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Understanding how selection operates on a set of phenotypic traits is central to evolutionary biology. Often, it requires estimating

survival (or other fitness-related life-history traits) which can be difficult to obtain for natural populations because individuals

cannot be exhaustively followed. To cope with this issue of imperfect detection, we advocate the use of mark-recapture data

and we provide a general framework for both the estimation of linear and nonlinear selection gradients and the visualization of

fitness surfaces. To quantify the strength of selection, the standard second-order polynomial regression method is integrated in

mark-recapture models. To visualize the form of selection, we use splines to display selection acting on multivariate phenotypes

in the most flexible way. We employ Markov chain Monte Carlo sampling in a Bayesian framework to estimate model parameters,

assessing traits relevance and calculating the optimal amount of smoothing. We illustrate our approach using data from a wild

population of Common blackbirds (Turdus merula) to investigate survival in relation to morphological traits, and provide evidence

for correlational selection using the new methodology. Overall, the framework we propose will help in exploring the full potential

of mark-recapture data to study natural selection.

KEY WORDS: Bayesian inference, correlational selection, individual covariates, natural selection, nonlinear selection, reversible

Jump MCMC.

Understanding how selection operates on a set of phenotypic

traits is central to evolutionary biology. Although confirmation of

selection relies on the experimental manipulation of traits, modern

regression methods provide correlational evidence for selection

by describing its shape and quantifying its magnitude.

There are currently two powerful and complementary ap-

proaches that are routinely used to estimate and visualize the rela-

tionship between “fitness” (e.g., survival, reproductive success of

individuals or other combinations of other fitness-related traits)

and a suite of phenotypic traits (e.g., various morphological traits),

referred to as fitness surface (e.g., Schluter and Nychka 1994).

First, the second-order polynomial regression proposed by Lande

and Arnold (1983) allows the estimation of any selection gradi-

ents (directional, stabilizing/disruptive and correlational) that can

be described as linear, quadratic, or cross-product terms. Second,

although fitness surfaces can be represented by the best quadratic

approximation of the surface, nonparametric methods have also

been advocated as they allow more flexibility in visualizing fit-

ness as they require no prior model (e.g., linear or quadratic) for

the relationships between fitness and traits. Schluter (1998) and

Schluter and Nychka (1994) introduced the use of cubic splines,

a nonparametric method, that can be used to visualize in two and

three dimensions the action of selection on phenotypic traits.

Obviously, both approaches require that fitness can be esti-

mated. For this purpose, longitudinal studies that monitor cohorts

of individuals over time are often used, but they have several

difficulties. The most important is that individuals in natural pop-

ulations cannot be followed exhaustively, so detectability should
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be incorporated in models for estimating fitness (Clobert 1995),

otherwise any inference may be flawed (Gimenez et al. 2008).

Because they incorporate detectability and uncertainty associated

with the death of individuals (Lebreton et al. 1992), the use of

mark-recapture (MR) methods allowing the estimation of impor-

tant fitness components such as survival has been recommended to

address questions in evolutionary biology (Gimenez et al. 2008).

To date, however, the full potential of MR methods has been

little explored in the study of natural selection (Clobert 1995;

Kingsolver and Smith 1995; Cam 2009). First, only a part of the

information contained in MR data is usually used with the stan-

dard approaches described above. For example, several authors

have only considered the subset of individuals that are alive at

the end of the study (Barbraud 2000; Bjorklund and Senar 2001).

Others have used more correct survival estimates, but did not

take uncertainties associated with the model fitting process into

account (Altwegg and Reyer 2003). Second, when MR models

are used to study selection, the focus is either on linear gradi-

ents (Kingsolver and Smith 1995; Clobert et al. 2000; Møller and

Szép 2002) or quadratic gradients (Conroy et al. 2002; Covas

et al. 2002; Schulte-Hostedde et al. 2002; Grégoire et al. 2004;

Benkman et al. 2005; Blums et al. 2005). Rarely have several

traits been considered, and never to our knowledge has the analy-

sis of cross-product terms been properly conducted, which might

add to the difficulty of detecting nonlinear selection in the wild.

