagawa & Cuthill, 2007).

When measuring such a magnitude, one has to keep in
mind that climate impacts on survival in a given species
should ideally be addressed at large spatial scales in order to
document its potential geographic variation (Newton et al.,
1992; Gaillard et al., 1997; Loison et al., 1999; Tavecchia
et al., 2002; Parmesan & Yohe, 2003; Altwegg et al., 2005;
Harris et al., 2005; Schaub et al., 2005; Grosbois ¢t al., 2006).
It could also be useful to conduct analyses of climate
impacts across species in order to identify specific character-
istics (life history, habitat type, diet type, efc...... ) that
modulate the magnitude of climate impacts on survival (see
e.g. Jenouvrier et al., 2005a; Sandvik et al., 2005). In these
respects, meta-analyses combining results obtained in
specific studies of one population of a single species are
extremely valuable (Arnqvist & Wooster, 1995; Parmesan &
Yohe, 2003; Swther et al., 2003, 2006; Both et al, 2004).
This approach is more efficient if standardization of the
measures of climate impacts on ecological processes is
achieved across specific studies (Parmesan & Yohe, 2003;
Nakagawa & Cuthill, 2007). It 1s thus important to choose
measures of the impacts of climatic factors that can be
compared across studies. Below we present several types of
statistics that reflect to some extent the magnitude of the
impact of climatic factors and discuss their usefulness for
studies extended at the multi-population or inter-specific
scale.

(a) Fraction of temporal variation accounted for by climatic factors

The most common way of characterizing the impact of
a covariate in linear regressions is the fraction of the
dependent variable accounted for by its effect (Nakagawa &
Cuthill, 2007). It quantifies the relative importance of the
focal covariate as compared to other drivers in generating
variation in the dependent variable. This type of standardised
effect size measure was used for evaluating the impact of
climatic covariates on survival in roughly half of the ESR (z.e.
41 out of 78). Procedures to derive this type of statistic from
CMR models have been developed. The most often used
statistic 1s derived from fixed-effects models (Skalski, 1996):

_ Dev(Fy)
~ De(Fy)

— Dev(F,)
— Deo(F)’

R? _Dev (6)

A much less often used statistic can be derived from models
R, and R, that contain random effects (but see e.g. Franklin
et al., 2000; Gauthier et al, 2001; Loison et al., 2002;
Altwegg et al., 2003, 2006; Schaub et al., 2005; Sandvik et al.,
2005):
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R _Var = ” (Rt> E &)2 <Rm). (7)
(R

R? Dev and R?_Var can be viewed as equivalents of the
coefficient of determination, .. the proportion of deviance
and variance explained, respectively. Using these statistics as
a covariate selection criterion in the white stork survival
data, we considered that covariates for which R?_Dev or
R?_Var exceeded 0.20, implying that these were likely to
account for more than 20% of temporal variation in
survival, could be considered as potentially influential. We
computed the statistics R?_Dev and R?_Var for the linear and
quadratic relationships between white stork survival and the
five candidate climatic covariates (Fig. 5). The linear and
quadratic effects of CNSRF and the quadratic effect of
PBSC accounted for more than 20% of the variation
according to both statistics and were thus considered as
influential (Fig. 5). However, the inclusion of the quadratic
term for the effect of CNSRF did not result in a substantial
increase of the fraction of temporal variation accounted for
as compared to a linear effect only (Fig. 5). Accordingly we
considered the linear relationship with CNSRF and the
quadratic relationship with PBSC as the only supported
effects. This conclusion had to be attenuated because the
risk of type I error exceeded 20% for both relationships (see
above; and Table 7). Examination of the figures obtained
for the ten relationships considered revealed that R?_Dev
was lower than R?_Var for relationships accounting for
a large fraction of the variation (Fig. 5). This was expected
because R?_Dev expresses the amount of temporal process
variance in survival accounted for by the relationship with
the climatic covariate relative to a variance quantity that
includes sampling variance in addition to total temporal
process variance. In this respect, it is better to use R?_Var

- 05
£5 04 o R’_Dev
3 03] 8 R_Var
g § 0.2 1
%g’ 0.1
E< = [
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Fig.5. Estimation of the fraction of temporal variation in the
adult survival of Baden-Wiirtemberg white storks Ciconia ciconia
accounted for by candidate climatic covariates based on
analysis of deviance (R’_Dev; see equations 6 in Section
IV.5.2), or on analysis of variance (R?_Var; see equation 7 in
Section IV.5.a). Climatic covariate abbreviations are as in
Table 2. _q indicates a quadratic relationship between survival
and the focal covariate.
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because it expresses the amount of temporal process
variance in survival accounted for by the relationship with
the climatic covariate relative to the total temporal process
variance only. However, R?_Var was lower than R?_Dev, and
was actually often negative for relationships accounting for
a small fraction of the variation (Fig. 5). As already noticed
by e.g. Altwegg et al. (2003), R?_Var evaluated from models
built with the method of the moments was not a satisfactory
measure of magnitude for small effects. Although the
method of the moments is well founded (McCullagh &
Nelder, 1989; Gould & Nichols, 1998; Burnham & White,
2002), its performance in the analysis of empirical data is
still debated. For the time being, we believe that it is
preferable to use R’_Dev especially for evaluating the
magnitude of small effects.

It is not clear whether coefficients of determination can
or cannot be compared safely among case studies
considering different populations of a species or even
populations of different species (Nakagawa & Cuthill, 2007).
Actually, coeflicients of determination often suffer from
substantial biases, especially when they are obtained from
multiple regression models with many predictors. Although
unbiased estimates have been developed for linear regressions
(Nakagawa & Cuthill, 2007), no equivalent statistics has to
our knowledge yet been proposed in the context of CMR
models. Furthermore, one drawback of coeflicients of
determination is that no method has so far been proposed
to determine their standard error in the context of CMR
models. No confidence interval can thus be obtained for
them. For this reason, whenever the size of an effect is
evaluated with R%_Var or R°_Dey a measure of the statistical
support for the existence of this effect should also be provided.

() Slopes

Estimates of the parameters describing the relationship
between survival and climatic factors can be considered as
un-standardised effect size statistics. They allow assessing
differences in survival between extreme values of climatic
factors, and are thus useful measures of the absolute
magnitude of their effects. This type of effect size measure
was provided in almost all the ESR. Parameter estimates for
the logit-linear and —quadratic relationship between white
stork survival and CNSRF and PBSC, respectively, are
displayed in Table 6. Note that we included in Table 6 only
the relationships that were statistically supported. It could
be preferable to provide parameter estimates for all the
relationships examined in the analysis (z.e. ten relationships
in the white stork survival example). Actually, in the
perspective of undertaking robust meta-analyses, parameter
estimates of relationships that are weakly supported on the
grounds of statistical significance should ideally be provided
in tables of results ( Jennions & Moller, 2002).

In the white stork example, the point estimates of the
parameters describing the relationship between survival and
climatic factors (the intercepts: @; and the slopes 4 and ¢ for
the linear and quadratic terms, respectively) did not differ
according to the type of model used (£, or R,; Table6).
However, the confidence intervals for the parameter
estimates obtained from the model F,, were narrow as

compared to those obtained from model R, (Table6).
Indeed, the standard errors of the slope estimates obtained
from the fixed-effects model F,, are underestimated when
a large residual temporal variation remains (i.e. when the
model F,, shows a lack of fit). In these situations the
standard errors of the slope estimates should be multiplied
Dev(F,,) — Deo(F,)

by the scale parameter estimate /¢ = — , and

confidence intervals should be based on a student distribu-
tion with n-7 degrees of freedom rather than on the normal
distribution (Lebreton et al., 1992). Accordingly the
discrepancy among slope estimate standard errors vanished
after correction by the scale parameter /¢ (Table6). If
appropriate scaling is applied to the standard errors of
estimates obtained from fixed-effects models when needed
(i.e. when there is residual unexplained variation), these then
compare well with the estimates of slopes and associated
standard errors obtained from mixed-effects models (Breslow,
1990). However, appropriate correction of standard errors
was applied in only two of the 15 ESR where residual
temporal variation was detected (Julliard ef al., 1999; Milner
et al., 1999).

