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Summary

1. Inference about demographic parameters of animal and plant natural populations is important

to evaluate the consequences of global changes on populations. Investigating the factors driving

their variation over space and time allows evaluating the relative importance of biotic and abiotic

variables in shaping the dynamics of a population. Although numerous studies have identified the

factors possibly affecting population dynamics, they have barely formally determined the routes by

which these different factors are related to demographic parameters.

2. We focus on mark–recapture (MR) models that provide unbiased estimators of demographic

parameters, while explicitly coping with imperfect detection inherent to wild populations.MRmod-

els allow estimating the effect of covariates on demographic parameters and testing their signifi-

cance in a regression-like framework. However, these models can only detect correlations and do

not inform on causal pathways (e.g. direct vs. indirect effects) in the relationships between demo-

graphic parameters and the factors possibly explaining their variability.

3. We develop an integrated model to perform path analysis (PA) of MR data, to examine causal

relationships among several (including demographic) variables. This approach is implemented in a

Bayesian framework usingMarkov chainMonte Carlo.

4. To motivate our developments, we analyse 17 years of mark–recapture data from Atlantic puf-

fins (Fratercula arctica), to investigate the mechanisms through which environmental conditions

have an impact on puffins’ adult survival. Using our PA-based MRmodelling approach, we found

that local climatic conditions had an indirect and lagged impact on puffin survival through their

influence on local abundance of herring. Besides, we found no evidence for any lagged effect

through an alternative unknown pathway (e.g. abundance of another resource).

5. Our method allows elucidating pathways through which environmental, trophic or density-

dependent factors influence demographic parameters, while accounting for detectability<1. This is

a critical step to understand the interactions of a species with its environment and to predict the

impacts of global change on its viability.

Key-words: Atlantic puffin, Bayesian inference, causal modelling, Cormack–Jolly–Seber

model, environmental covariates, survival estimation, WinBUGS

Introduction

For the last 40 years, the estimation of animal and vegetal

demographic parameters in natural populations has been a

challenging and active research area in population biology

(Williams, Nichols & Conroy 2002). In particular, investiga-

tions of the factors driving the variation over space and time in

demographic parameters are rapidly spreading. Such investi-

gations are of fundamental as well as of applied interests. For

instance, they allow evaluating the relative importance of den-

sity dependence and environmental forcing in shaping the

dynamics of a population (Aars & Ims 2002; Lima, Stenseth &

Jaksic 2002), and they contribute to the assessment of the con-

sequences of global changes on populations (Coulson et al.

2001; Jenouvrier et al. 2009).
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Of particular importance, mark–recapture (MR) models

provide a general andflexible framework for the estimationand

modelling of demographic parameters (survival, dispersal and

recruitment among others) in the face of imperfect detection

that is inherent topopulations in thewild (Gimenez et al.2008).

Thesemethods rely on the longitudinalmonitoring of individu-

als that are marked at a series of sampling occasions, and then

encountered (i.e. recaptured or resighted) on subsequent occa-

sions. Using specificMR statistical models, demographic rates

can in turn be written as functions of relevant covariates (envi-

ronmental covariates like climate conditions, trophic covariates

like food abundance or intrinsic covariates like density; see Pol-

lock 2002), allowing estimating their effect and testing their sig-

nificance in a regression-like framework (Lebreton et al. 1992).

TheseMRmodels have allowed important insight with regard

to what factors influence demographic parameters and thereby

drive the dynamics of populations (e.g. Kery, Madsen & Lebr-

eton2006;Miller et al.2006;Grosbois et al.2008).

However, the adoption of this framework comes with con-

straints that can limit the use of covariate modelling in MR

analyses. Multiple regressions can only detect correlations, but

neither do they provide information on the causal pathways

(e.g. direct vs. indirect effects) in the relationships between

demographic parameters and environmental, trophic or intrin-

sic factors nor do they account for relationships among these

explanatory covariates (i.e. multi-collinearity). As a conse-

quence, although numerous studies have identified the factors

that possibly affect population dynamics, they have never for-

mally identified the routes by which these different factors are

related to demographic parameters.

