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A B S T R A C T

Social network analysis provides a powerful tool for understanding social organisation of animals. However, in
free-ranging populations, it is almost impossible to monitor exhaustively the individuals of a population and to
track their associations. Ignoring the issue of imperfect and possibly heterogeneous individual detection can lead
to substantial bias in standard network measures. Here, we develop capture-recapture models to analyse network
data while accounting for imperfect and heterogeneous detection. We carry out a simulation study to validate
our approach. In addition, we show how the visualisation of networks and the calculation of standard metrics
can account for detection probabilities. The method is illustrated with data from a population of Commerson’s
dolphin (Cephalorhynchus commersonii) in Patagonia Argentina. Our approach provides a step towards a general
statistical framework for the analysis of social networks of wild animal populations.

1. Introduction

Knowledge of the social organisation of animal populations is es-
sential to develop sound conservation and management strategies as
social structure affects habitat use, information diffusion, as well as the
genetic composition and the spread of information and diseases within
these populations (Krause and Ruxton, 2002).

Social network analysis (SNA; Croft et al., 2008; Whitehead, 2008)
has recently known an increasing number of applications to char-
acterize in particular the social structure of animal populations. SNA
allows the study of social networks through their visualisation and the
calculation of several descriptive statistics, with important applications
in ecology, evolution, epidemiology and behavioural ecology (Craft and
Caillaud, 2011; Farine and Whitehead, 2015; Krause et al., 2007; Sih
et al., 2009; Wey et al., 2008).

In free-ranging populations however, individuals may or may not be
seen (or recaptured) at various times over a study period. This raises the
issue of detectability less than one that makes it difficult to track as-
sociations between individuals. In other words, when one or two in-
dividuals of a dyad are missed, were they associated or not? Besides
being imperfect, detection is often heterogeneous due to variation in
individual traits such as, e.g., sex (Tavecchia et al., 2001), social status
(Cubaynes et al., 2010; Hickey and Sollmann, 2019), infection status
(Marescot et al., 2018) or pair-bond status (Choquet and Gimenez,

2012; Culina et al., 2013). Overall, ignoring the issue of imperfect and
heterogeneous individual detection can lead to substantial bias in es-
timating the probability of association between individuals (Hoppitt
and Farine, 2018; Lusseau et al., 2008; Weko, 2018).

To address these issues, Klaich et al. (2011) developed a capture-
recapture model where detection probabilities of individuals in dyads
varied between individuals that are associated and those that are not.
Their approach requires complex probabilistic calculations that make it
specific to their case study, and therefore difficult to extend to other
situations. Here, we use a state-space modelling (SSM) approach (e.g.,
Buckland et al., 2004) to acknowledge that data on associations be-
tween individuals derived from field studies are imperfect observations
of the underlying social structure. Specifically, the SSM approach makes
the two-component process underlying network structure explicit: i) the
temporal dynamic of associations between individuals and ii) the ob-
servations generated from the underlying process in i).

We apply the SSM framework to capture-recapture (CR) data
(Gimenez et al., 2007) to analyse network data while accounting for
imperfect and heterogeneous detection of individuals. We estimate
dyad association probability and distinguish the dynamic of associated
vs. non-associated states from their partial observation. We carry out a
simulation study to assess bias in the association probability. Last, we
show how the visualisation and the calculation of standard network
metrics can account for detection probabilities. The approach is
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illustrated with data from a population of Commerson’s dolphin (Ce-
phalorhynchus commersonii) in Patagonia Argentina.

2. Model development

2.1. State-space modelling of capture-recapture data

Following Klaich et al. (2011), we derived dyad association histories
from individual captures and non-captures. For example, let us assume
a 4-occasion CR experiment in which two individuals have capture
histories ‘1011’ and ‘1001’ where a ‘1’ stands for an individual detection
and ‘0’ for a non-detection. We considered that behavioural interactions
between individuals occurred within groups (‘gambit of the group’
sensu Whitehead and Dufault, 1999). Let us assume that these two in-
dividuals were both detected in the same group at the first occasion but
in a different group at the last one, then the association history for this
particular dyad is ‘2013’ where ‘0’ stands for none of the two in-
dividuals of a dyad are seen, ‘1’ for one individual only of the dyad is
seen, ‘2′ for the two individuals of a dyad are seen associated and ‘3’ for
the two individuals of a dyad are seen non-associated.