The estimates of the parameters describing the relation-
ship between survival and climatic factors can differ widely
according to the link function chosen for the survival and to
the possible transformations that can be applied to the focal
climatic covariate before entering it in the regression model.
The choice of the link function conditions the shape of the
modelled response of survival to variation in the climatic
covariate (Lebreton et al., 1992; Skalski e al., 1993). In order
to figure out clearly the type of relationship modelled with
different link functions one has to determine how a change
of 0 units in the climatic covariate translates into survival
variation. With the identity function, a 0 units change in the
climatic covariate has an additive effect equal to 40 on
survival (Draper & Smith, 1981). Using a logit scale for
survival, a 0 units change in the climatic covariate has
a multiplicative effect equal to the exp(hd) on the odds ratio
of survival (Hosmer & Lemeshow, 1989). Using the log-log
link function, a 0 units change in the climatic covariate has
a multiplicative effect equal to the exp(bd) on the log of
survival (Cox & Oakes, 1984). Finally with the log link func-
tion, often used in CMR data when the length of time in-
tervals vary, a ¢ units change in the climatic covariate has a
multiplicative effect equal to exp(b6) on survival (McCullagh
& Nelder, 1989). Whatever the practical or biological
reasons involved in the choice of a link function, it is thus
clear that slope estimates obtained with different link func-
tions cannot be easily compared.

The value obtained for the slope of the relationship
between survival and a climatic covariate is also sensitive to
possible transformations that can be applied to the climatic
covariate before including it in the regression model. The
climatic covariate can be included in the regression model
as such. The slope then expresses the change in f(¢)
expected when the climatic covariate changes by one unit.
In that case the interpretation of the slope is straightfor-
ward. The climatic covariate can also be centred and
standardized, as was done in the white stork survival
analysis. The variation in the climatic covariate is then
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expressed in terms of anomaly relative to the pattern of
variability observed in the time series and the slope of the
relationship with f(¢), sometimes referred to as the
standardized slope, expresses the change in f(¢) expected
when the climatic covariate changes by one standard
deviation unit. Provided that the same link function f1s used,
the slope of the relationship expressed in terms of variation in
f(¢) per standard deviation unit of the climatic covariate
presents the important advantage of allowing comparisons of
the magnitude of the impact of distinct climatic factors such
as temperature and precipitation on survival. It can also be
useful to compare the magnitude of the impact of climatic
factors across case studies. However, such comparisons can
be drawn only within a type of relationship. For instance,
although CNSRF and PBSC have been standardized,
comparing the slope of the linear relationship between
survival and CNSRF with the slope for the linear term of the
quadratic relationship between survival and PBSC makes no
sense. It would then often be difficult to compare slope
estimates obtained from distinct study cases.

(¢) Measures of magnitude for comparative studies

In an outstanding review of effect size statistics, Nakagawa
& Cuthill (2007) argue that standardized effect size statistics
or the information necessary to derive such statistics should
be provided in any biological study because meta-analyses
are needed in order to test many ecological and/or
evolutionary theories as well as to evaluate the generality
of findings from small-scale studies (Arnqgvist & Wooster,
1995). Nakagawa & Cuthill (2007) point out that the
correlation coefficient, that measures the strength of asso-
ciation between two variables, is the standardized effect
size used in the standard statistical models for meta-
analyses when the dependent and independent variables
are continuous. Indeed, the correlation coefficient seems to
be a more robust standardized effect size statistic than the
coeflicient of determination or the standardised slope. It is
striking that attempts at obtaining estimates of the
correlation coefficient in the context of CMR models
could be found in none of the papers from the ecological or
the biostatistical literature that we reviewed. We believe
that this i1s a major gap in CMR modelling techniques.
However, Nakagawa & Cuthill (2007) also provide a
comprehensive overview of the links existing among the
various effect size measures and list the equations that
allow converting one measure of effect size into another. It
is not yet clear to us whether or not these equations apply
in the context of CMR models. However we believe that
published empirical studies of climatic impact on the
survival of vertebrates should systematically report slope
estimates with standard errors that account for all the
sources of over-dispersion (see above), variances in the time
series of the covariates, estimates of the process temporal
variance in survival probability (with their standard errors
and/or confidence or credible intervals), and estimates of
the coefficients of determination, so that proper standard-
ized effect size statistics for meta-analyses could be easily
derived a posteriort.

V. Grosbois and others

(6) Impact of climatic factors on white stork
survival: conclusions

The exploratory analysis of white stork survival has
generated two hypotheses on the influence of climatic
factors. The correlation pattern examined suggests that
Baden-Wiirtemberg white storks could be sensitive to
rainfall in their wintering ground and to climatic conditions
in their breeding grounds from their arrival there back from
wintering to the onset of the breeding period. White storks
may survive poorly in years when rainfall is low in the Sahel
region (Fig. 6) and in years when extreme climatic conditions
(either, high NAO, high temperature and low rainfall, or, low
NAQO, low temperature and high rainfall) occur in the
breeding area during the pre-breeding season (Fig 6).
Furthermore, assuming that these climatic factors exert
a genuine influence on survival, the magnitude of their
impact is likely to be large. Each could account for up to 30%
of the temporal variation in survival (Fig. 5). However the risk
of these preliminary conclusions being false exceeded 20%
(Table 7), a high level as compared to the standard of 5%
usually retained in ecological studies. This situation of
detection of potentially strong effects associated with low
confidence for these effects being genuine was a consequence
of the high number of candidate climatic factors initially

3
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1.5
1
0.5

Logit (adults urvival)
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0.5
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-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

Low temperature
Low NAO
High rainfall

High temperature
High NAO
Low rainfall

Logit (adult survival)

-3 -2 -1 0 1 2 3
CNSRF

Fig. 6. Relationships detected between climatic indices and
adult survival of white storks Ciconia ciconia breeding in Baden-
Wiirtemberg. NAO, north Atlantic oscillation, PBSC, pre-
breeding climatic index, CNSRE, central and northern Sahel
rainfall index.
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considered as potentially influential which, in turn, stemmed
from poor prior knowledge of the study system. The next
step in the investigation of the impact of climatic factors on
Baden-Wiirtemberg white storks would be to challenge these
hypotheses. So additional CMR data covering a different
time window have to be gathered and used for evaluating
hypotheses. Initiating longitudinal monitoring of physiolog-
ical and/or behavioural traits and of the abundance of
mmportant food resources would also be necessary in order to
uncover the mechanisms through which Sahel rainfall and
climatic conditions in the breeding grounds affect survival of
white stork.

V. DISCUSSION

In Table9 we summarize the points developed in earlier
sections of this paper. We listed the specificities of climatic
covariates and survival estimates derived from analyses of
long-term data collected at the individual scale. We also
listed the implications of these specificities for the analysis of
the impact of climate on survival, advice for avoiding the
resulting pitfalls, and the frequency with which these pitfalls
were poorly dealt with in the ESR. Although we presented
procedures to attenuate some of the problems identified
(Table9 and see Sections III-IV), we believe that these
problems are partly inherent to the observational nature of
the studies we focus on. Below we first point out the limits of
observational studies. We then provide recommendations
and point to future research directions that could produce
stronger inference from empirical studies on climatic
impacts on vertebrate survival. Robustness improvement
in most of the ESR undoubtedly implies an increase in the
number of statistical units and/or a reduction in the
number of candidate climatic covariates (Table 9B). This
can be achieved mainly at three stages of a study: field
protocol design, selection of the data sets used for docu-
menting survival variations and selection of the climatic
covariates. Furthermore better exploitation of existing
statistical tools would result in stronger inference.