Finally, tools to visualize selection acting on several traits are not

yet fully developed for MR models. Although it is straightforward

to represent the best quadratic approximation, little has been done

to allow surfaces to be explored in a more flexible way. Recently,

Gimenez et al. (2006a) have developed a flexible nonparametric

method to study the form of selection, but the approach is limited

to a single phenotypic trait.

In this article, we develop general and flexible tools to pro-

vide a unifying framework to assess selection acting on a suite of

phenotypic traits making optimal use of MR data. More specif-

ically, our contribution is twofold. First, to quantify the strength

of selection on combinations of traits, the second-order polyno-

mial regression method is integrated in MR models. Procedures

are provided to test selection gradients. Second, to visualize the

form of selection, we employ bivariate smoothing to generalize

the approach developed by Gimenez et al. (2006a) to the case of

two-dimensional phenotypes. We use Markov chain Monte Carlo

(MCMC) sampling in a Bayesian framework to estimate and test

selection, as well as to control the amount of smoothing to visu-

alize fitness surfaces. We illustrate our approach using data for

a wild population of Common blackbirds (Turdus merula) to in-

vestigate survival in relation to morphological traits. Using the

framework we propose, we provide evidence for correlational se-

lection gradients, which emphasizes the great potential of MR

data to investigate nonlinear selection.

Methods
We consider standard MR protocols involving I individuals that

are captured and marked, then recaptured or resighted over J en-

counter occasions (for reviews, see Lebreton et al. 1992; Williams

et al. 2002). We focus on survival and model φij the probability

that an animal i survives to time t j+1 given that it is alive at time t j .

We estimate and visualize survival as a function of P phenotypic

traits measured in I individuals. We consider fixed individual co-

variates (i.e., measured at the time of marking), but our approach

can also be applied to time-varying individual covariates (i.e.,

measured at each encounter occasion that may vary over time).

ESTIMATING FITNESS SURFACES

We model the survival probability using second-order polynomial

regression to assess nonlinear selection (Lande and Arnold 1983;

Brodie et al. 1995; Blows and Brooks 2003)

logit(φij) = β0 +
P∑

p=1

βpx p
i + 1/2

P∑

p=1

P∑

q=1

γpqx p
i xq

i + εi + b j ,

i = 1, . . . , I and j = 1, . . . , J (1)

where x p
i is the value of the pth covariate for the ith indi-

vidual, b j are fixed yearly effects, εi are i.i.d N (0, σ2
ε ) and

logit(x) = log[x/(1 − x)]. We use the fixed effects b j to account

for time variation in survival, whereas the random effect εi is

incorporated to cope with the individual residual variation in sur-

vival (Gimenez et al. 2006a; Royle 2008). In particular, this term

usually referred to as a frailty (e.g., Cam et al. 2002) allows us to

deal with individual heterogeneity which may cause bias in esti-

mation and inference if it is not accounted for (Cam et al. 2002).

Linear selection gradients (β) are calculated using the model de-

scribed in equation (1), but where quadratic and cross-product

coefficients are dropped, then a distinct regression is carried out

using all terms in equation (1) to calculate the nonlinear selection

gradients (γ) (Phillips and Arnold 1989; Brodie et al. 1995). Key

model parameters are summarized with their posterior median and

standard deviation. To determine relevant combinations of selec-

tion gradients, we view the problem as a variable selection exer-

cise. We use an extension of the MCMC algorithm—Reversible

Jump MCMC (RJMCMC; Green 1995)—to search among the

large number of combinations of selection gradients and thereby

exhibit the best-fitting model. We discriminate between different

models by calculating the posterior model probability of each

model. Technical details are given below.

VISUALIZING FITNESS SURFACES

To visualize the fitness function in two dimensions, we opt for

thin-plate splines that are usually used in geostatistical applica-

tions to incorporate spatial coordinates in multiple regressions
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(Green and Silverman 1994; Nychka 2000). Our objective in ex-

ploring fitness surfaces is to detect interesting and actual patterns

that are not just due to sampling variation; in other words, the

challenge is to find the compromise between too much roughness

and too much smoothness. We consider a semiparametric model

for the survival where two continuous phenotype traits s and t

enter the model under the form of a nonparametric interaction,

whereas the remaining covariates enter linearly the model in a

parametric component (Ruppert et al. 2003):

logit(φij) = f
(
xs

i , xt
i

) +
P∑

p=1,p �=s,t

βpx p
i + εi + b j ,

i = 1, . . . , I and j = 1, . . . , J (2)