To illustrate this limitation, we were particularly motivated

by investigating the impact of climate conditions on adult sur-

vival in Atlantic puffins (Fratercula arctica – puffins hereafter)

of apopulation inRøst, northernNorway. In this population, a

linear relationship has been detected between the sea surface

temperature (SST) in the vicinity of the breeding colony during

late winter and spring (the period when forage fish hatch and

grow) of year t)1 and the survival of adult puffins during the

1-year period starting 1 year later (i.e. from summer t to sum-

mer t + 1) (Harris et al. 2005). It was hypothesized that this

laggedrelationshipwas indirectandresulted fromthecombined

influence of SST on the abundance of 0-group (first-year) her-

ring (Clupea harengus, the main prey of puffins in this colony)

and, thereby, the abundance of 1-group (second year) herring

on the survival of adults in the subsequent 1 year period. This

herring drift past the colony during their first summer (summer

t), but the 1-groupfishmaybe an important prey for adult birds

when they visit the herring’s nursery areas further north in the

BarentsSea, shortly after thebreeding season (Anker-Nilssen&

Aarvak 2009). So far, this hypothesis could not be statistically

tested in a formalway.Weaim to test it, considering as an alter-

native hypothesis that the lagged SSTeffect on survival resulted

from an indirect pathway with an unknown (possibly trophic)

intermediate factorbetweenSSTandadult survival.

In this paper, we propose a new framework integrating in

MR data modelling, a technique referred to as path analysis

(PA) that is traditionally used to examine causal relationships

– including direct and indirect relationships – among several

variables (Shipley 2000; Pugesek, Tomer & von Eye 2003). PA

is a useful multivariate regression technique to formalize and

confront different hypothetic scenarios linking different factors

(climate, resource availability and demographic parameters

here). Typically, a PA is carried out by specifying a set of path-

ways describing how variables may affect each other. If the

model is not consistent with the data, the corresponding sce-

nario is rejected, and an alternative hypothesis about the

underlying mechanism has to be considered. The flexibility of

PA to represent complex scenarios has led to an increasing

number of applications in ecology and evolution (Shipley

2000; Pugesek, Tomer& vonEye 2003).

To our knowledge, the integration of MR data with PA has

never been tried before, probably because standard PA

requires data normality (Gajewski et al. 2006), whereas MR

data are intrinsically discrete (Gimenez et al. 2007). To deal

with this issue, a Bayesian approach using Markov chain

Monte Carlo (MCMC) simulations is implemented for esti-

mating parameters and drawing inference in PA of MR data

(Lee 2007).

Materials and methods

MARK–RECAPTURE DATA

We used data on adult puffins in Røst in north Norway (67�26¢N, 7

11�52¢E). From 1990 to 2006, a total of 452 breeding adult birds were

captured in mist nets erected immediately outside of their nests and

individually marked. Birds captured for the first time were marked

with a numbered metal ring and individually coded colour rings. In

addition, visual searches for previously marked birds were made each

year, predominantly in the area where the initial captures and mark-

ing had been undertaken, but also in the surrounding areas and other

parts of the colony. SeeHarris et al. (2005) for further details.

ENVIRONMENTAL DATA

We used January to May mean SST, which was derived from ship,

buoy and bias-corrected satellite data at a resolution of 1� latitude by
1� longitude (available online at http://iridl.ldeo.columbia.edu/

SOURCES/.IGOSS/.nmc/.Reyn_SmithOIv2/.monthly/.sst/) in a sea

area of about 40 000 km2), around the colony. The limits of the

selected area were 66–68�Nand 10–14�E.
We hypothesized that the lagged influence of SST on survival, if

any, would reflect the influence of SST on puffin’s main prey species,

herring, during (and possibly immediately after) the breeding season,

the abundance of which increases with increasing SST (e.g. Sætre,

Toresen, & Anker-Nilssen 2002). We used lagged abundance esti-

mates of 0-group Norwegian spring-spawning herring presented by

ICES (2006) to formally test this scenario using aMRmodel integrat-

ing a PA.