(1) The limits of observational studies of
impacts of climatic factors on vertebrate
survival

The most rigorous conception for acquiring scientific
knowledge is the strong inference procedure (Quinn &
Dunham, 1983). This procedure first implies that a theory
concerning the processes that generate a particular pattern
in natural systems has to be evaluated. One or several
experiments should be designed, with possible outcomes
that allow users to exclude unequivocally one or several of
the stipulated hypotheses. The experiment should then be
carried out. The statistical procedure used in order to
evaluate the outcome of the experiment is the NHT, which
allows falsifying a hypothesis of interest. Application of the
strong inference procedure brings about deductive infer-
ence that can be considered as true.

The strong inference procedure can usually not be
applied in the context of the studies reviewed here, and
more generally of ecological studies (Quinn & Dunham,
1983; Guthery et al., 2005). First, alternatives regarding
which climatic factor should influence survival and what
mmpacts they are expected to exert do not stem from sound
ecological theory. Instead, empirical observations and basic
knowledge from research fields such as physiology or
ethology strongly suggest that climatic factors are amongst
the numerous factors (e.g. density dependence, resource
availability, biotic interactions with competitors and pred-
ators) that influence survival in free-ranging populations.
Second, experiments allowing the rejection of the hypoth-
esis that a given climatic factor influences survival in
a population are often unfeasible. Third, the data used in
the type of studies we reviewed were most often not
collected for the specific purpose of studying the processes
through which climatic factors influence survival. These are
often survey data that are primarily collected for the
purpose of documenting variation in survival and that serve
secondarily for exploring the relative importance of a series
of putative factors in generating this variation. Finally, the
strong inference approach hardly applies in studies of
biological systems because these systems are so complex
that the putative processes structuring them and driving
their dynamics cannot be reduced to a series of dichoto-
mous mutually exclusive alternatives.

Observational studies of climate impacts on survival can
thus only bring about inductive inference. Inductive
inference produces more or less strong support for processes
that presumably influence the focal ecological phenome-
non, but is never sufficient to validate or invalidate them
(Quinn & Dunham, 1983; Robinson & Wainer, 2002;
Roback & Askins, 2005; Link & Barker, 2006). For instance,
in the correlative studies considered herein, the detection of
a relationship between a climatic factor and survival cannot
be considered as a demonstration of a direct influence of
this climatic factor on demography. It can indeed reflect an
indirect influence of the climatic factor implying a chain of
causation, or even the direct or indirect influence of
a confounding factor (especially, as mentioned above, in
situations where a detected relationship results solely from
the co-occurrence of trends in the survival and climatic
factor time series). Although this type of study constitutes
a major step towards reaching the ultimate goals of
identifying the processes through which climate influences
survival, it does not allow doing so as such.

The strength of the conclusions obtained in an
investigation of a scientific question through inductive
inference depends to a large extent on the number of
competing hypotheses that are necessary to represent the
whole range of putative processes (Burnham & Anderson
2002; Johnson & Omland, 2004; Hobbs & Hilborn, 2006;
Stephens et al., 2007) and on the number of parameters that
are necessary to depict each of these competing hypotheses
with a mathematical model (Ginzburg & Jensen, 2004).
These characteristics depend in turn to a large extent on the
quantity and quality of prior knowledge about the focal
ecological system. When prior knowledge of the system is
good, the number of competing hypotheses and the main
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Test for the effects of trends in the

Trends in survival were not investigated Spurious effects resulting from the co-

Heterogeneity among individuals in

E

climatic covariate and the survival

occurrence of trends in survival and

(61/78).
Trends in the climatic covariates were not

survival and/or detection parameters
generates spurious trends in time

series of survival estimates.
Time series of climatic covariates do

time series. If trends are detected, use
statistics that assess the fraction of the

variation in the demographic

parameter about the trend.

the climatic covariate time series can
be wrongly interpreted as causal

relationships.

investigated (66/78).

often exhibit trends.

Assess the fraction of temporal variation

Results cannot be used in meta-analyses

The only measure of the impact of climatic

The slope estimates from regression

F

in survival explained by climatic

covariates.

addressing general issues on the

covariates provided were slope estimates

(35/78).

models are sensitive to the link

impact of climate on ecological

systems.

function chosen for survival and to

the possible transformations that can

be applied to the climatic covariates.

drivers of the focal ecological phenomenon under each of
the competing hypotheses are well identified a priori. The I'T
procedure can then be used to obtain relatively strong but
still inductive inference about processes (Anderson &
Burnham, 2002; Burnham & Anderson, 2002; Ginzburg
& Jensen, 2004; Johnson & Omland, 2004; Hobbs &
Hilborn, 2006; Stephens e al, 2007). When prior
knowledge 1s poor, too many hypotheses are necessary in
order to cover the full range of competing putative processes
(Anderson & Burnham, 2002; Robinson & Wainer, 2002;
Guthery et al. 2005; Stephens et al., 2005, 2007), some of
which imply far too many possible drivers for the focal
ecological phenomenon (Ginzburg & Jensen, 2004). We
believe that this was the case in most of the empirical studies
of impacts of climatic factors on vertebrate survival we
reviewed (Table 9B; 9D) as well as in our investigation of
variation in white stork survival.

In such situations, it is necessary to admit that the study
aims at generating hypotheses regarding the climatic
covariates that potentially have an impact on survival and
that further evaluation of these hypotheses would imply
either experiments specifically designed or analyses of
independent data sets (Robinson & Wainer, 2002; Roback
& Askins, 2005; Link & Barker, 2006). The IT approach
seems at first sight well adapted for such exploratory studies
because it relies on probabilities that the hypotheses of
interest are true given the data in hand. However, Burnham
& Anderson (2002) and our simulation study suggest that
the IT approach does not perform well in exploratory
situations (Table 9D). On the other hand, many authors
consider that the NHT approach suffers from severe flaws
that severely limit its potential for producing strong
inductive inference (e.g Yoccoz, 1991; Cohen, 1994;
Johnson, 2002; Robinson & Wainer, 2002; Hobbs &
Hilborn, 2006; Stephens et al., 2007) With the NHT
approach, the actual hypothesis of interest that a focal
climatic covariate influences survival, is accepted in the
sense that its complement (the null hypothesis) is rejected.
This approach thus does not focus explicitly on the
hypothesis of interest. Furthermore, what 1s evaluated is
the probability with which the data in hand or more
extreme data could have been obtained if the null
hypothesis were true, rather than the probability that the
null hypothesis is true given the data in hand. However, the
results of our simulation study suggest that hypothesis
testing can be useful in exploratory analyses (Guthery et al.
2005; Robinson & Wainer, 2002; Stephens et al., 2003),
especially if effect size statistics are provided along with
measures of statistical significance (Yoccoz, 1991).