where xs
i and xt

i are the values of two focal traits for individual i, f

is a smooth function and the other quantities are defined in equa-

tion (1). To estimate the function f , Gimenez et al. (2006a,b) opted

for penalized splines. This technique uses a set of piecewise poly-

nomials (splines) and imposes a penalty on the associated splines

coefficients to achieve a smooth fit. Note that penalized splines

can be fruitfully expressed as generalized linear mixed models,

which have various advantages (Ruppert et al. 2003). Among oth-

ers, the amount of smoothing or the penalty parameter is obtained

as a by-product of this formulation as a ratio of variances (see

Gimenez et al. 2006b for a demonstration in the MR context).

Because they show good numerical stability and are moderately

computer intensive, we use radial basis functions (French et al.

2001; Ruppert et al. 2003; Crainiceanu et al. 2008) to extend the

approach proposed by Gimenez et al. (2006a) to the bivariate set-

ting (Gimenez and Barbraud 2009). The problem is then to choose

the number and the location of the points, or knots, at which the

splines are fitted. Considering as many knots as there are individ-

uals might cause overfitting, whereas using too few knots might

cause them to be placed in regions with little data. We consider a

number of knots that is large enough to ensure the desired flexibil-

ity, specifically K = max{20, min(I/4, 150)} knots as suggested

by Ruppert et al. (2003). We use the space-filling algorithm of

Nychka and Saltzman (1998) to select the location of these knots.

This algorithm automatically places knots in regions with a high

density of observed values while maximizing the average spacing

between knots of those regions. Ruppert et al. (2003) demon-

strated that, once a minimum number of knots is achieved, the fit

given by the penalized splines approach was independent of the

location and the number of knots.

Finally, to plot the fitness surface, we obtain contours of

the posterior median survival by generating a 30 × 30 grid of

values for the two focal traits in equation (2), calculating the

corresponding survival probability for each point of the grid and

for each MCMC iteration, and taking the median over the MCMC

draws. Note that we consider other things being equal by setting

the remaining covariates to their means in equation (2). Predicted

values for all individuals were also added on the contour plot to

see the number of individual that supported each local pattern of

the surface.

MR MODEL FITTING USING MCMC METHODS

To estimate the model parameters and perform inference, we

adopted a Bayesian approach in conjunction with MCMC meth-

ods, a flexible and powerful framework for building and fitting

complex models. In a Bayesian analysis, the likelihood and the

prior probability distributions are combined using the Bayes’ the-

orem to obtain the posterior distribution of the unknown param-

eters of interest (see McCarthy 2007 for an introduction). The

MCMC algorithms then generate values from a Markov chain

whose stationary distribution is the required posterior distribution

(e.g., Gilks et al. 1996). A burn-in period ensures that the Markov

chain has reached its stationary distribution. Inference is then

based on the remaining simulated values, by computing numer-

ical summaries such as empirical medians and credible intervals

for parameters of interest.

Here, standard MCMC algorithms are used to visualize fit-

ness surfaces, whereas we use RJMCMC (Green 1995) to fit the

second-order polynomial curves. RJMCMC extends MCMC by

allowing transitions between models, or “jumps,” to assess the

presence or absence of a covariate. In our case, this algorithm

searches over the different models to determine the best combina-

tion of selection gradients. It requires an extension of the standard

Bayes Theorem, where the posterior distribution of all parameters

is now defined over both the parameter and model space. In ad-

dition to posterior summaries for parameters, we also obtain the

posterior probability for each model obtained as the proportion of

the time the RJMCMC simulation spends in each model. This is

achieved by exploring simultaneously the parameter and model

space within a single Markov chain. See King et al. (2006) for

a recent application of the RJMCMC algorithm in a MR context

and Gimenez et al. (2009) for more details. Note that in the fit of

the second-order polynomial curves, we allowed the RJMCMC

to act only on second order terms to avoid fitting models with

interactions without main effects.

In both analyses, we need to write down the likelihood and

select priors for the parameters. Assuming independence among

individuals, the likelihood is the product of the probabilities of all

individual encounter histories, each of those probabilities involv-

ing complex nonlinear functions of the survival and detection

probabilities (Skalski et al. 1993; Hoffman and Skalski 1995;

Gimenez et al. 2007). Based on previous analyses of the data

(Grégoire et al. 2004), we assume that the detection probability

varies over time.