PA-BASED MR MODEL

The starting point was the standard Cormack–Jolly–Seber MR

model (CJS hereafter; see Lebreton et al. 1992 for a review) that

considers time dependence for the probability /t that an individual

survives to occasion t + 1, given that it is alive at time t, and for the

probability pt that an individual is encountered at time t. Under
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appropriate assumptions (in particular, independence of individuals,

e.g. Williams, Nichols, & Conroy 2002), the CJS model likelihood

can be written as a product of multinomial distributions for which the

cell probabilities are functions of both survival and detection proba-

bilities (e.g. King et al. 2009 for further details).

Based on the CJS model, we built a PA-based MR model for the

puffin case study, in which the hypothetic pathway (i.e. resource

abundance), through which SST influences survival, is explicitly rep-

resented. We considered /t as the probability that an animal survives

to summer (June–July) of year t + 1, given that it is alive in summer

of year t, SSTt)1 as the value of SST in January of year t)1 toMay of

year t)1 and Rt)1 as the index of 0-group herring in summer of year

t)1. The relationships between these variables were specified as fol-

lows. First, survival was expressed as a function of both food avail-

ability and SST:

logitð/tÞ ¼ h1 þ h2 �Rt�1 þ h3 �SSTt�1 þ e/
t eqn1

where logit(x) = log(x ⁄ (1 - x)). Then, resources were regressed

on SST using the equation:

Rt ¼ h4 þ h5 �SSTt þ eRt eqn2

Residual terms e/
t and eRt were assumed to be normally distributed

with mean 0 and variances r2
/ and r2

R, respectively, while SST was

assumed to bemeasured without error. The h ’s are regression param-

eters to be estimated. Note that, in contrast to standard multiple

regression, PA allowsRt to be a response variable in regression eqn 2,

as well as a predictor in eqn 1. Besides, and of particular interest here,

by substituting eqn 2 into eqn 1 and rearranging the terms, the effect

of SST on survival through the unknown path is captured by parame-

ter h3, while the indirect effect of SST on survival through food avail-

ability is captured by the product h2Æh5. The relationships between

those variables are illustrated in a path diagram in Fig. 1.

Note that there are two levels of variation in this model: the indi-

vidual level (452 ringed birds) allows the estimation of survival, while

the temporal level (16 annual time intervals) allows the study of the

impact of climate and resources on survival. The originality of our

approach lies in a model explicitly integrating these two levels of vari-

ation in a single framework, hence accounting for estimation of

uncertainty at each level of the hierarchy.

BAYESIAN FITT ING USING MCMC METHODS

To estimate the parameters, we first built the MR data likelihood,

and then we expressed the causal relationships between survival prob-

abilities and the other variables using eqns 1 and 2. Because the

likelihood was complex, we used Bayesian theory in conjunction with

MCMC methods to carry out inference (see McCarthy 2007 for an

introduction). The Bayesian analysis combines the likelihood and

prior probability distributions for the parameters and uses Bayes’s

theorem to obtain the posterior distribution, which is used for infer-

ence. The MCMC methods simulate values for the unknown quanti-

ties of interest following a Markov chain, whose stationary

distribution is the required posterior distribution. Inference is then

based on the remaining simulated values, by computing numerical

summaries such as empirical medians and Bayesian confidence inter-

vals for quantities of interest. As a by-product of the MCMC simula-

tions, we could also obtain numerical summaries for any function of

the regression parameters, in particular, the indirect effect h2Æh5 of

SST on adult puffins’ survival, by applying the function to the sam-

pled values from their posterior distributions.