(2) Improvement of the balance between the
number of statistical units and the number of
candidate climatic factors

(a) Field protocol design

In 63 of the 78 ESR, CMR protocols consisted of one
session per year taking place during the breeding season of
the focal species. The inter-annual time scale is a natural
one, especially in the highly seasonal environments of
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temperate zones where most long-term demographic
monitoring programs are maintained, because one time
unit matches the complete seasonal cycle that constrains the
pace of vital activities of any organism. However, the inter-
annual time scale does not allow to infer directly from
survival estimates the time of year when most mortality
occurs and, as a consequence, when environmental
conditions (including climatic conditions) are particularly
critical. In the few ESR where several sessions per year have
been carried out (Singer ¢t al, 1997; Julliard et al., 1999;
Hoyle, Pople & Toop, 2001; Conroy et al., 2002; Piper,
2002; Tavecchia et al., 2002; Barbraud & Weimerskirch,
2003; Garel et al., 2004; Hallet et al., 2004; Schaefer et al.,
2006), a scale was added to the characterization of temporal
variation in survival. The first advantage was an increase in
the number of statistical units available for documenting
temporal variation in survival. A second advantage was that
critical periods within a year could be identified more
precisely and the number of candidate climatic covariates
could be considerably reduced.

(b) Selection of data sets used for documenting survival variation

CMR protocols most often focus on a single population or
even a single sub-population of the focal species. In only
eight ESR were CMR data from several populations
analysed simultaneously (Newton et al., 1992; Gaillard et al.,
1997; Loison et al., 1999; Tavecchia et al., 2002; Altwegg
el al., 2005; Harris et al., 2005; Schaub et al., 2005; Grosbois
et al., 2006). Addressing the impact of climatic factors on
survival with such multi-population data sets is particularly
valuable for two reasons. First, the number of statistical
units available for documenting temporal variation in
survival is increased: indeed, the detection of correlations
of survival with the same climatic factor in several
populations of a given species is very convincing evidence
that this factor has an impact on survival (e.g. Newton et al.,
1992; Gaillard e al., 1997; Tavecchia et al., 2002; Harris
et al., 2005; Schaub et al, 2005; Grosbois et al., 2006).
Second, using multi-population data sets allows investiga-
tors to document geographic variation in influences of
climatic factors and to make predictions about the impact of
various climate change scenarios in terms of changes in
species abundance over the entire distribution range.
Although logistic problems usually prevent one research
team from simultaneously monitoring several populations of
the same species in distant locations, there is undoubtedly
a large number of seabirds, passerines, small mammals and
large herbivores for which multi-population CMR data sets
could be assembled through collaborations among research-
ers. Such collaborations have already been established for
landbirds (Sether et al, 2003, 2006; Both et al, 2004;
Schaub et al., 2005; Grosbois et al., 2006), and seabirds
(Harris et al., 2005), and the results obtained illustrate the
potential of such approaches for documenting geographical
variation in the impact of climatic factors. This type of
approach will hopefully develop in the near future.
Moreover, the analysis of multiple population data sets
allows investigators to assess both the magnitude of co-
variation (z.e. of synchrony over time) in survival of different

V. Grosbois and others

populations and the role of climatic factors in generating co-
variation in survival among populations (Schaub et al., 2005;
Sxther et al., 2006). The most direct way to get estimates of
the process covariance among survival estimates from
several populations involves variants of mixed-effects
models which are currently being developed.

(¢c) Selection of a set of climatic_factors

The definition of a relatively small set of non-redundant
candidate climatic covariates is probably the most prob-
lematic 1ssue (Table 9B; 9C). The number of candidate
covariates depends to a large extent on the level of
uncertainty with which the mechanisms through which
climate influences survival are known. In some rare
instances, eco-physiological and/or behavioural studies
have provided sufficient information on these mechanisms
so this uncertainty is low (e.g. in large herbivore species:
Sather, 1997; Galillard, Festa-Bianchet & Yoccoz, 1998).
However, the investigator often has to deal with a poor
knowledge of such mechanisms. In these situations defining
a small set of potentially relevant candidate climatic
covariates can be extremely difficult for several reasons.
As mentioned previously, monitoring programs at the
individual level are most often carried out at the inter-
annual time scale so that critical times of the year cannot be
determined directly. Furthermore, climatic covariates can
influence survival with time lags. For example, the effect of
climatic conditions experienced in early stages of life can
persist for many years (Albon, Clutton-Brock & Guinness,
1987; Gaillard ¢t al, 1997). In the case of resident
populations of low-mobility species, the geographic area
where the potentially critical climatic covariates have to be
measured is most often restricted and well defined.
However, in other instances, the definition of this geo-
graphic area is less straightforward. Examples include long-
distance migratory species (Sillett, Holmes & Sherry, 2000;
Moller & Szep, 2005; Stokke et al., 2005; Saxther et al.,
2006), and highly mobile species such as pelagic seabirds
relying on resources that are themselves highly mobile
(Barbraud & Weimerskirch, 2005; Grosbois & Thompson,
2005; Crespin et al., 2006; Nevoux & Barbraud, 2006;
Votier et al., 2005). Finally, local climate can influence
survival indirectly through variation in abundance of food
(Frederiksen et al, 2004; Sandvik et al, 2003). The
complexity of climate influences on survival in such cases
generally hampers identification of a small set of potentially
relevant climatic covariates.

Selecting all local climatic covariates that are potentially
relevant when uncertainty about the mechanisms is impor-
tant often results in too large a set of candidate covariates.
When this option is nonetheless preferred, we strongly advise
against the inclusion of several highly correlated covariates in
the set of candidate covariates. We believe that using local
weather packages (obtained for instance from multivariate
analyses such as PCA) is a powerful way of achieving
a reasonable balance between relevance and parsimony
during the stage of selection of candidate climatic covariates
(Loison et al., 1999; Grosbois et al., 2006; Jenouvrier et al.,
2006; Keéry et al., 2006; Traylor & Alisauskas, 2006 among
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the papers reviewed here and Moss, Oswald & Baines, 2001;
Sirabella et al., 2001; Beaugrand & Reid, 2003; Forsman &
Mbonkkonen, 2003; for other types of demographic studies).
Collaborations with climatologists could facilitate defining
such local weather packages.

Another way to deal with high levels of uncertainty about
which local climatic covariates could influence survival
involves using large-scale teleconnection indices such as
NAO or the southern oscillation index (Holmgren et al.,
2001; Ottersen et al., 2001; Stenseth et al., 2003). However,
large-scale teleconnection indices are likely to influence
survival through a complex causal pathway. The tele-
connection index is then just a surrogate or proxy for an
unknown variable that is supposed to influence survival
directly (Almaraz & Amat, 2004) and the detection of
a relationship between it and survival brings about little
information on the mechanisms through which climatic
factors influence demography.

(3) Better exploitation of statistical tools
(a) A priort power analyses

In the ESR the power to detect effects of climatic factors
was not assessed before the investigation of potentially
influential factors. Yet, the procedures for evaluating a prior:
statistical power in CMR analyses have been described and
applied in few studies (Lebreton et al., 1992; Devineau et al.,
2006). We believe that a prior: power evaluation would
provide important information for setting the a-level when
the NHT procedure is used and for defining a reasonable
size for the set of candidate covariates (z.e. a size with which
covariate effects can be evaluated with reasonable power
when corrections for multiple tests are applied). However,
one important change in current practice is required before
power analyses can be undertaken. In none of the ESR
were precise alternative hypotheses explicitly formulated.
Instead, it was implicitly assumed that the alternative
hypotheses were just the counterpart of the null hypotheses
(the parameters of the relationships between survival and
the focal climate covariate are different from zero or,
equivalently, the fraction of the temporal variation in adult
survival accounted for by the effect of the focal climate
covariate is more than zero). We believe that the
formulation of precise alternative hypotheses would con-
tribute to obtaining more robust analyses. It would allow
evaluation of statistical power and more meaningful
conclusions (Field et al., 2004; Devineau et al., 2006).