Regarding the a priori distributions for all parameters, we

select vague priors to induce little prior knowledge because, if
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the data are informative enough, the likelihood dominates those

priors and the posterior summaries are close to the results of a

maximum likelihood analysis. Specifically, we choose uniform

distributions on [0,1] for the detection probabilities, a uniform

distribution on [0,10] for σε as advocated by Gelman (2006; see

also Royle 2008), and normal distributions with mean 0 and vari-

ances 1000 for the βs. In addition to those priors, we specify an

equal prior probability on all possible models in the RJMCMC

analysis, which corresponds to an independent prior probability

of 0.5 for each covariate. We conducted a prior sensitivity analysis

to assess the influence of prior specifications on posterior distri-

butions. In particular, the posterior model probabilities may be

more sensitive to the prior specification than the posterior distri-

bution of the parameters themselves. In addition to the priors used

above, we considered inverse-gamma distributions for σ2
ε with pa-

rameters (0.001, 0.001) or (3, 2), and normal distributions with

mean 0 and variances 1 or 10 for the βs. The posterior inference

was unchanged, although increasing the variance in the prior for

the regression parameters decreased the posterior probability that

covariates influences the survival probability.

We generate two chains of length 1,000,000, discarding the

first 500,000 as burn-in. The large number of iterations was needed

because good mixing (the movement of the MCMC chain around

the parameter space) was difficult to achieve in the bivariate

smoothing model. When applied to the example, these simula-

tions took between 7 and 10 h on a PC (512Mo RAM, 2.6GHz

CPU). Convergence was assessed using the Gelman and Rubin

statistic which compares the within to the between variability of

chains started at different and dispersed initial values (Gelman

1996). Note that there is no formal convergence diagnostic for the

RJMCMC algorithm, so we run two chains starting either with all

or without any covariates in the model and checked that estimation

and inference results were similar. The mixing of the RJMCMC

algorithm (how often the MCMC chain switches between includ-

ing a selection gradient vs. excluding it) was satisfying, exploring

most of the model space. All covariates were standardized to

improve convergence.

The simulations were performed using WinBUGS v1.4

(Spiegelhalter et al. 2003) and its Jump extension (Lunn et al.

2006) to implement RJMCMC. To plot the fitness surfaces, the R

(Ihaka and Gentleman 1996) package R2WinBUGS (Sturtz et al.

2005) was used to call WinBUGS and export results in R. We

also used the R package FIELDS (Nychka 2004) to implement

the space-filling algorithm. The WinBUGS code is available on

request from the first author.

DATA

To illustrate our approach, we use a long-term dataset on the

relationship between morphological traits and survival of adult

Common blackbirds (T. merula) in an urban park in Dijon, France

(47◦19′N 5◦02′E). From 1998 to 2002, birds were captured with

mist-nets, and each individual was fitted with a numbered metal

ring and a unique combination of plastic color rings. Grégoire et al.

(2004) provide further details about the MR protocol. A total of

199 birds were banded, measured for morphological traits, and

released. The tarsus length, phalanx length, and beak height were

measured with a calliper to the nearest 0.02 mm, and wing length

and rectrice length using a ruler to the nearest 0.5 mm. These

morphological traits have been demonstrated to have a significant

heritable component in birds (Boag and van Noordwijk 1987;

Merilä and Gustafsson 1993; Charmantier and Garant 2005) and

are closely related to flight and feeding efficiency (Grant 1986;

Norberg 1990). They are therefore potentially subject to natural

selection.

Using correlated explanatory variables in a multiple regres-

sion can cause problems in estimation and inference (Graham

2003), the analysis of MR data making no exception. Because

we detected multicollinearity in the original suite of traits of our

dataset, we performed a principal component analysis (PCA) to

produce a new set of standardized uncorrelated synthetic traits

variables (Joliffe 2002). Usually, only those principal components

(PCs) explaining most of the phenotypic variations are retained

(Lande and Arnold 1983; Phillips and Arnold 1989), although

there is no guarantee that these PCs are the most related to fitness.

We thus included all PCs in our analyses. Note that the correlation

matrix was used in the PCA.