To analyse these dyadic data, we implemented a SSM formulation
(Gimenez et al., 2007) of multistate CR models (Lebreton et al., 2009)
for closed populations. We considered two states A and B for ‘dyad
associated’ and ‘dyad non-associated’ respectively. We denoted xt

i, a
multinomial trial taking values (1,0) or (0,1) if, at time t, dyad i is in
state A or B respectively. Given the underlying states, a dyad may be
recaptured in the observations 0, 1, 2 or 3 defined above considering
imperfect detection. We denoted yt

i, a multinomial trial taking values
(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) if, at time t, dyad i is observed as
a 0, 1, 2 or 3. The state–space model relies on a combination of two
equations. First, the state equation specifies the state of dyad i at time t
given its state at time t – 1:

∼
−

x ΨxMultinomial(1, )t
i

t
i

1

where Ψ gathers the probabilities for a dyad of staying associated and
non-associated between two successive occasions (Table 1a). We also
defined the probability π for a dyad of being in initial state associated.
Second, the observation equation specifies the observation of dyad i at
time t given its state at time t:

∼y PxMultinomial(1, )t
i

t
i

where P gathers the detection probabilities and of an individual being
associated and non-associated in a dyad (Table 1b).

2.2. Bayesian fitting using MCMC methods

We used Bayesian theory in conjunction with Markov Chain Monte
Carlo (MCMC) methods to carry out inference. Inference was based on
empirical medians and credible intervals. As a by-product of the MCMC
simulations, we also obtained numerical summaries for any function of
the parameters, in particular the metrics describing the network
structure.

2.3. Calculating network measures while accounting for imperfect detection

In SNA, a wide range of descriptive statistics can be used to char-
acterize the properties of the structure of a network. Here, we focused
on four of them. We used for each animal in the network the number of
other animals with which it was associated – degree – and the number of
shortest paths between pairs of animals that passed through it – be-
tweeness. In addition, we quantified the degree to which an animal’s
immediate neighbours were associated – cluster coefficient – and the
average of all path lengths between all pairs of animals in the network –
average path length (Croft et al., 2008). These measures are useful to
characterize the properties of a network regarding the spread of disease
or information (Craft and Caillaud, 2011; Watts and Strogatz, 1998).

A feature of MCMC algorithms is that the dyad states xt
i’s are treated

as parameters to be estimated, just like the transition and detection
probabilities. We generated values from the posterior distributions of
the dyads’ states, which, in turn, were used to visualize the network and
characterize its structure over time. Specifically, for each MCMC
iteration, we calculated the degree and betweeness for each individual
(R package sna; Butts, 2008), as well as the clustering coefficient and
the average path length (R package igraph; Csardi and Nepusz, 2006),

Table 1
Transition matrices used in the state and observation equations of the state-
space CR network model. States A and B are for associated and non-associated.
Parameters p and ψ are the detection and transition probabilities.

a) State matrix

Previous occasion Current occasion

A B

A ψAA
− ψ1 AA

B
− ψ1 BB ψBB

b) Observation matrix P

Current occasion Current occasion

0 1 2 3

A
− −p p(1 )(1 )A A

−p p2 (1 )A A p pA A 0

B
− −p p(1 )(1 )B B

−p p2 (1 )B B 0 p pB B

Table 2
Bias in parameter estimates for the homogeneous scenarios.