() Integrated modelling

Combining several sources of information on survival can
greatly reduce estimation uncertainties and thereby increase
statistical power for detecting climatic effects. Integrated
modelling tools are currently being developed to draw
inferences based on the simultaneous analysis of different
types of data. Attempts at evaluating the influence of climatic
factors on survival using integrated modelling of live
recaptures and dead recoveries have already been performed

(Catchpole et al., 2000; Blums et al., 2002; Altwegg ¢t al., 2003;

Schaub ¢t al, 2005). In its most elaborate version such
integrated modelling could combine monitoring data at the
population and individual levels for building statistical models
with a structure that includes explicit descriptions of the link
between demographic parameters and population dynamics.
Such mtegrated models certainly have a great potential for
investigating the influence of climate change on population
dynamics (Besbeas, Ireeman & Morgan, 2005). They are
currently being developed but have seldom been used so far
for evaluating the influence of climatic factors on survival and
population dynamics (but see Besbeas et al., 2002).

(¢) Cross validation

Two important components need to be evaluated for
assessing the validity of a statistical model. Internal validity
1s the ability of the model to describe the variation in the
focal dependent variable in the population where, and over
the time period when, the data used to build the model have
been collected. External validity is the ability to predict
variation in the dependent variable in other populations
and/or over other time periods where and when the same
processes are supposedly acting

An important risk incurred when exploring the potential
influence on survival of many climatic factors by analysing
short time series is that of coming up with a model
performing well in terms of internal validity but poorly in
terms of external validity. This risk further increases when
the multiple test issue is ignored. For these reasons, we
believe that although the statistical models produced in
many of the ESR represent valuable hypotheses, their
external validity still needs to be evaluated before they can
be used for the ultimate aim of predicting survival under
future climatic conditions.

In our opinion, the best approach to evaluate the external
validity of a model obtained from the analysis of data
collected in a given population over a given time period, is
to assess its predictive performance on a data set collected in
a different population and over a distinct time period. We
thus believe that undertaking multi-population and multi-
species investigations is the best approach to produce
predictive models with high external validity. However,
generating hypotheses and evaluating their external validity
simultaneously on a single data set is to a certain extent
possible with cross-validation procedures. Such procedures,
where the data set is iteratively split into a fitting and
a validation subset, have been used in investigations of
climatic impacts in time series of abundance (e.g Turchin,
2003; Corani & Gatto, 2007) and for producing predictive
models of species distribution ranges through the analysis of
climatic niches (e.g. Broennimann ez al., 2007, Dormann et al.,
2008). Although it has to our knowledge never been applied
in empirical studies of impacts of climatic factors on survival
of vertebrate populations, cross validation would clearly
improve the robustness of the results obtained in such studies.

(d) Tools _for addressing complex causal pathways

While the regression models presented here are efficient
tools for detecting correlations, they hardly provide
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information on the type (direct or indirect) of the relation-
ships detected, nor account for relationships among
explanatory covariates. Modelling tools have recently been
introduced in the field of ecology (e.g. structural equation
modelling; Bollen, 1989) to state explicitly through flow
charts the existence of relationships among explanatory
environmental covariates and the type (direct or indirect) of
relationship linking survival to the explanatory environ-
mental covariates (Graham, 2003; see Almaraz & Amat,
2004 for an application in the field of population biology).
Adaptation of this type of modelling tool to the analysis of
temporal variation in survival is desirable. It could be used to
infer complex causal pathways linking survival to several
inter-related climatic and biotic covariates. This type of com-
plex pathway is suspected to underlie relationships between
survival of pelagic seabirds and fluctuation of large-scale
climatic indices (Jenouvrier ef al., 2005b; Sandvik ez al., 2005).
Furthermore, from a methodological point of view, the
application of this type of modelling tool would to some
extent tackle the multi-collinearity issue (Graham, 2003).

Complex causal pathways also imply that a candidate
climatic covariate may not be the actual causal factor but
may nonetheless reflect imperfectly temporal variation in
this causal factor because it is causally connected to it. This
is obvious when large-scale integrative climatic indices such
as the NAO are considered in the set of covariates. In this
context, regression models that integrate explicitly mea-
surement errors in predictors could be useful. Such models
have already been used in the field of population biology
(e.g. Solow, 1998; Almaraz & Amat, 2004) and in the CMR
context to study density-dependence (Barker, Fletcher &
Scofield, 2002). To our knowledge they have never been
applied in the context of investigation of the relationship
between climate and survival.

Lastly, causal pathways can generate non-linear relation-
ships among climate indices (Mysterud e al., 2001; Lima
et al., 2002). The recent development of non-parametric
models in a statistical framework adapted to the analysis of
monitoring data at the individual level now allows
investigators to model with maximum flexibility such non-
linear relationships (Gimenez et al., 2006).

() Multi-model inference

In the ESR, the IT procedure was often chosen as
a statistical framework. However, it was used as a tool for
identifying among a set of climatic factors those that might
noticeably influence survival. As discussed above, we believe
that the I'T procedure 1s not superior to the NHT procedure
when used for such exploratory investigations. On the other
hand, when prior knowledge of the system is good enough
for building a limited number of relevant models, the IT
procedure offers interesting possibilities. In particular, AIC
weights can be used to draw inductive inference, such as the
estimation of the impact of a climatic factor, from several
models (Buckland et al., 1997). Such multi-model inference
is extremely valuable because it accounts for uncertainty in
model selection. However, the possibility offered by the I'T
procedure to draw multi-model inference has been exploited
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in only two of the 78 ESR (Beauplet et al., 2005; Traylor &
Alisauskas, 2006; see also Hartley et al., 2006; Dormann et al.,
2008 for the inclusion of model selection uncertainty in
inferences on biodiversity and species ranges).

(f) IT selection criterion_for models including random effects

Our evaluation of the performances of statistical procedures
for identifying influential climatic factors suggests that the
IT procedure does not perform well in situations where
prior knowledge of the system is poor. In our opinion such
a poor performance arises from the impossibility of defining
a model that explains most of the temporal variation in
survival through relationships with biologically relevant
predictors. We suggest that introducing in the set of
candidate models mixed effect models of the type of R,
and R, that account parsimoniously for unexplained
process variation would most likely improve the statistical
performance of the IT approach when prior knowledge is
poor (Burnham & Anderson, 2002, pp. 310-317). Although
methods for deriving AIC for CMR models including
random effects have been proposed (Burnham & White,
2002; Vaida & Blanchard, 2005), their efficiency has so far
received little evaluation and they have to our knowledge
never been applied in analyses of field CMR data.
Procedures based on AIC comparisons within sets of
candidate models including fixed- and mixed-effects models
have undoubtedly great potential for addressing the impact
of climatic factors on survival.

(g) Incorporation of prior knowledge

In a CMR context, the possibility of incorporating prior
knowledge of the system in the analysis has rarely been
exploited (but see McCarthy & Masters, 2005), and never
with the aim to demonstrate the impact of climatic factors
on demographic parameters. In the white stork example,
the positive effect on survival of rainfall at wintering sites
was demonstrated several times in the literature, whereas
that of climatic conditions at breeding sites was unknown
prior to this study. One way of incorporating this prior
information would be to assign a positive distribution to the
regression parameter representing the impact of rainfall on
survival, and a vague prior such as a normal distribution with
large variance for the parameter standing for the impact of
climatic conditions at breeding sites which was poorly
documented prior to this analysis. By doing so, the use of
information in the data will be focused on investigating
a potential effect of climatic conditions at breeding sites.

VI. CONCLUSIONS

(1) Although a noticeably large number of ecological
studies have detected impacts of climatic factors on survival
in populations of vertebrates, many of these results should
be considered with caution.

