reton

Envi-

pula-

Math.
14(4):
tions.

Dliver

|

The Efficient Semiparametric Regression
Modeling of Capture-Recapture Data: Assessing
the Impact of Climate on Survival of Two
Antarctic Seabird Species

Olivier Gimenez and Christophe Barbraud

Abstract A nonparametric approach has recently been proposed for estimating
survival in capture-recapture models, which uses penalized splines to achieve
flexibility in exploring the relationships with environmental covariates. However,
this method is highly time-consuming because it is implemented through a fully
Bayesian approach using Markov chain Monte Carlo simulations. To cope with this
issue, we developed a two-step approach in which the existing method is used in
conjunction with a2 multivariate normal approximation to the capture—recapture data
likelihood. The ability of our approach to capture various nonlinearities in demo-
graphic parameters was validated by carrying out a simulation study. Two exam-
ples dealing with Snow petrel and Emperor penguin capture—recapture data sets
were also considered to illustrate our procedure, including the relationship between
survival rate, population size and climatic covariates.

Keywords Auxiliary variables - Bayesian inference - Bivariate smoothing -
Computational efficiency - Demographic rates - Environmental covariates -
Interactions - Multivariate normal approximation - Penalized-splines - WinBUGS

1 Introduction

Climate change, specifically global warming, is projected to accelerate in the next
century (IPCC 2001). Consequences of this on the functioning of ecosystems are
at present difficult to predict, and the study of climatic fluctuations on popula- -
tions is a major topic in ecology (Hughes 2000; McCarty 2001; Stenseth et al.
2002). Recent investigations show that global warming affects some animal popula-
tions, through changes in their physiology, phenology, distribution and demography
(Hughes 2000; Walther et al. 2002; Root et al. 2003; Walther et al. 2005). The vast
majority of studies assume that the potential effects of both climate and population
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density on demographic parameters are linear. However, there is strong evidence
that environmental factors may affect population dynamics in more complex ways.
For instance, using a global proxy to describe climatic conditions (such as the North
Atlantic Oscillation) may induce nonlinear relationships as a consequence of similar
nonlinear relations between the proxy and local climatic variables (Mysterud et al.
2001). Empirical data that can be used to investigate the effects of climate change
on populations is increasing. Yet, at present there is insufficient modeling method-
ology to investigate nonlinear relationships between environmental covariates and
demographic rates, and to create reliable predictions concerning the impact that the
anticipated changes might have on populations.

In this paper, we focus on a new nonparametric approach which has recently
been developed to model flexible nonlinear relationships between environmental
covariates and demographic rates assessed using capture-recapture/recovery models
(Gimenez et al. 2006a). In the spirit of Generalized Additive Models (Hastie and
Tibshirani 1990), the shape of the relationship is determined by the data without
making any prior assumption regarding its form, using penalized splines (P-splines;
Ruppert et al. 2003). However, the whole approach is implemented in a Bayesian
framework using MCMC algorithms, and our experience shows that the model
fitting process may be highly time-consuming, which can be an obstacle to model
selection and to comparative analyses of the response of several species’ population
dynamics to environmental factors.

Here, we propose to overcome this difficulty by the use of multivariate normal
approximation to the capture-recapture model likelihood in a first step (Lebreton
et al. 1995; Besbeas et al. 2003). This approximation is then used in a second step in
conjunction with a Bayesian approach using MCMC methods in order to implement
the P-splines. This combination allows purpose-built programs (e.g. M-SURGE,
Choquet et al. 2005; or MARK, White and Burnham 1999) to be used for analyzing
capture—recapture- data with maximum flexibility and results in a considerable
reduction in the computational burden. To validate the ability of our approach to
capture various nonlinearities in demographic parameters, we carry out a simulation
study. Two examples are also considered to illustrate our approach, including the
relationship between survival rate, population size and climatic covariates. Using
this new approach we reanalyzed two capture-recapture data sets of Antarctic
seabirds, for which previous analyses have investigated (and found) linear rela-
tionships between survival and environmental covariates (Jenouvrier et al. 2005).
For the Snow petrel (Pagodroma nivea), we analyzed the nonlinear relationships
between sex-specific adult survival and the Southern Oscillation Index (SOI). For
the Emperor penguin (Aptenodytes forsteri), we investigated nonlinear relationships
between sex specific adult-survival, sea ice extent and population size.