scenario p π ψAA ψBB bias p bias π bias ψAA bias ψBB

1 0.3 0.2 0.1 0.1 0.50 26.49 120.98 58.77
2 0.8 0.2 0.1 0.1 0.08 9.46 4.37 1.36
3 0.3 0.7 0.1 0.1 −0.33 −1.23 142.04 22.83
4 0.8 0.7 0.1 0.1 −0.21 −3.23 8.91 −0.04
5 0.3 0.2 0.4 0.1 0.07 14.73 27.30 53.03
6 0.8 0.2 0.4 0.1 −0.04 1.02 −1.65 4.74
7 0.3 0.7 0.4 0.1 0.60 −10.96 65.19 26.16
8 0.8 0.7 0.4 0.1 −0.04 −0.37 −8.88 0.79
9 0.3 0.2 0.9 0.1 0.29 4.46 −23.10 37.30
10 0.8 0.2 0.9 0.1 0.11 2.29 −5.57 7.26
11 0.3 0.7 0.9 0.1 −0.25 0.30 −14.44 28.57
12 0.8 0.7 0.9 0.1 0.07 −0.55 −7.99 3.91
13 0.3 0.2 0.1 0.4 −0.74 54.58 45.20 24.95
14 0.8 0.2 0.1 0.4 −0.08 6.23 2.19 4.71
15 0.3 0.7 0.1 0.4 0.27 −25.83 29.36 7.66
16 0.8 0.7 0.1 0.4 −0.11 −11.71 3.05 1.72
17 0.3 0.2 0.4 0.4 0.45 14.96 10.59 21.80
18 0.8 0.2 0.4 0.4 −0.09 3.22 −1.45 −0.27
19 0.3 0.7 0.4 0.4 0.64 −13.37 5.67 5.96
20 0.8 0.7 0.4 0.4 0.02 0.24 −1.44 −0.71
21 0.3 0.2 0.9 0.4 −0.26 8.35 −17.84 −28.74
22 0.8 0.2 0.9 0.4 0.01 1.28 −1.62 −1.72
23 0.3 0.7 0.9 0.4 0.45 −1.59 −10.12 −5.75
24 0.8 0.7 0.9 0.4 −0.08 −0.52 −2.47 −0.54
25 0.3 0.2 0.1 0.9 0.94 38.86 21.21 −1.08
26 0.8 0.2 0.1 0.9 0.08 8.48 2.90 0.87
27 0.3 0.7 0.1 0.9 0.11 −47.67 10.35 −2.45
28 0.8 0.7 0.1 0.9 −0.34 2.48 1.29 −0.87
29 0.3 0.2 0.4 0.9 −0.46 11.66 −4.68 −16.83
30 0.8 0.2 0.4 0.9 −0.22 2.55 −0.36 −1.68
31 0.3 0.7 0.4 0.9 −0.27 −6.82 −7.96 −7.75
32 0.8 0.7 0.4 0.9 0.04 −1.00 −0.86 −1.29
33 0.3 0.2 0.9 0.9 1.18 3.33 −30.90 −55.94
34 0.8 0.2 0.9 0.9 0.12 0.47 −1.45 −2.53
35 0.3 0.7 0.9 0.9 −0.74 −3.30 −20.09 −38.39
36 0.8 0.7 0.9 0.9 −0.16 −1.19 −0.85 −1.26
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hence obtaining the posterior distribution for each of these metrics.
Data and codes are available on GitHub https://github.com/
oliviergimenez/social_networks_capture_recapture.

3. Simulation study

We conducted a simulation study to assess the bias in parameter
estimates. We considered a scenario where detection probabilities were
homogeneous. We simulated 100 CR datasets with π=0.2, 0.7,
ψAA=0.1, 0.4, 0.9 and ψBB= 0.1, 0.4, 0.9 and pA = pB=0.3, 0.8 (in
total, 36 different configurations) and to each simulated dataset we
fitted a CR model with homogeneous detection probabilities. We also
considered a heterogeneous scenario where all parameters were set to
the same values as in the homogeneous scenarios, except the detection
probabilities which we set to pA= 0.3, pB= 0.8 and pA= 0.8, pB= 0.3
(in total, 36 different configurations). We fitted a model with hetero-
geneous detection probabilities to these simulated datasets. For both
the homogeneous and the heterogeneous scenarios, we calculated the
relative bias of all parameters.

For the homogeneous scenarios, the bias decreased when detection
increased (Table 2). Bias was negligible on detection, around +5% on
the transition probabilities and around -13% on π in scenario 19 with
ψBB= 0.4. When ψBB= 0.9 in scenario 31, the bias in π decreased by a
factor 2. For the heterogeneous scenarios, the bias was negligible, ex-
cept for scenario 31 in which the proportion of associated dyads was
low and all dyads tended to remain non-associated (Table 3).