(2) We identified statistical problems that were often
quite poorly dealt with in the 78 case studies we reviewed
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(Table 9). First, the evidence for impact of climatic factors
on survival has been obtained from analyses where multiple
correlated climatic covariates were considered without
tackling the multiple test and multi-collinearity problems
(Table 9.B; 9.C). Second, in the studies where large
variation in survival was observed, and where climatic
and other time-varying covariates did not account for most
of this variation, statistical support for the effect of climatic
covariates was often assessed using statistics that poorly
accounted for unexplained variation (Table9.D). Finally
most of the studies we reviewed did not address the
potential co-occurrence of temporal trends in the survival
and climatic covariates despite such co-occurrence easily
resulting in spurious detections of climate effects (Table 9.E).
We suggest that the two last issues are relatively easy to deal
with because data can simply be re-analysed using more
robust statistical methods such as those reviewed here.

(3) In our opinion, the most problematic issue is the low
ratio between the number of statistical units available for
documenting time variation in survival and the number of
climatic covariates considered as potentially influential
(Table 9.B). Indeed, we believe that this issue is inherent to
observational studies where prior knowledge of the system is
too poor for a limited set of potential drivers of survival to be
defined. More robust results could be obtained by improving
procedures used at early stages of investigations (e.g field
protocol design allowing investigations at infra-annual scales
and selection of multi-population data sets) as well as at the
final stage of data analysis (i.e. better exploitation of the
possibilities offered by existing statistical tools).

(4) We are convinced that major findings regarding the
mnfluence of climatic factors on demographic processes, on
the dynamics of distribution ranges or on the structure of
communities can be expected from investigations at multi-
population and multi-specific levels.

(5) We wurge population ecologists to consider our
recommendations because results obtained in investigations
of demographic processes in single populations and species
can be integrated in meta-analyses or used as pieces of prior
knowledge for other investigations only if they are obtained
with robust and standardized statistical methods.
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IX. APPENDICES

(1) Case studies where climate impacts on survival of
vertebrates have been addressed using capture-mark-
recapture data (papers from 1985 to 2006 from journals
referenced in Current Conlents). Foy, F, Fo, Iy Fgz Fp gy Ry R,
are different types of CMR models for describing survival
(Table 4). LRT,,, A, Ftest,;,/., W(R,,) are statistics to assess
statistical support (Table 7 and Sections IV.1-1V.3). R?_Dev,
R?_Var are effect size statistics (Sections IV.5). GOF:
Goodness of fit test. CI: confidence interval.
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394 V. Grosbois and others
Time series
duration;
Y, years;
s, seasons; Number of Relationship
m, months; time varying among Reference model
biw, biweekly; covariates time NT: not tested
w, weeks; [climate Teleconnection  varying against other
Reference Species Study site *, by (other)] indices covariates models
1 Tundra vole Microtus Norway 4y 1 F, (NT)
oeconomus
2 Red deer Cervus elaphus — Isle of Rum 10y =2 (1) N F, or F,;, depending
Scotland on sex and age
(LRT,,;)
3 Asp viper Vipera aspis Switzerland 14y 3 Y Fy Q)
4 Barn owl Tito alba Switzerland 12y 3(1) N F, (A )
5 Barn owl Tito alba Switzerland 68 y 1 F, (A )
6 Emperor penguin Terre Adélie 19y 3 N F, (LRT,,,)
Aptenodytes forstert (Antarctica)
7 Blue petrel Halobaena Kerguelen 12y 2(1) Y Y F, (A
caerulea archipelago
8 Blue petrel Halobaena Kerguelen 10y 1(1) N F A
caerulea archipelago
9 Snow petrel Pagodroma Terre Adélie 16y 24 N F, (LRT,,,)
nivea
10 Subantarctic fur seal Amsterdam island 6y 1 F, (A, or F,(NT)
Arctocephalus tropicalis depending on age
11 Cassin’s auklet Triangle and 5y 1 Y Fy (A
Pychoramphus aleuticus Frederick’s
islands
(British
Columbia)
12 Three duck species Latvia 1721y 1 F,; or F, depending
on species (A /)
13 Northern red-backed Yukon (Canada) 10y 1>1) N F, (NT)
vole Clethrionomys
rutilus
14 Seychelles warbler Cousin Island 18y 5(1) N F, (A
Acrocephalus sechellensis (Seychelles)
15 Common lizard France 13y 3 Y Fyoor Fy (A
Lacerta vivipara depending on sex
16 Soay sheep Ouis aries St Kilda (Scotland) 10y 4 (1) Y Y F (A
17 Lapwing Vanellus vanellus UK 29y 13 Y F AL
18 Coot Fulica atra Netherlands 15y 1(1) N F, (NT)
19 Starling Sturnus vulgaris Belgium 6y 1 F, (LRT,,,)
20 Great tit Parus major England 20y 5 (6) Y F, (LRT,,,)
21 Serin Serinus serinus Spain 15y*2s 3 (1) N F A
22 Sand martin Riparia Breeding in 23y 3 N F, (A7)
riparia Nottinghamshire
(UK) wintering
in West Africa
23 Common guillemot Isle of May 10y 4 Y N F, Q)
Cepphus grylle (Scotland)
24 Four resident forest bird ~ Ohio (USA) 5y 1 F @A)
species: Baeolophus
bicolor, Picoides
pubescens, Poecile
carolinensis, Sita
carolinensts
25 Soay sheep Ouvis aries St Kilda (Scotland) 13y 1(1) Y N F, (LRT,,,)
26 Northern spotted owl California (USA) 9y 10 N F A
Strix occidentalis
27 Black-legged kittiwake Isle of May 16y 42 Y N Fr  >Fy>
Rissa tridactyla (Scotland) FAss Aot g
Aq g
28 Desert tortoise California (USA) S5y 1 F, (A )
Gopherus agassizii
29 Roe deer Capreolus France 10y 2(2) N F, (LRT,,)
capreolus
30 Mouflon Ouwis aries Southern France 9 biw 12 N F A
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Type of regression
model CMR:

Variation unexplained

Statistics for

CMR model LR: linear by the climatic statistical
regression LGR: covariates (test support for Coeflicient of
logistic regression KM:  statistics) NT: not covariate Correction for determination R_LR:
Kaplan Meyer tested NS: not effect multiple tests from linear regression Trends
KF: known fate model  significant UC: unsupported M: mentioned R?_?: method (S= survival;
Reference CR: Cox regression S: significant conclusion but not applied not mentioned C=climate)
1 LR on survival NT LR Pearson
estimates derived correlation
from a LGR coeflicient
2 LR on the rate of NT F-LR N
number known
alive at t+1
among those
seen at t.
3 CMR NS @A) Asiseo N
4 CMR S A, At Ay UC (based N R?_Dev R®_Var
on R?)
5 CMR S A, Flest 1ot R?_Var
6 CMR NS (LRT,,,) LRT,, N R Var
7 CMR NS @A../) AIC weights N R? Dev R®_Var
Ar\//m
8 CMR NS (4,,/) Do Ao N R_Dew
9 CMR NS (LRT,,,) LRT N R _Dev
10 Depending on age, NS @A,,) or NT Spearman rank Spearman rank
CMR or Spearman depending on age correlation correlation
rank correlation on test coeflicient
estimates derived
from age class size
and survival
estimates
11 CMR NS (4,) A
12 CMR NS @A.,/) Assireo Aot
UC in one
species
(A est/co—
—0.72)
13 LR on survival NT F-ILR N R’ LR
estimates derived
from population
size estimates
14 CMR S A, At/ Avort N C
15 CMR NS (A,/) streo Deost N SC
16 CMR S Aer) Aot Ay UC M
(based on
uncorrected CI)
17 CMR NS A7) Ari Acsisen N SC
18 LR on F, NT F-LR N
estimates (log
transformed)
19 CMR NS (LR1,,/) LRy,
20 CMR NS (GOF F,) LRT.,, M
21 CMR S @) AunAr N
22 CMR S A, Fest,g1c0/1 N S
23 CMR S @A) Flestgy)0/t N R?_Dev
24 CMR NS (du) LRT,,/.
25 LGR (no NT LRT,,,,, N R Dev
detection
parameter)
26 CMR NS (A,/) AunAisisen N R?_Var
27 CMR NS A7) LRT,y,., N R?_Var S
28 CMR NS (4.,) Ao Ao
29 CMR NS (LRT,,) LRT,., N R?_Dev
30 CMR NS (A./) AunAry N
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396 V. Grosbois and others
Time series
duration;
y, years; Number of Relationship
S, seasons; time varying among
m, months; covariates time Reference model
biw, biweekly; [climate Teleconnection  varying NT: not tested against
Reference Species Study site w, weeks; *, by (other)] indices covariates other models
31 Blue tit Cyanistes France (mainland 6-13 y 9 Y Y F, A
caeruleus and Corsica)
32 Northern fulmar Orkneys (Scotland) 3y 2 (1) Y Y Fy>F,>FF,,> Fr>
Fulmarus glacialis F, depending on sex
A s Acsirr Asy)
33 Mallard Anas Sweden 2y*16 1 -
platyrhynchos
34 Soay sheep Ouvis aries St Kilda (Scotland) 8 y *18w 9 N F, (NT)
35 Atlantic puffin North eastern 11-17 y 6 Y Y F, or F,, depending
Fratercula arctica Atlantic on colony (A.,,)
36 Adlantic puffin Fratercula  Scotland 21y 4(7) N F, (LRT.,,)
arctica
37 Ghost bat Macroderma Australia Sy*4s 4 N F A
gicas
38 Southern fulmar Terre Adélie 38y 12 N F, @A)
Fulmarus glacialoides
39 Emperor penguin Terre Adélie 31-34y 13 Y N I, or F, depending on
Aptenodytes forstert, sex and species (4 /)
snow petrel Pagodroma
niwea
40 Adélie penguins Terre Adélie 8y 7 Y Y F A
Pygoscelis adeliae
41 Least auklet Aethia North Pacific 10y 3 Y N F, A
pusilla
42 Bighorn sheep Ouis Alberta, (Canada) 18y 1(1) N F @A)
canadensis
43 African multimammate  Tanzania 24 m 2 (1) Y F, (LR1,,,)
rat Mastomys natalensis
44 White stork Ciconia Alsace (breeding) 20y 7 N F.y (LRT.,,)
ciconia
45 Svalbard pink-footed Svalbard (arctic) in 13y 2(3) Y Y F A
goose Anser summer,
brachyrhynchus Denmark and
Netherlands in
winter
46 Willow tit Poecile montana  Finland 3 y*9m 2 N F, or F,, for seasonal
variation, depending
on year (LRT,,/)
47 Manatee Trichechus Florida (USA) 15y 1 F A
manatus
48 Leaf-eared mice Central Chile 12y *4s 2 (3) Y N F, (A
Phyllotis darwini
49 Short-tailed shrew Pennsylvania(USA) 20 y * 12m 3(1) Y N F, (LR,
Blarina brevicauda
50 Chamois, isard French Alps and 12y 15 Y Y F A
Rupicapra rupicapra Pyreneces
51 Red deer Cervus elaphus Norway 19y 2 Y F, or F,, depending on
age (Aeur)
52 European dipper Norway 18y 3(1) Y Y F (A )
Cinclus cinclus
53 Soay sheep Ouis aries St Kilda (Scotland) 9y 1(1) Y N R, (NT)
54 Moose Alces alces Alaska 11 y*3s 1 I, ; homogeneity test
55 Barn swallow Hirundo Denmark 18y 7 N Fi (A )
rustica (breeding)
56 Sparrowhawk Accipiter UK 9-15y >15(1) N F, or F,, depending on
nisus site (LRT,,/)
57 Thin-billed prion Kerguelen Islands 14y >500 Y N F (A )
Pachyptila belcher:
58 Mauritius kestrel Falco Mauritius island 15y 2 (2) N F, or F;; depending on
punctatus (Indian ocean) age (A./)
59 Kudu Tragelaphus Kruger Park (South 11y 2 (1) N F, (NT)
strepsiceros Atrica)
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Type of regression
model CMR:

CMR model

LR: linear regression
LGR: logistic
regression

KM: Kaplan Meyer
KF: known fate model

Variation unexplained
by the climatic
covariates (test statistics)
NT: not tested

NS: not significant

Statistics for
statistical

support for
covariate effect
UC: unsupported

Correction for
multiple tests
M: mentioned

Coeflicient of
determination
R?_LR: from
linear regression
R?_?: method

Trends
(S= survival;

Reference CR: Cox regression S: significant conclusion but not applied not mentioned C=climate)
31 CMR NT Flest g0/t M R?_Dev
32 CMR NS A7) LRT,y,., N R?_Dev SC
LRT /004
33 KF NT st/o S
34 LR on NT FLR Y R?_Dev
number of
deaths
35 CMR NT Flest,g1c07t N R?_Dev
36 LR on F, NS (LRT,,,) FLR N S
estimates
87 CMR NS (4./) Aun A N
38 CMR NS A7) cort Avsiseo Y R?_Dev
UC (based
on A /.,= -0.39)
39 CMR NS or S AunAisisen N R?_Dev
depending
on sex and
species (A7)
40 CMR NS @A,/ Ari Aistsen N R?_Dev
41 CMR NS @A) stleo M
42 CMR NS (A1) e N
43 CMR NT Flest g0/t N R?_Dev
44 CMR NS (LRT./) LRT,,., N C
45 CMR S (LRT ,,/) Flest 10001 N R?_Dev SC
46 LR on NT FLR N R’_IR
F, estimates
47 CMR NT Flest o071 R?_Dev
48 CMR S A, Aori Assiseo N R?_Dev
49 CMR NS and S wort Aest/eo N R°_Dev
depending
on age (A,,/)
50 CMR NS and S LRT,,,,, N R?_Dev
depending on
population
51 CMR NT LRT,., N SC
52 CMR NS and S Ausi Arise N R’ _Dev R?_Var
depending UC (based
on age (4,,/) on R?)
53 Mixed LGR W(R,,) and N
(no detection Flest.1/000
parameter)
54 KM NS; homogeneity Homogeneity test
test among between
normal years with
snow years different
climatic
conditions
55 CMR NS(@A,,/) Flestoy0/1 M R??
56 CMR NT LRT., M SC
57 CMR NS @A) stleo N SC
58 CMR NS@A.,,) Aori Aistsen N R?_Dev
59 LR on number alive at NT FLR N R’_ 1R C