2 Efficient Nonparametric Regression in Capture-Recapture

Modeling
In this section, we introduce our approach following two steps. First, the data
are analyzed using standard capture-recapture models in a Frequentist framework.
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The survival parameter estimates and the associated estimated variance—covariance
matrix are then used to approximate the likelihood of the model best supported
by the data (Step I). This allows us to adopt a Bayesian approach using MCMC
algorithms to implement the nonparametric approach using P-splines (Step 2).

2.1 Step 1: Handling the Capture—Recapture Data

We used standard capture-recapture models (Lebreton et al. 1992) to get maxi-
mum likelihood estimates (MLEs) for the probability ¢; that an individual survives
to occasion i + 1 given that it is alive at time i, and for the probability p; that an
individual is recaptured at time j. All models were fitted using program M-SURGE
(Choquet et al. 2005), but program MARK could have been used instead (White and
Burnham 1999).

Using program U-CARE (Chogquet et al. 2003), we assessed the fit of the most
general time-dependent CJS model to determine whether it provided an adequate
description of the data. In both examples (see the Section 2.4), we detected a
trap-dependence effect on capture (Pradel 1993), meaning that capture probability
at occasion j + 1 was different for individuals captured at occasion j than for
individuals not captured at occasion j. Such a trap-dependent effect in long-lived
species is common and partly reflects heterogeneity in the quality of individuals
in a population. For emperor penguins and snow petrels, trap-dependence was
at least partly caused by heterogeneity between individuals in their capacity to
breed at the colony every year and therefore to be captured. Consequently, we
used a multistate capture-recapture model to cope with this departure from the
null hypothesis that the CJS fits the data (Gimenez et al. 2003). We distinguished
two states whether a capture occurred on the prior occasion (say state A) or not
(say state B). In practice, we considered a separate formulation (i.e., the transi-
tion probabilities are split into survival and movement probabilities — see Hestbeck
et al. 1991). The survival probabilities were time-dependent while the capture prob-
abilities in the states A and B were set constant and fixed to 1 and O respec-
tively, and the transition probabilities were state- and time-dependent. By using this
formulation, the transition probabilities between states A and A were the capture
probabilities given a capture on the prior occasion, and the transition probabil-
ities between states B and A were the capture probabilities given no capture on
the prior occasion. See Gimenez et al. (2003) for further details. If any lack of fit
remained, we applied a correction to the estimates and their estimated variance—
covariance based on the calculation of the coefficient of overdispersion (Lebreton
et al. 1992).

As is seen above, we conducted modeling in two steps (Lebreton et al. 1992).
We first focused on a model that described the nuisance parameter — i.e., the
capture probabilities — in the_most parsimonious way, while survival remained

" time-dependent. Then, preserving the most parsimonious structure of the nuisance

parameters, we worked out the survival probabilities using P-splines. Note that
for simplicity, we analyzed males and females separately for both data sets (see
Section 2.4). )
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We now turn to the approximation of the capture-recapture likelihood, which
will be denoted L(¢, p). Lebreton et al. (1995) and Besbeas et al. (2003) proposed
to use a multivariate normal to approximate the function L(¢, p). More precisely,
the maximum likelihood estimates of the parameters on the logit scale, 9, and the
associated estimated variance—covariance matrix, EAZ, both obtained from fitting an

appropriate capture-recapture model (see above), are used to approximate the log-
likelihood as:

2log {L (¢, p)} = constant — (§ —6)" 371 (9 — 9). 1)

Note that Besbeas et al. (2003) showed that it is only necessary to make the approxi-
mation for the parameters of interest, which are the survival probabilities in our case.
Obviously, using a multivariate normal distribution in place of the usual product
of multinomial distributions (where cells are complex nonlinear functions of the
survival and recapture probabilities) results in 2 much simpler form for the likeli-
hood L(¢, p), which in turn greatly speeds up the Bayesian fitting process using
MCMC algorithms.