Results
The trait loadings obtained from the PCA are given in Table 1 and

show how the original traits contribute to the new PCs. PC1 was

considered an index of overall size because of consistent direction

and relatively high loadings of each original traits (except beak

height). PC2 contrasts the wing length and beak height with the

tarsus length and phalanx length. PC3 consists of high positive

loading from beak height only and was therefore considered a

measure of beak height. PC4 contrasts the wing length with the

rectrice length, two traits closely related to flight performances,

and was therefore referred to as agility (the longer is the rectrice

and the shorter are the wings, the higher is agility; Norberg 1990).

Finally, PC5 contrasts the phalanx length and tarsus length and

was considered an index of leg shape.

Posterior model probabilities of linear and nonlinear selec-

tion gradients (see eq. 1) obtained from the RJMCMC model

selection are presented in Table 2.

Regarding linear effects, the model that includes an intercept

only had the highest posterior probability, which means that no di-

rectional selection was detected on either PCs. Regarding nonlin-

ear effects, the model with highest posterior probability was that

including no quadratic selection on either PCs, but an interaction
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Table 1. Principal components analysis of the five original Common blackbird phenotypic traits (the matrix correlation was used).

Principal component PC1 PC2 PC3 PC4 PC5

Beak 0.37 0.50 0.78 0.04 0.08
Tarsus 0.75 −0.55 0.06 −0.15 0.34
Phalanx 0.77 −0.47 0.17 0.27 −0.30
Wing 0.66 0.48 −0.45 0.34 0.15
Rectrice 0.80 0.34 −0.20 −0.41 −0.19
Percentage of overall variance 47.26 22.23 17.49 7.52 5.51
Eigenvalue 2.36 1.11 0.87 0.38 0.28
Interpretation Overall size Wing length and Beak height Agility Leg shape

beak height vs. the
tarsus length and
phalanx length

between PC3 and PC4. In other words, we detected a correlational

gradient between PC3 and PC4, with a high marginal posterior

probability for this coefficient of being included in the model

(Table 3). This correlational gradient between beak height and

Table 2. Top 10 models incorporating linear and nonlinear effects

for the Common blackbird mark-recapture data. Two distinct anal-

yses were carried out, one with linear effects only (left column),

and the other with second order terms with linear effects always

included (right column). In the model structure, a 1/0 indicates

the presence/absence of the corresponding covariate (note that

the intercept is always included in the model and therefore not

represented in this notation). Regarding the linear effects, the 5

numbers stand for PC1, PC2, PC3, PC4, and PC5. For example, 00000

denotes a model with the intercept only, whereas 00101 is a model

with a linear effect of both PC3 and PC5. Regarding the nonlinear

effects, the 5 first numbers stand for quadratic effects (PC12, PC22,

PC32, PC42, PC52) and the 10 remaining numbers stand for cross-

product effects, PC1∗PC2, PC1∗PC3, PC1∗PC4, PC1∗PC5, PC2∗PC3,

PC2∗PC4, PC2∗PC5, PC3∗PC4, PC3∗PC5, and PC4∗PC5. For example,

001000000000100 denotes a model with a quadratic effect of PC3

and a cross-product effect of PC3 and PC4.

Linear effects Nonlinear effects

Model Posterior Model structure Posterior
structure model model

probability Probability

00000 0.738 00000 0000000100 0.206
00001 0.108 00000 0000000001 0.045
00100 0.045 00000 0000000101 0.035
01000 0.034 00000 0000000000 0.030
00010 0.033 00000 0000000110 0.029
10000 0.015 00001 0000000100 0.022
00101 0.006 00000 0000010000 0.021
01001 0.005 00000 0000010100 0.018
00011 0.004 00000 0000010001 0.018
00110 0.002 00000 0000000011 0.014

agility was negative (Table 3), which means that Common black-

birds share a particular combination of these two components,

such that an increase in agility (corresponding to an increase in

the rectrice length and a decrease in the wing length, i.e., a de-

crease in PC4 values) is always associated with an increase in

beak height (i.e., increase in PC3 values).