To fully specify our Bayesian model, we provided non-informative

prior distributions for all parameters. We used uniform distributions

on the interval [0, 1] as priors for detection probabilities, normal dis-

tributions with mean 0 and large variance 103 for regression parame-

ters (the h‘s) and uniform distributions between 0 and 10 for the

standard deviations of the temporal random effects (ru and rR).
Based on preliminary runs, we generated four chains of length

50 000, discarding the first 25 000 as burn-in. Convergence was

assessed using the Brooks–Gelman–Rubin statistic, which compares

the within- to the between-chain variability of chains started at differ-

ent and dispersed initial values (Gelman 1996). According to this cri-

terion, the chains were found to converge. We conducted a prior

sensitivity analysis to assess the influence of prior specifications on

posterior inference. In addition to the priors used earlier, we consid-

ered inverse gamma distributions for the standard deviation of the

random effects with parameters (0Æ001, 0Æ001) or (3, 2), and normal

distributions with mean 0 and variances 1 or 10 for the regression

parameters. The posterior results were not much affected, and we

were led to the same conclusions. The fitting stepwas performed using

WinBUGS (Spiegelhalter et al. 2003; Gimenez et al. 2009). The code

used for fitting themodel is available in the Appendix 1.

The ability of our approach to estimate the model parameters was

verified using simulations. We considered a scenario mimicking the

puffin case study. Specifically, we used p = 0Æ7, r/ ¼ 0�5, rR = 1,

h1 = 1, h2 = 0Æ3, h3 = 0, h4 = 1 and h5 = 0Æ7. We simulated 100

capture–recapture datasets with 17 sampling occasions and 50 newly

individuals released at each occasion. The code used for carrying out

the simulations is provided in Appendix 2. We applied our PA-based

MR model on each data set. The results are shown in Fig. 2. Our

approach was successful in estimating the various parameters. In par-

ticular, the values of the regression parameters were well recovered by

ourmodel.

GOODNESS-OF-F IT

We assessed the fit of the CJS model using program U-CARE (Cho-

quet et al. 2009). The CJS model fitted the data poorly (v253 ¼ 156,

P < 0Æ001). A closer inspection indicates that the lack of fit of the

CJS model was largely due to component 2CT, which detects

heterogeneity in recapture probability (v214 ¼ 113�06, P < 0Æ001).
This indicates trap dependence on capture (Pradel 1993), and more

precisely a ‘trap happiness’, meaning that capture probability at

Annual survival

t

Sea Surface Temperature
SSTt – 1

Food availability
Rt – 1

R
θ3

θ2

θ5

Fig. 1. Path analysis diagram of the relationship between sea surface

temperature and the adult survival rates of Atlantic puffins breeding

in Røst, northern Norway. The effect of an indirect relationship

through food availability (young herring) is captured by the product

h2Æh5, while a direct effect is modelled by h3. For the sake of clarity,
intercept parameters h1 and h4 are not shown.
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year t + 1 was higher for individuals captured at year t than for

individuals not captured at year t. Heterogeneity in capture probabili-

ties is known to induce bias in survival estimates (Pradel 1993). To

cope with capture heterogeneity, we incorporated an effect of time

elapsed since last recapture in the modelling of recapture probability.

This effect distinguishes between the two events that a capture

occurred (capture probability denoted p1) or not (capture probability

denoted p2), the occasion before (Pradel 1993). The fit of this new

model, which explicitly accounts for a trap-dependence effect, was

satisfactory (v239 ¼ 42�93,P = 0Æ31).

MODEL SELECTION

Starting from the general model in Fig. 1, we explored the model

space by assessing the relevance of including all regression parameters

h’s or excluding some of them. We were specifically interested in test-

ing the indirect effect of climatic conditions on survival captured by

both h2 and h5 vs. an alternative indirect effect through some

unknown intermediary through parameter h3. To do so, we under-

took amodel selection procedure in the Bayesian framework. Follow-

ing Kuo & Mallick (1998) and Royle (2008), we introduced three

indicator variables, w1, w2 and w3, having Bernoulli (0Æ5) prior distri-
butions and pre-multiplying the regression parameters h2, h3 and h5

respectively. For example, if w2 = 1, then the indirect effect of SST

through an unknown factor was present in the model, whereas if

w2 = 0, it was not. We therefore considered eight models, corre-

sponding to the 23 possible combinations.We computed the posterior

model probability for a particular model from the MCMC histories,

using the ratio between the number of iterations giving this model

over the total number of iterations.