Nevertheless, the use of Eq. (1) may be made difficult by numerical issues.
Indeed, some parameters may be estimated close to or on a boundary (0 or 1 as
we are dealing with probabilities), resulting in the impossibility to properly quan-
tify the variability associated to the MLEs using standard methods. Technically, the
dispersion matrix 3 is ill-conditioned which prevents us from obtaining its inverse
as required in Eq. (1). We circumvent this issue by neglecting the covariances,
and considering the diagonal S, matrix of the estimated variances with off-diagonal
terms all zeros. Still, calculating variances for boundary estimates remains prob-
lematic. One option is to use profile-likelihood intervals (Gimenez et al. 2005), the
problem being that this approach does not formally provide a point estimate nor a
standard error. In this paper, we decided to assign a large variance (10,000) to those
para-meters estimated close to or on the boundary, thus affecting relative negligible

weights to the corresponding MLEs (see Eq. (1)). This ad-hoc procedure was used
in the Section 2.4 only.

2.2 Step 2: Semiparametric Modeling of the Survival

2.2.1 Univariate Smoothing

We consider the following regression model for the survival probability ¢;:
¢z ’
logit (¢;) = log -6 )= f&x) + e, @
2

where x; is the value of the covariate applying between occasions i and i + 1, fis
a smooth function and &; are i.i-d. random effects N (O 19 ) The function f spec-
ifies a nonparametric flexible relationship between the surv1val probability and
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the covariate that allows nonlinear environmental trends to be detected. Following
Gimenez et al. (2006a), we used a truncated polynomial basis to handle f:

K
@) =Po+Pix+...+Bpx" + ) bi(x — ), 3)

k=1

where x is the covariate, By, Bi, . .., Bp, b1, . . ., bxare regression coefficients to be
estimated, P > 1 is the degree of the spline, (1)} = u” ifu > 0and 0 otherwise, and
ki < ky < .. < kg are fixed knots. We considered K = min (}11, 35) knots to
ensure the desired flexibility, and let k; be the sample quantile of x’s corresponding
to probability K—’_‘g To avoid overfitting, we penalized the b’s by assuming that the

coefficients of (x — k) i are normally distributed random variables with mean O and
a certain variance o2 to be estimated. This is the reason why this approach is referred
to as penalized splines (Ruppert et al. 2003). For further details see Gimenez et al.
(2006a) and references therein.

2.2.2 Bivariate Smoothing

To incorporate the interaction between two continuous environmental covariates,
we opted for bivariate smoothing using thin-plate splines (Green and Silverman
1994). The main challenge here was to achieve the ideal balance between roughness
and smoothness, which is controlled by a parameter & usually referred to as the
smoothing parameter. We considered the restricted maximum likelihood (REML)
criterion to choose this amount of smoothing using the data (Searle et al. 1992),
which allows the whole modeling exercise to be easily implemented in a mixed
model framework (Ruppert et al. 2003; Crainiceanu et al. 2005; Gimenez et al.
2006a). Specifically, we-consider a nonparametric model for the survival with
respect to environmental covariates as follows:

logit (¢:) = f(xi) + & C))
where x; = (x}, xiZ)T is the value of the vector of two covariates x! and x? for year i,
T denotes transpose, &; are i.i.d N (0, 052) and f is a smooth function. Because they
have good numerical properties, we used radial basis functions to handle f (Ruppert

et al. 2003):

f(x) =Xb + Zgyv, : &)

where {1, x}, x?} is the ith row of matrix X, {C (IIxi — ,il), ..., C (Ix — wg[D}
is the ith row of matrix Zg, the k;’s are bi-dimensional vectors of fixed knots, the
function C (J|r|}) = |Ir||? log [Ir]| with ||r]| = /I handles the nonlinear structure of
the survival surface; b = (by, by, B) andv = (v, ..., vx )Tare vectors of fixed and
random regression parameters respectively to be estimated with Cov (v) = auzﬂgl
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where ), has (k, k’)th element C (llvx — ki |l). Using the re-parameterization
u= Q}(/zv and defining Z = Z KQ;I/ 2, Eq. (5) becomes equivalent to