Correlational selection on the morphological traits was con-

firmed by plotting the fitness surface (eq. 2) generated by the two

components PC3 and PC4; it is displayed in Figure 1 using a

contour plot. Overall, this surface reveals a ridge of high survival

(from the top left to the bottom right of the figure). This is con-

sistent with the negative correlational selection between PC3 and

PC4 detected when fitting the parametric model in equation (1)

(see the red contour on the figure illustrating the direction and

strength of correlational selection fitted by the parametric model).

However, the fitness surface also displays more subtle features.

For instance, it indicates a small “valley” (centered on PC4 ≈ 0.5,

PC3 ≈ −0.5). Whether this is due to insufficient smoothing or to

a bimodal fitness function is difficult to evaluate. In our example,

it does not matter much because this detail corresponds to small

survival differences. However, this example points out that the

method may be very useful to reveal complex fitness functions.

Discussion
SURVIVAL IN COMMON BLACKBIRDS

If a traditional approach had been adopted, we would not have

detected nonlinear selection acting on morphological traits of the

Common blackbird using MR data. In particular, the evidence for

a correlational selection is important because little is known about

it in the wild (Kingsolver et al. 2001). In addition, the tools we have

developed to visualize fitness surfaces as estimated by MR models

revealed important details of the phenotype under selection. This

additional step may prove important to avoid overlooking complex

features in the fitness surface or inferring erroneous conclusions

from the sole examination of selection gradient (e.g., Brodie et al.
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Table 3. Vector of directional selection gradients (β), and the matrix of quadratic and correlational selection gradients (γ)—on the

logit scale (cf. eq. 1). Posterior medians are provided as well as standard deviations between parentheses. Below these two values, the

marginal posterior probability of each coefficient being included in the model is also given.

γ

β PC1 PC2 PC3 PC4 PC5

PC1 −0.004 (0.070) 0.051 (0.157)
0.028 0.156

PC2 0.002 (0.105) −0.003 (0.054) 0.117 (0.391)
0.041 0.021 0.139

PC3 0.017 (0.153) 0.005 (0.073) 0.040 (0.219) 0.004 (0.084)
0.056 0.029 0.068 0.030

PC4 −0.188 (0.649) −0.014 (0.156) 0.068 (0.462) −1.6731 (0.481) −0.220 (0.652)
0.148 0.048 0.083 0.813 0.174

PC5 0.005 (0.292) −0.008 (0.177) 0.014 (0.229) 0.123 (0.577) 0.193 (0.900) −0.008 (0.416)
0.071 0.046 0.062 0.115 0.156 0.082

1A covariate selected by the RJMCMC simulation (cf. Table 2).

1995). Overall, the integration of two well-established methods

in selection analyses—second-order polynomial regression and

bivariate smoothing—within MR models provides a powerful ap-

proach to make an optimal use of MR data to explore fitness

surfaces.

The fact that an increased agility (i.e., long tail relatively

to short wing; Norberg 1990) was associated with a better sur-

vival is not surprising in the studied urban area. It has recently

Figure 1. Bayesian thin-plate spline visualization of the fitness

(survival probability) surface PC4 (x-axis) vs. PC3 (y-axis) for the

Common blackbird mark-recapture data. A two-dimensional con-

tour plot of posterior medians is provided (gray levels). For a com-

parison, the parametric model fitted (eq. 1) is illustrated by the

contour corresponding to a survival equal to 0.8 (dashed lines).

been argued that in Western Europe the Common blackbird is the

second species that suffers the most from collisions with mov-

ing vehicles (Erritzoe et al. 2003). Thus, it seems reasonable to

consider that less agile birds are at least more prone to this risk

of death, especially in town. On the other hand, beak shape has

been demonstrated to be linked with the diet of a bird, selection

favoring longer beaks when diet hardness increases (e.g., Grant

1986). In the present case, we observed that birds with medium

beaks survived better. It is not surprising because colonization of

urban areas has been associated with a higher proportion of dry

seeds in the diet of the Common blackbird (Luniak and Muslow

1988).

It should be noted that MR models estimate survival condi-

tional upon presence, so that dispersal from the local study area

and mortality cannot be dissociated. In the present study, this

means that we could not exclude the possibility that birds with

specific morphological features dispersed more than others. If this

was the case, the observed variation in survival between individ-

uals might actually correspond to some form of habitat selection

where birds that have nonoptimal traits with respect to local se-

lective pressures (e.g., food) leave the area for places where the

traits better fit the local pressures. Whenever habitat selection is

expected to induce costs (e.g., Lin and Batzli 2002), one way to

access actual survival is to combine MR data with information

on mortality obtained from ring-recovery or radio-tracking data

in which the date of death is known (Williams et al. 2002).