4. Case study

To illustrate our methodological approach, we used a real-world
example as a case study. We used photo-identification data on a po-
pulation of Commerson’s dolphin (C. commersonii) that was monitored
in the coastal waters near the Chubut River mouth (43◦20`_S,
65◦00`_W) in the Patagonian coast (Coscarella et al., 2003). Commer-
son’s dolphins are particularly abundant in the area during the austral
spring (Coscarella et al., 2010). The mean residence time in the sam-
pling area was 15 days (SE= 6.4), therefore we sampled 5 times in
October 2007 to unravel which individual was associated with which,

Table 3
Bias in parameter estimates for the heterogeneous scenarios.

scenario pA pB π ψAA ψBB bias pA bias pB bias π bias ψAA bias ψBB

1 0.3 0.8 0.2 0.1 0.1 0.59 −0.24 4.67 5.86 5.61
2 0.3 0.8 0.7 0.1 0.1 0.18 −0.39 −6.01 1.17 12.27
3 0.3 0.8 0.2 0.4 0.1 −0.16 −0.65 −2.13 −6.94 2.94
4 0.3 0.8 0.7 0.4 0.1 0.84 −0.49 −25.65 −2.16 4.77
5 0.3 0.8 0.2 0.9 0.1 −0.02 −2.53 −15.23 −6.76 1.87
6 0.3 0.8 0.7 0.9 0.1 0.67 −14.33 −131.51 −8.99 8.40
7 0.3 0.8 0.2 0.1 0.4 −0.11 0.34 2.82 9.96 6.86
8 0.3 0.8 0.7 0.1 0.4 1.55 0.30 −0.32 2.34 0.53
9 0.3 0.8 0.2 0.4 0.4 −0.65 −0.69 0.88 −2.29 2.30
10 0.3 0.8 0.7 0.4 0.4 1.41 −1.75 −3.50 −2.06 7.67
11 0.3 0.8 0.2 0.9 0.4 0.49 −0.06 2.86 −3.88 −0.25
12 0.3 0.8 0.7 0.9 0.4 0.81 −4.39 −11.31 −1.57 2.71
13 0.3 0.8 0.2 0.1 0.9 4.24 −0.21 0.26 27.14 −1.08
14 0.3 0.8 0.7 0.1 0.9 1.63 −0.22 −0.49 1.94 −2.15
15 0.3 0.8 0.2 0.4 0.9 7.33 −0.96 −1.02 −1.77 0.34
16 0.3 0.8 0.7 0.4 0.9 −0.05 −0.38 −1.43 −1.41 −0.78
17 0.3 0.8 0.2 0.9 0.9 −1.53 −0.24 0.43 −8.22 −0.36
18 0.3 0.8 0.7 0.9 0.9 0.84 −0.48 0.53 −1.08 −1.45
19 0.8 0.3 0.2 0.1 0.1 −0.39 −0.01 11.75 4.63 3.82
20 0.8 0.3 0.7 0.1 0.1 0.03 −0.63 4.72 1.48 7.67
21 0.8 0.3 0.2 0.4 0.1 0.47 0.73 16.29 3.33 3.73
22 0.8 0.3 0.7 0.4 0.1 0.52 −1.16 −0.14 1.50 5.51
23 0.8 0.3 0.2 0.9 0.1 0.00 0.04 17.21 −2.35 2.46
24 0.8 0.3 0.7 0.9 0.1 −0.13 1.98 −8.68 0.17 4.71
25 0.8 0.3 0.2 0.1 0.4 −0.94 0.38 2.54 11.96 −26.02
26 0.8 0.3 0.7 0.1 0.4 −0.79 −0.64 −0.89 1.91 −11.83
27 0.8 0.3 0.2 0.4 0.4 −0.91 −0.14 5.53 8.95 −3.96
28 0.8 0.3 0.7 0.4 0.4 −0.52 0.57 −0.87 1.32 −3.13
29 0.8 0.3 0.2 0.9 0.4 −0.48 1.01 2.13 −3.45 0.13
30 0.8 0.3 0.7 0.9 0.4 −0.48 0.58 −1.17 0.17 −1.46
31 0.8 0.3 0.2 0.1 0.9 −30.02 21.00 27.86 112.23 −196.71
32 0.8 0.3 0.7 0.1 0.9 −1.90 0.23 2.38 1.93 −8.34
33 0.8 0.3 0.2 0.4 0.9 −9.87 2.22 7.98 27.76 −6.73
34 0.8 0.3 0.7 0.4 0.9 −1.40 0.28 0.70 1.65 −1.85
35 0.8 0.3 0.2 0.9 0.9 0.14 −0.29 0.86 −8.69 −1.06
36 0.8 0.3 0.7 0.9 0.9 0.22 0.16 −0.41 −0.32 −1.45