Results

The model with regression parameters h2 and h5 was the most

visited by the MCMC chains (Table 1), suggesting an indirect

effect of SST on survival through food availability. This effect

was more than five times as plausible as an alternative indirect

effect through some unknown intermediary (ratio of posterior

model probabilities = 0Æ331 ⁄0Æ060). The overall support for

the inclusion of h2, h3 or h5, i.e. the sum of the posterior proba-

bilities for each of the four models including one of these

parameters, was 0Æ699, 0Æ347 and 0Æ624, respectively.
Posterior medians along with 95% posterior credible inter-

vals for all model parameters were given in Table 2. Regarding
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Fig. 2. Performance of the PA-basedMRmodel. For each of the 100 simulated data sets, we displayed the median (circle) and the 95% credible

interval (horizontal solid line) of the parameter. The actual value of the parameter is given by the vertical dashed red line. The estimated bias is

provided in the legend of the X-axis. See text for notation.
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the detection process, the geometric medians of encounter

probabilities were higher if a capture had occurred the year

before (p1 > p2), in agreement with Harris et al. (2005).

Regarding the relationships between survival and environmen-

tal factors, there was a positive unlagged effect of SST upon

0-group herring abundance (h5), as well a positive lagged effect

of 0-group herring abundance upon survival (h2). Overall, the

indirect effect of SST on survival through herring abundance

(h2Æh5) was concentrated on positive values (median was 0Æ10
with a 95% posterior credible interval of [0Æ00; 0Æ35]) and was

much more likely than an indirect effect of SST on survival

through an unknown factor (h3), as Pr(h2Æh5) > 0 was 1, while

Pr(h3 > 0) was only 0Æ66.

Discussion

We have proposed a new statistical approach integrating path

analyses modelling in MR models. Pathways through which

environmental, trophic or intrinsic factors influence survival

can be described, and alternative hypotheses regarding these

pathways can be disentangled using PA, the whole process

being embedded in aMRmodel.

Applying this technique to the puffin analysis, we found

that local climatic conditions had an indirect and lagged

impact on puffin survival through their influence on local

abundance of herring. On the other hand, we found no evi-

dence for any lagged effect of SST on survival through an

alternative unknown pathway (e.g. abundance of another

resource). Overall, the PA-based MR model allowed testing

formally a verbal prediction that was made previously by

Harris et al. (2005) and shed light on the mechanisms

through which environmental conditions had an impact on

puffins’ adult survival.

Although our analysis was useful to gain insight in our

case study, we have made several assumptions that need to

be discussed. First, we have considered only linear relation-

ships between variables, while other shapes may be more

realistic. To avoid the need to specify an a priori parametric

function, nonparametric modelling using splines can be used

to gain more flexibility (Gimenez et al. 2006). Second, strati-

fying the data might be needed to cope with known sources

of heterogeneity or to assess differences in causal scenarios,

according to some qualitative variables (e.g. sex). The exten-

sion of PA-based MR models to cope with groups is straight-

forward.

Despite the potential of our approach, it comes with the

same limitations as PA has in general (Shipley 2000; Pugesek,

Tomer & von Eye 2003). Among others, we emphasize that

PA-based MR modelling is a relevant option when manipu-

lative experiments cannot be conducted, but does not provide

evidence of causality. Rather, it allows testing hypotheses of

causality within a system based on correlational evidence.