METHOD’S LIMITATIONS AND PROSPECTS

Although we adopted a Bayesian framework to estimate survival,

a classical frequentist analysis using maximum likelihood the-

ory could have been conducted using the free programs MARK

(White and Burnham 1999) or E-SURGE (Choquet et al. 2009).
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However, because individual random effects have only been made

available within the Bayesian framework so far, one would have to

ignore potential unexplained variance while testing significance,

which might lead to biased estimates and flawed inference (Cam

et al. 2002). Besides, regarding the visualization of fitness sur-

faces, a frequentist implementation of the penalized splines has

not yet been proposed in the context of MR models. The main

difficulty lies in calculating the amount of smoothing because it

requires the use of multiple random effects which involves coping

with high dimensional integrals in the maximization of the likeli-

hood (Gimenez et al. 2006b). The Bayesian framework associated

with the MCMC machinery offers a straightforward solution to

cope with this issue.

One may be interested in stratifying the data to cope with

known sources of heterogeneity or to assess differences in se-

lection according to some qualitative variables (e.g., sex or pres-

ence/absence of a predator). To this aim, Chenoweth and Blows

(2005) introduced a sequential model building approach using

F-tests to assess whether the fitness surfaces differ in linear,

quadratic, and/or correlational selection. This approach can be

easily translated in the framework we proposed using a variable

selection approach through the RJMCMC methodology by adding

extra relevant covariates to the model.

We used thin-plate splines to visualize the action of selection.

This approach can be generalized to incorporate additional vari-

ables entering linearly in the model for fitness (cf. eq. 2) as well

as categorical variables (Gimenez et al. 2006b). The latter might

reveal itself to be particularly useful to compare fitness surfaces

according to a binary indicator (e.g., sex or presence/absence of a

predator) without making prior assumption on the different ways

in which the traits affect fitness.

We emphasize that, similarly to Lande and Arnold (1983)

method, the main assumption of our approach is that the shape

of the underlying fitness surface is indeed quadratic, while it may

actually have any shape, including one or more peaks, valleys

or ridges. To relax this assumption, Schluter and Nychka (1994)

proposed to estimate fitness surfaces using projection pursuit re-

gression. This method not only reduces the number of dimensions

in a way similar to what PCA does, but also relates the new syn-

thetic variables to fitness using flexible splines. The extension of

the Schluter and Nychka (1994) approach to MR data is the object

of ongoing work, and we feel confident in that the introduction

of spline smoothing in MR data modeling is an important step

toward this extension.

Finally, we note that a complete selection analysis should in-

clude a canonical analysis (Box and Wilson 1951; Box and Draper

1987) of the matrix of quadratic and cross-product parameters to

find the major axes of nonlinear selection that indicate important

directions of the surface fitness, for example, multivariate stabi-

lizing/disruptive selection (Phillips and Arnold 1989; Blows and

Brooks 2003; Blows 2007). Of particular importance, Blows and

Brooks (2003) showed that nonlinear selection can be overlooked

if a canonical analysis is not performed after a second-order poly-

nomial regression. The extension of our approach to combine the

second-order polynomial regression with the canonical rotation in

a MR model is straightforward. For each of the samples obtained

from the MCMC algorithm, one just needs to perform a canonical

analysis of the γ matrix to obtain the posterior distributions of the

eigenvectors that indicates how the traits contribute to the major

axes of the response surface, together with associated eigenvalues

that give the strength of nonlinear selection along each eigenvec-

tor. Although in our case the canonical rotation did not detect

patterns not shown by the second-order polynomial regression

(unpublished results), it may not be always the case (Blows and

Brooks 2003; Blows et al. 2003).

To conclude, as suggested by Blows and Brooks (2003),

the response surface methodology should be incorporated in the

evolutionary biologist’s toolbox to properly assess nonlinear se-

lection without neglecting correlational selection. In this context,

MR recapture models implementing second-order polynomial re-

gressions as well as flexible methods for fitness visualization

constitute a powerful framework to address evolutionary ques-

tions using longitudinal data collected in the wild.
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