f(x) =Xb + Zu, (6)

where u is assumed to be normally distributed, independent from &, with Cov (w) =
o1 k- It can be shown that the optimal amount of smoothing using the REML crite-
rion is given by § = 07/02, which turns out to be also the case in the univariate
smoothing (Ruppert et al. 2003). To choose the number and the location of the knots,
we considered K = max {20, min (1 /4, 150)} knots as suggested by Ruppert et al.
(2003) and used the space-filling algorithm of Nychka and Saltzman (1998) to select
the location of these knots. This algorithm automatically places knots in regions
with high density of observed values while maximizing the average spacing between
knots of those regions. Finally, to plot the fitness surface, we obtained contours and
perspectives views by generating a 30 x 30 grid of predicted values,

2.2.3 Bayesian Inference

Vague prior distributions were provided for all parameters. Specifically, we chose
uniform distributions on [0,1] for the detection probabilities, normal distributions
with mean 0 and variances 1,000 for the B ’s and normal distributions with mean 0
and variances auz, abz and crg2 forthe u’s,b’s and ¢ ’s respectively. The priors for the
hyperparameters o7, 67 and 62 were chosen as inverse-gamma with both parame-
ters equal to 0.001. We generated two chains of length 100,000, discarding the first
50,000 as burn-in. Convergence was assessed using the Gelman and Rubin statistic
which compares the within to the between variability of chains started at different
and dispersed initial values (Gelman 1996). All covariates were standardized to
improve convergence. The simulations were performed using WinBUGS (Spiegel-
halter et al. 2003). The R (Ihaka and Gentleman 1996) package R2WinBUGS (Sturtz
et al. 2005) was used to call WinBUGS and export results in R. To implement the
space-filling algorithm, we used the R package FIELDS (Fields Development Team
2006).

Whenever needed, we used the Deviance Information Criterion (DIC; Spiegel-
halter et al. 2002) to discriminate between candidate models: the smaller the DIC
value, the better the model. We acknowledge that the DIC is somewhat controversial
in the statistical literature, and should be used with caution (see Spiegelhalter et al.
2002 and Celeux et al. 2006 and the discussion papers following these two papers).
The R and WinBUGS codes are available on request from the first author,

2.3 Simulation Study

We conducted a simulation study to investigate the performance of our approach, in
particular to check that the use of the approximation for the capture-recapture likeli-
hood did not affect the estimation of parameters. Following Gimenez et al. (2006a),
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we considered two scenarios with different forms for the underlying nonlinear
regression function f of Eq. (3). Study 1 used the regression function fx)=22
if x < —0.06 and f (x) = 2.08 — 2x otherwise to represent a threshold effect.
The x’s were equally spaced on [—1.5;1.5]. Study 2 used the regression func-

tion f(x) = 1.5g ("—gf(ifé) -8 ("—a%é) where g (x) = J—lﬁexp —";) to repre-
sent complex non-linear patterns. The x’s were equally spaced on [0; 1]. For both
studies, we simulated 100 capture—recapture data sets covering 26 sampling occa-
sions, so that 25 survival probabilities had to be estimated. We considered 50,
100 and 250 newly marked individuals per occasion and two levels of variability
with o2 = 0.02 or o} = 0.1. The capture probability was set constant and equal
to 0.7.