More precisely, PA-based modelling of MR data may help

in rejecting scenarios that are not supported by the data

(here, a indirect effect of SST on puffins survival through

some unknown intermediary), but testing biological predic-

tions that are not rejected (here, an indirect effect of SST on

puffins survival) requires appropriate experimental designs

(Schwarz 2002). This remark is of particular relevance when

assessing the impact of environmental conditions, for which

regression-like approaches can only help in generating inter-

esting hypotheses about the impact of climatic factors on

demography (Grosbois et al. 2008). Another limitation lies

in that PA deals only with variables that are directly

observed and measured. We are currently working on the

extension of our approach to structural equation modelling

of MR data to incorporate latent variables (Cubaynes et al.,

in press).

Overall, we have extended standardMRmodels by allowing

direct and indirect effects of covariates on demographic

parameters (PA-based MR models). We hope that this new

framework will help in increasing the number of applications

of MR models in addressing questions in ecology, in a way

similar to how PA models have extended the multiple

regression framework.

Table 1. Posterior model probabilities of the eight models considered

in the puffin case study. In the model structure, a 1 ⁄ 0 indicates the

presence ⁄ absence of the covariate with corresponding regression

parameter h2, h3 and h5, respectively (see eqns 1 and 2). For example,

101 denotes a model with an indirect effect of SST on survival,

whereas 010 is a model with an indirect effect of SST through some

unknown intermediary. Note that the intercepts h1 and h4 were

always included in the model, and therefore not represented in this

notation

Model

structure

Posterior model

probability

111 0Æ092
011 0Æ123
101 0Æ331
110 0Æ072
001 0Æ078
010 0Æ060
100 0Æ204
000 0Æ04

SST, sea surface temperature.

Table 2. Parameter estimates of the path analysis model applied to

the Atlantic puffin data (see Fig. 1): posterior medians are provided

along with 95% posterior credible intervals. Geometric means of the

year-specific estimates were computed for the detection probability,

given that an encounter occurred (p1) or not (p2) the occasion before

(trap-dependence effect)

Parameter Median 95% Credible interval

h1 2Æ33 2Æ05; 2Æ61
h2 0Æ28 0Æ05; 0Æ58
h3 0Æ06 )0Æ25; 0Æ37
h4 0Æ01 )0Æ48; 0Æ56
h5 0Æ40 0Æ04; 0Æ90
rR 1Æ01 0Æ71; 1Æ48
ru 0Æ41 0Æ17; 0Æ80
p1 0Æ87 0Æ86; 0Æ89
p2 0Æ82 0Æ77; 0Æ87

Path analysis of mark-recapture data 431

� 2011 The Authors. Methods in Ecology and Evolution � 2011 British Ecological Society, Methods in Ecology and Evolution, 3, 427–432



Acknowledgements

The authors thank E. Kazakou, R. Pradel, B. Shipley, E. Cam, S. Cubaynes, L.

Crespin and D. Vile for stimulating and helpful discussions, and the Institute of

Marine Research in Bergen for permission to use the data series on herring

abundance reported by ICES.

References

Aars, J. & Ims, R. A. (2002) Intrinsic and climatic determinants of population

demography: thewinter dynamics of tundra voles.Ecology, 83, 3449–3456.

Anker-Nilssen, T. & Aarvak, T. (2009) Satellite telemetry reveals post-breeding

movements of Atlantic puffins Fratercula arctica fromRøst, North Norway.

Polar Biology, 32, 1657–1664.

Choquet, R., Lebreton, J.-D., Gimenez, O., Reboulet, A.-M. & Pradel, R.

(2009) U-CARE: utilities for performing goodness of fit tests andmanipulat-

ing CApture-REcapture data.Ecography, 32, 1071–1074.

Coulson, T., Catchpole, E. A., Albon, S. D., Morgan, B. J. T., Pemberton, J.

M., Clutton-Brock, T. H., Crawley, M. J. & Grenfel, B. T. (2001) Age, sex,

density, winter weather, and population crashes in Soay sheep. Science, 292,

1528–1531.
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