Table 4
Parameters estimates (posterior medians) with 95% credible intervals for the Commerson’s dolphin case study.

Parameter Estimate with 95% credible interval

Occasion 1 Occasion 2 Occasion 3 Occasion 4 Occasion 5

Average path length 1.31 [1.25; 1.38] 1.65 [1.54; 1.79] 1.61 [1.57; 1.66] 1.60 [1.55; 1.65] 1.61 [1.56; 1.66]
Clustering coefficient 0.68 [0.61; 0.74] 0.36 [0.27; 0.45] 0.42 [0.39; 0.45] 0.39 [0.35; 0.43] 0.40 [0.36; 0.43]
Individual detection 0.27 [0.26; 0.28] 0.11 [0.10; 0.12] 0.44 [0.42; 0.45] 0.17 [0.16; 0.18] 0.20 [0.19; 0.21]
Staying associated 0.33 [0.17; 0.50]
Staying non-associated 0.57 [0.48; 0.69]
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while arriving and leaving the area together (Coscarella et al., 2011).
Two individuals were considered associated when they were photo-
identified during the same encounter, while they were considered not
associated otherwise (Coscarella et al., 2011).

Over the study, a total of 71 dolphins were detected which led to
71*(71-1)/2=2485 association histories. Based on previous analyses
(Klaich et al., 2011), we considered time-dependent state-independent
individual detection probabilities. Individual detections varied between
11% and 44% (Table 4). The probability of staying associated was 33%
while that of staying non-associated was 57% with very little overlap in
the credible intervals (Table 4), suggesting a high turnover in the dy-
namic of associations and a fission-fusion social organization.

Along the five sampling occasions, the estimated network showed
changes in its structure (Fig. 1). At occasions 1, 2, 3 and 5, the esti-
mated network had a single component with a higher number of as-
sociated dyads at occasion 1 than at occasions 2, 3 and 5. Although the

number of dyads was higher at occasion 1, all networks were fully
connected (i.e. none individual or group of individuals were isolated
from other individuals). At occasion 4, the network estimated had two
components, isolated from each other (i.e. none of the individuals from
one component was associated with any of the individuals in the other
component). This suggests that at least two groups might exist having
preferential associations between individuals inside each group.

Average path length was lower on the first sampling occasion than
in the subsequent ones, while the reverse pattern was observed for the
clustering coefficient (Table 4). These estimated values also suggest
high individual connectivity and that the estimated social network has
features related to a small-world type network. At the individual level,
degree was heterogeneous (Fig. 2), with individuals spreading all over
the range of its distribution (Fig. 2). In contrast, betweeness appeared
relatively homogeneous, despite some dolphins with low betweeness
and a single animal with very high betweeness (Fig. 2).

Fig. 1. Visualisation of the network for the
Commerson’s dolphin population, over five
sampling occasions, for the year 2007, showing
associations (lines) between individuals (or-
ange circles). For each edge, we calculated the
average number of times the corresponding
dyad was estimated as being associated (x=1)
over the total number of MCMC simulations.
Then, we displayed only the edges for which
this number was larger than the 0.90 quantile
of the distribution of x. Black edges are for
observed dyads (also corresponding to x=1
for simulations) while green edges are for
dyads that are estimated to be associated (with
probability 0.69, 0.39, 0.42, 0.42 and 0.40 for
capture occasion 1, 2, 3, 4 and 5 respectively)
but for which one or the two individuals were
not detected. (For interpretation of the refer-
ences to colour in this figure legend, the reader
is referred to the web version of this article.).
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5. Discussion