For each data set, we applied our approach in two steps, first fitting a capture—
recapture model with time-dependent survival probabilities and constant recapture
probabilities, second using the MLEs and the variance—covariance matrix to approx-
imate the capture-recapture likelihood of this model in order to implement the
P-splines in a Bayesian framework using MCMC algorithms. Details on the prac-
tical implementation can be found in the Section 2. For each x value, we computed
the median along with a 95% confidence interval for the posterior medians of f and
then back-transformed in order to compare the estimated survival curve to its true
counterpart. The results are displayed in Figs. 1 and 2, showing that our two-step
approach does a good job in capturing the nonlinearities in the survival vs. covariate
relationship. For a fixed number of newly released individuals, the greater the vari-
ance the lower the precision (both Figs. 1 and 2, left column — low variability vs.
right column — high variability), the difference being clearer for Study 1. When the
sample size increases, the precision gets better (both Figs. 1 and 2, going down — 50,
100 and 250 newly released individuals), although for high variability the gain was
not substantial (right column in both Figs. 1 and 2). Overall, as noted by Gimenez
et al. (2006a), the-relationship in Study 1 was more precisely estimated than that of

Study 2.

2.4 Applications

2.4.1 Snow Petrels

As a first example, we analyzed the data used in Gimenez et al. (2006a) to illus-
trate the full Bayesian implementation of the semiparametric modeling of survival
probabilities. The data were obtained in a 40—year study on individually marked
Snow petrels, nesting at Petrels Island, Terre Adélie, from 1963 to 2000 (see also
Barbraud et al. 2000; Jenouvrier et al. 2005). We considered the Southern Oscil-
lation Index (SOI) as a proxy of the overall climate condition, available from the
Climatic Research Unit (http://Www.cru.uea.ac.uk/cru/data/soi.htm). In total, we
considered 563 female and 561 male capture histories (more than in Gimenez et al.
7006a who were limited by the computational burden).
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Fig. 1 Performance of the nonparametric approach for estimating nonlinearities in the survival
probability — Study 1 (see the Section 2.3 for details). We used 100 simulated capture—recapture
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true regression function, the dashed line is the median of the 100 estimated posterior medians and
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Step 1. After removing the first capture to remove heterogeneity, the CJS model
still poorly fitted the data for both females and males (females: x %, (349.98) <
0.01; males: X1269 (472.20) < 0.01), and a closer inspection of the results revealed
that a large part of the CJS x? statistic was explained by a trap-dependence effect
(females: x2, (175.74) < 0.01; males: X3 (248.697) < 0.01). The goodness-of-fit
for the model with trap-dependence was still significant (females: X1233 (174.239) <
0.01; males: x1235 (223.503) < 0.01) so we used a lack-of-fit coefficient for further
analyses (females: 1.3; males: 1.7). Time-dependent survival probability estimates
and the estimated variance-covariance were then obtained for both sexes using
M-SURGE (Choquet et al. 2005).

Step 2. First, because sex differences in the survival probabilities were found
before, we considered a model with an additive effect of both SEX and SIE factors.
This was achieved by extending the nonparametric approach introduced above to
allow a predictor to enter the model linearly (we will refer to semiparametric

modeling when both linear and nonlinear effects appear in a model). To do so, we
wrote:

K
logit (¢;) = Bo + ySEX + B;SOIL + > B (SOL — i) + &5, )
k=1

where ¢f is the survival probability between occasion i and i + 1 for [ = males
(SEX = 0) or /| = females (SEX = 1). Interestingly, only little adjustments to
the modeling introduced in Section 2.2.1 are needed to specify the model defined
by Eq. (7) (see Gimenez et al. 2006a). We also fitted a model with an interaction
effect between the SEX and the SOI factors. It basically consists of considering
different smooth functions according to the SEX qualitative variable (Coull et al.
2001). Table 1 shows that the model with an additive effect of both covariates is
preferred to the model with interaction.

Finally we considered two further models corresponding to two biological hypo-
theses. First, we were interested in assessing the significance of the SEX effect, so
we fitted a model without the SEX effect, while keeping the nonparametric feature
of the model. This model performs better than the two models having the SEX
effect (Table 1). This was also confirmed by the 95% posterior credible interval
[—0.49;0.15] of the parameter y which contains O. Second, we were interested in
testing for the presence of nonlinearities in the survival probability. One way to
answer this question was to fit a model with a linear effect of the SOI covariate

Table 1 Models fitted to the Snow petrel data. DIC is the deviance information criterion, and pD
the number of effective parameters. ADIC is the difference between the DIC of a model and the
DIC for the minimum DIC model. The model best fitting the data is in bold font