i+ 1 among those
seen at ¢
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398 V. Grosbois and others
Time series
duration;
y, years; Number of Relationship
S, seasons; time varying among
m, months; covariates time Reference model
biw, biweekly; [climate Teleconnection  varying NT: not tested against
Reference Species Study site w, weeks; ¥, by (other)] indices covariates other models
60 Sedge warbler Britain 16y 1 F, (LRT,,)
Acrocephalus
schoenobaenus
61 Reed bunting Emberiza England 28y 1 F, (LRT,,)
schoeniclus
62 Lapwing Vanellus vanellus ~ Great Britain 20-50y 35 Y F, (GOF of F; and F,,)
63 Great tit Parus major Netherlands 35y 1(3) N F, (NT)
64 Longtailed wagtail South Africa 20y*4s 6 (2) N F (A
Motacilla clara
65 New Zealand long- New Zealand 9y 1(1) N F, A,
tailed bats
Chalinolobus
tuberculatus
66 Song thrush Turdus Britain 32y 2 N F(Au)
philomelos
67 5 seabird species: Uria Barents Sea 14y 16 (3) Y N I, Fror F, depending
aalge, Uria lomovia, Alca on species (A, A
torda, Fratercula arctica, 747)
Rissa tridactyla
68 Guanaco Lama guanicoe Chile S5y 1(1) Y F}; homogeneity test
Kaplan-Meyer
model
69 Two African warbler Kenya 22 m 8 N F (A )
species Sylvia Boehma,
Sylvia lugens
70 White stork Ciconia Germany, Poland 19y 1(3) Y F; (A, and quantified
ciconia (breeding) from R,
71 Pipistrelle bat Pipustrellus ~ Hesse (Germany) 3 y*2s 2 N Fy (A )
pipistrellus
72 Black-throated blue New Hampshire 11y 1 Y I, or F,, depending on
warbler Dendroica (USA) site (A /1)
caerulescens
73 Elk Cervus elaphus Yellowstone (USA) 3y 4 N F, (NT)
74 Common house martin ~ Germany 8y 10 N F, (A )
Delichon urbicum
75 Eurasian woodcock France 714y 2 Y F, or F, depending on
Scolopax rusticola area (A7)
76 White-winged scoter Canada 15 bidaily 1 F,, (NT)
Melanitta fusca intervals
77 Common guillemot Skomer Island 18y 2 (2) Y Y F (A )
Cepphus grylle (UK)
78 Northern Goshawk Arizona (USA) 4y 1(1) N F A
Accipiter gentilis
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Type of regression
model CMR:

CMR model

LR: linear regression
LGR: logistic
regression

Variation unexplained
by the climatic
covariates (test statistics)

Statistics for
statistical
support for
covariate

Coeflicient of
determination

Clorrection for R?_LR: from

KM: Kaplan Meyer NT: not tested effect UC: multiple tests linear regression Trends
KF: known fate model ~ NS: not significant unsupported M: mentioned R?_?: method (S= survival;
Reference CR: Cox regression S: significant conclusion but not applied not mentioned C=climate)
60 CMR NS (LRT,,) LRT,., R?_Var SC
61 CMR NT LRT /) SC
62 LR on F, estimates NT FLR N R Var
63 LR on F, estimates NT FLR N R’ 1R
(arcsine transformed)
64 CMR S A AIC weights N S
65 CMR NS A7) LRT,,,., N
66 CMR NS (A1) LRT.,,, N
67 CMR NS or S depending on A, 4,,,,UC in two N R?_Dev S
species (4,,/) species (A /= -0.73
and 4 /,= 1.22)
68 CR NT Wald N
69 CMR NS @A../) Aieo N
70 CMR NT but Quantified Not assessed N R?_Var
from R,
71 CMR S A Aoost Acstseo N
72 CMR NS @A,/ ot Aestren
73 LGR NT LR/, N R?_Dev
74 CMR S A, Not assessed N R?_Var
75 CMR NS or S depending on 4,/ A,,,,UC in one N R’ _Dev
area (A,,/) area out of three
76 CMR NT AIC weights
77 CMR NS @) A N R*_Dev
78 KF NS (A,/) Flest, g0/t N R?_Dev

1, Aars & Ims (2002); 2, Albon et al. (1987); 3, Altwegg et al. (2005); 4. Altwegg et al. (2003); 5, Altwegg et al. (2006); 6, Barbraud &
Weimerskirch (2001); 7, Barbraud & Weimerskirch (2003); 8. Barbraud & Weimerskirch (2005); 9, Barbraud et al. (2000); 10, Beauplet et al.
(2005); 11, Bertram et al. (2005); 12, Blums et al. (2002); 13, Boonstra & Krebs (2006); 14, Brouwer et al. (2006); 15, Chamaillé-Jammes ez al.
(2006); 16, Catchpole et al. (2000); 17, Catchpole et al. (1999); 18, Cavé & Visser (1985); 19, Clobert & Lebreton (1985); 20, Clobert
et al. (1988); 21, Conroy et al. (2002); 22, Cowley & Siriwardena (2005); 23, Crespin et al. (2006); 24, Doherty & Grubb (2002); 25,
Forchhammer ez al. (2001); 26, Franklin ez al. (2000); 27, Frederiksen et al. (2004); 28, Freilich et al. (2000); 29, Gaillard ez al. (1997); 30, Garel
el al. (2004); 31, Grosbois et al. (2006); 32, Grosbois & Thompson (2005); 33, Gunnarsson ef al. (2006); 34, Hallet et al. (2004); 35. Harris ef al.
(2005); 36, Harris et al. (1997); 37, Hoyle et al. (2001); 38, Jenouvrier et al. (2003); 39, Jenouvrier et al. (2005); 40, Jenouvrier et al. (2006); 41,
Jones et al. (2002); 42, Jorgenson et al. (1997); 43, Julliard et al. (1999); 44, Kanyamibwa et al. (1990); 45, Kery et al. (2006); 46. Lahti et al.
(1998); 47, Langtimm & Beck (2003); 48, Lima et al. (2001); 49, Lima et al. (2002); 50, Loison et al. (1999); 51, Loison & Langvatn (1998); 52,
Loison et al. (2002); 53, Milner et al. (1999); 54, Modafferi & Becker (1997); 55, Moller & Szep (2005); 56, Newton et al. (1992); 57, Nevoux
& Barbraud (2006); 58, Nicoll, Jones & Norris (2003); 59, Owen-Smith (1990); 60, Peach et al. (1991); 61, Peach et al. (1999); 62, Peach et al.
(1994); 63, Perdeck et al. (2000); 64, Piper (2002); 65, Pryde et al. (2005); 66, Robinson et al. (2004); 67, Sandvik et al. (2005); 68. Sarno et al.
(1999); 69, Schaefer et al. (2006); 70, Schaub et al. (2005); 71, Sendor & Simon (2003); 72, Sillet ¢t al. (2000); 73, Singer et al. (1997); 74,

Stokke et al. (2005); Tavecchia et al. (2002); 76, Traylor & Alisauskas (2006); 77, Voitier et al. (2005); 78, Wiens et al. (2006).

(2) Bayesian modelling To specify the Bayesian model
R, for the analysis of the white stork and 500 simulated
data sets, all priors were selected as sufficiently vague in
order to induce little prior knowledge. Generally, if the data
are sufficiently informative, the likelihood dominates the
non-informative priors and the posterior summaries using
MCMC samples are close to the results of a frequentist
analysis. Specifically, we chose uniform distributions on
[0,1] for the detection probabilities, normal distributions
with mean 0 and variances 1,000,000 for the 4’s, and an
inverse-gamma with both parameters equal to 0.001 for o2,
We used software WinBUGS (Spiegelhalter ¢t al., 2002) to
implement our approach. For applications of this program
in wildlife (Link e al., 2002) and for fisheries see Meyer &
Millar (1999). We generated three chains of length 15,000,
discarding the first 5,000 as burn-in. These simulations

lasted a few seconds on a PC (512Mo RAM, 2.6GHz CPU).
Convergence was assessed using the Gelman and Rubin
statistic, also called the potential scale reduction, which
compares the within to the between variability of chains
started at different initial values (Gelman, Meng & Stern,
1996). Note that the covariate was first standardized in
order to avoid numerical instabilities and to improve
MCMC mixing. We found that the Markov chains exhibit
moderate autocorrelation and good mixing regarding all
parameters. In order to check for the robustness of our
results, we ran our model using different priors during
a sensitivity analysis, and in all cases there were only
minimal changes. The codes used for fitting random- and
fixed-effects models in a Bayesian framework for the
analysis of white stork survival can be obtained from the
first author on request.
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