We have proposed a new statistical approach combining network
analyses with CR models formulated as state-space models. Our fra-
mework has several appealing advantages. First and most importantly,
ignoring imperfect and possibly heterogeneous detection may lead to
biased results about the structure and dynamics of associations (see
Fig. 1). Our CR model provides a robust method to estimate social
networks. Second, in addition to social status, our model can easily
incorporate individual-level traits such as age or sex through regres-
sion-like functions. This opens an avenue towards investigating the
relationships between the phenotype and social position of individuals.
Third, our method provides unbiased and precise estimates of relevant
metrics to characterise the properties of social networks (see the Si-
mulation study section), the whole process being controlled for im-
perfect and heterogeneous detection. Another appealing feature of our
approach is the quantification of uncertainty associated to network
measures under the form of Bayesian credible intervals (Table 2 and
Fig. 2). Last, the social organisation can be visualised over time while
accounting for imperfect detection, providing the opportunity for
testing socio-ecological hypotheses in free-ranging animal populations.
For example, the rapid turnover of the free ranging Commerson’s dol-
phin groups has been previously proposed (Coscarella et al., 2011), and
here we could identify this turnover within the fission-fusion society
model.

When inspecting the results of the dolphin case study, there are
advantages in adopting a CR approach to infer social networks. First,
when it comes to visualizing the network, we illustrate in Fig. 1 what
we would obtain with a standard approach with in black edges, while
the green edges correspond to the dyads that are estimated to be as-
sociated with the new approach by correcting for imperfect detection.
Clearly, the structure and dynamics of the network are different de-
pending on whether we ignore imperfect detection (black edges only)
or we consider the model-based estimated network (edges of both

colors). Second, regarding network metrics, the only way to estimate
degree and betweenness for all occasions when non-detections occur
(Fig. 2) is to resort to a CR approach to account for missing values.

Our CR model requires data on individuals that can be uniquely
identifiable. Identifying individuals can be achieved using non-invasive
marking (such as coat patterns, body scars, or genetic profiling for
mammals; e.g., Cubaynes et al., 2010; Marescot et al., 2018; Santostasi
et al., 2016) or invasive marking (such as rings for birds, colouring for
insects or passive integrated transponders for fishes; e.g., Băncilă et al.,
2018; Buoro et al., 2010; Lagrange et al., 2014). The model also needs
data on interactions or associations. Here, we rely on the ‘gambit of the
group’ method which states that all individuals within a group of ani-
mals observed at a point in time are associated (Farine and Whitehead,
2015).

Our model relies on several assumptions. First, we have considered
closed populations while demographic process might occur in animal
populations. The extension of our model to open populations is feasible
(Lebreton et al., 2009) to incorporate survival and dispersal, therefore
allowing to assess the influence of social structure on fitness. Second,
we assumed that association states were correctly assigned while some
uncertainty might occur due to incomplete information. In the SSM
framework, incorporating uncertainty in state assignment is relatively
straightforward (Gimenez et al., 2012; Pradel, 2005). Third, we as-
sumed independence of the association histories to form the SSM like-
lihood. To account for an individual effect, random effects can be in-
corporated in CR models (Choquet et al., 2013; Choquet and Gimenez,
2012; Gimenez and Choquet, 2010), which opens a promising avenue
towards a general statistical framework for the analysis of animal social
networks (Cross et al., 2012; Van Duijn et al., 2004).

Overall, we hope our proposal will foster applications of social
network analysis to free-ranging animal population in behavioural
ecology to describe social behaviour and social dynamics, in evolution
ecology to explore the fitness consequences of the social positions of
individuals and in epidemiological ecology to determine the

Fig. 2. Local properties of the Commerson’s dolphin network. For each individual and for each of the 5 capture occasions, degree (top panels) and betweeness
(bottom panels) are summarized with the posterior mean (circle), the 50% (thick line) and 95% (thin line) credible intervals.
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implications of network structure and dynamics in the spread of dis-
eases.
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