Model DIC pD ADIC
Additive effect of SEX and SOI 1129.29 1062.99 604.74
Interaction effect of SEX and SOI 1644.82 1595.38 1120.27
SOI effect only (no SEX effect) 679.27 607.34 154.72
Linear effect of SOI (no SEXeffect) 524.55 446.49 0
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upon the survival probability, and to compare with its nonparametric counterpart.
To do so, we used:

logit (¢;) = Bo + B1SOL + &;. ®

As already noted by Gimenez et al. (2006a), the relationship between the climatic
covariate SOI and the Snow petrel survival seems to be linear (Table 1). The graph-
ical representation of the two latter models tends to confirm this result (Fig. 3)
During negative SOI, characteristic of El Nifio episodes, cooler waters in the western
part of the tropical Pacific and southern Australia down to the Ross Sea region seem
to favor enhanced productivity in this oligotrophic area (Wilson and Adamec 2002).
Therefore these oceanographic conditions may increase the food availability for
snow petrels and reduce their mortality risk associated with starvation. However,
the effect of SOI on adult survival is small, with only a 1-2% difference in survival
between negative and positive SOI conditions, which might explain the linear
relationship between survival and SOL We will go back to the issue of formally
detecting nonlinearities in Section 2.5.

In this section, we have considered an interaction between a discrete variable
SEX and a continuous variable SOL In the next section, we consider an interaction
between two continuous variables using bivariate smoothing (Ruppert et al. 2003).
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Fig. 3 Annual variations in Snow petrel survival as a function of the standardized SOI using a
nonparametric model. Medians (solid lige) with 95% pointwise credible intervals (vertical solid

lines) are shown, along with the estimated linear effect (dotted line)
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2.4.2 Emperor Penguins

As a second example, we analyzed data on the emperor penguin which consist of
data from a long-term study on marked individuals, nesting at Petrels Island, Terre
Adélie, from 1962 to 2002 (see Barbraud and Weimerskirch 2001; Jenouvrier et al.
2005). We considered the Sea Ice Extent (SIE) as the distance from the colony to
the limit of a 15% or higher sea ice concentration, which was obtained at longi-
tude 140°E using the sea ice data available from the Antarctic CRC and Australian
Antarctic Division Climate Data Sets (http://www.antcrc.utas.edu.au/~jacka/
seaice_C_html). We also considered the number of breeding pairs (POPSIZE). In
total, we considered 382 female and 331 male capture histories.

Step 1. After removing the two first captures to remove heterogeneity, the CJS
model still poorly fitted the data for both females and males (females: X825 (182.05)
< 0.01; males: X729 (198.12) < 0.01), and a closer inspection of the results revealed
that a large part of the CJS x? statistic was explained by a trap-dependence effect
(females: x3,(112.07) < 0.01; males: x2 (131.85) < 0.01). The goodness-
of-fit for the model with trap-dependence indicated that the fit was satisfac-
tory (females: xZ (69.98) = 0.135; males: x% (66.28) = 0.104). Time-dependent
survival probabilities estimates and the estimated variance—covariance were then
obtained for both sexes using M-SURGE (Choquet et al. 2005).

Step 2. The results of the bivariate smoothing for male and female Emperor
penguins are given in Fig. 4. Overall, females survive better than males, which
is in agreement with previous studies (Barbraud and Weimerskirch 2001; Jenou-
vrier et al. 2005). Now if we look into the relationship between survival and the
interaction of the SIE and POPSIZE effects, interesting patterns emerge. Strategies
differ by sex. While the survival optimum for both males and females is reached
for average values of SIE, there is a marked difference regarding POPSIZE: females
prefer very high POPSIZE while males survive better with relatively low POPSIZE.
These differences may'be interpreted in the light of the contrasting breeding strate-
gies of males and females. After their 3.5 months fast incubating the egg, emaciated
males return to sea for feeding and density dependent processes may affect their
survival chances through competition for food when POPSIZE is high. This should
be particularly accentuated when food resources are scarce, i.e., when sea ice extent
is low. During the entire incubation, females are absent from the colony, feeding
within the pack ice and below the fast ice. Males at the colony face very harsh
climatic conditions and it has been shown that they also form huddles to save energy
(Ancel et al. 1997). Therefore, we hypothesize that when the population is large it
might be easier to find congeners and to form huddles than when the population is
small, which may increase their chances of survival. However, we note that we could
not formally assess sex differences since the two data sets were analyzed separately.
Interestingly, it is relatively easy to get a picture of the precision associated with the
survival surface as a by-product of the use of the MCMC procedure (Fig. 1, right

column). Having a visualization of the precision helps us in determining to what
extent the patterns we detected are supported by the data. In the present example,
the standard deviations are low, except for extreme values of both covariates (Fig. 1,
right column).
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2.5 Discussion

tion of the Frequentist and the Bayesian

In this paper, we have used a combina
approaches to implement semiparametric modeling of survival probabilities as

a function of environmental covariates using capture-recapture data. Instead of
opposing the two frameworks and forcing one to make a choice between the two, we
have utilized the merits of each of the two approaches: the Frequentist approach was
used to handle the capture—recapture data using specialist programs like M-SURGE

(Choquet et al. 2005) or MARK (White and Burnham 1999) which allows flexible

fitting of complex models including age, cohort and/or site effects; the Bayesian

approach was used to avoid making any prior assumption regarding the form of
the relationship between the survival and the covariates, while taking benefit of
the automatic adjustment of-the amount of smoothing in the P-splines. Besides,
the combination allows the computational burden to be substantially reduced. For
example, it took about 25 hours to fit the semiparametric model of Eq. (7) to the
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Snow petrel data with the full Bayesian approach (Gimenez et al. 2006a), while only
5 minutes were required to obtain the MLEs with the estimated variance—covariance
matrix and to fit the semiparametric model of Eq. (7) using the multinormal likeli-
hood approximation.

Apart from the gain in time of calculation, the use of a normal approximation
to the capture—recapture data likelihood has another appealing application. We can
think of using the information published in the literature to investigate the impact of
climatic conditions on demographic rates, in the general context of a meta-analysis.
The MLEs and the associated standard errors could indeed be extracted from rele-
vant papers and then used to form a likelihood, which in turn, could be used to
relate the demographic rates to climatic conditions, for which measurements are
often freely available from the Internet. Maximum flexibility in describing those
relationships would be assured by the use of the approach advocated here.

Although the results of the simulations are encouraging, the fact that we did not
detect a sex effect in the Snow petrel analysis is in contradiction with a previous
study (Jenouvrier et al. 2005), although no sex differences were found in earlier
studies (Chastel et al. 1993; Barbraud et al. 2000). Possible explanations are very
small differences in survival and/or a loss of power caused by assuming that the
covariances are all zeros (see Section 2.1). Pending further developments, extensive
simulations are needed to assess the loss of precision when standard errors are used
in place of the whole estimated variance—covariance matrix.

Regarding the Emperor penguin example, our analysis should be considered as
a preliminary step towards a more comprehensive study. We envisage that model
selection will be a crucial issue, as we would like to incorporate additional climatic
variables (e.g., SOI and SEX) to POPSIZE and SIE, making the number of scenarios
numerous. Besides, determining whether nonlinearities are required in the model
still needs to be properly addressed. A Reversible-Jump MCMC procedure is a
promising solution to:that aim (Bonner et al. this volume).

Finally, so far we have considered environmental covariates only, i.e., variables
with values changing over time. A semiparametric approach to incorporate indi-
vidual covariates, i.e., variables with values changing at the individual level, has
recently been proposed to assess natural selection on a single quantitative trait (e.g.
body mass: Gimenez et al. 2006b) as well as estimating and visualizing fitness
surfaces (Gimenez et al. submitted) using capture-recapture data. There is high
interest in considering both types of covariates in a model (e.g. Coulson et al. 2001),
and the normal approximation might be useful to reduce the computational burden.
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