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Variation between and within individuals in life history traits is ubiquitous in natural 
populations. When affecting fitness-related traits such as survival or reproduction, 
individual heterogeneity plays a key role in population dynamics and life history 
evolution. However, it is only recently that properly accounting for individual het-
erogeneity when studying population dynamics of free-ranging populations has been 
made possible through the development of appropriate statistical models. We aim here 
to review case studies of individual heterogeneity in the context of capture–recapture 
models for the estimation of population size and demographic parameters with imper-
fect detection. First, we define what individual heterogeneity means and clarify the 
terminology used in the literature. Second, we review the literature and illustrate 
why individual heterogeneity is used in capture–recapture studies by focusing on the 
detection of life-history tradeoffs, including senescence. Third, we explain how to 
model individual heterogeneity in capture–recapture models and provide the code to 
fit these models (https://github.com/oliviergimenez/indhet_in_CRmodels). The 
distinction is made between situations in which heterogeneity is actually measured and 
situations in which part of the heterogeneity remains unobserved. Regarding the latter, 
we outline recent developments of random-effect models and finite-mixture models. 
Finally, we discuss several avenues for future research.

Introduction

Individual variation is at the core of the evolution of traits by the means of natural 
selection and exists within any population of living organisms. Individual variation 
occurs in virtually all traits, including fitness components such as reproduction and 
survival (Clutton-Brock 1988, Newton 1989). However, the amount of individual 
variation in a given trait in a given population varies a lot both within and across species. 
Between-individual differences in phenotypic attributes such as age (Caughley 1966, 
Emlen 1970), sex (Short and Balaban 1994), body mass (Sauer and Slade 1987), or 
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personality (Dingemanse and Dochtermann 2013), in geno-
type (Coulson et al. 2011), in habitat use or habitat selection 
such as home range size or quality (Mcloughlin et al. 2007), 
or in prey selection (Estes et al. 2003) have all been reported 
to affect most life history traits. More recently, both current 
and early-life environmental conditions encountered by indi-
viduals throughout their lives have been shown to generate 
individual differences in life history traits (Douhard et al. 
2014, Berger et al. 2015). 

The potential role of individual heterogeneity in terms 
of population ecology has been pointed out more than  
30 years ago (Lomnicki 1978, Johnson et al. 1986) and 
repeatedly reported since (Bolnick et al. 2011, Kendall et al. 
2011). Thanks to the increasing availability of high quality 
data collected during long-term individual monitoring of 
vertebrate populations (Clutton-Brock and Sheldon 2010), 
assessing the magnitude of individual heterogeneity, identify-
ing its origin and quantifying its consequences has become a 
specific objective in many population studies. 

From these studies (reviewed in Table 1), we can envisage 
three broad patterns of individual heterogeneity when con-
sidering a set of life-history traits, e.g. demographic param-
eters, independently of any methodological approach used to 
model these demographic tactics. 

We will retain Stearns (1976)’s definition of a tactic, “a 
set of co-adapted [demographic] traits designed, by natural 
selection, to solve particular ecological problems”. In the 
simplest case, individual heterogeneity corresponds to the  
random variation observed independently in each of  
the traits. In that case, there is no covariation between 
demographic traits and no life history tactic can emerge. 
Life history tactics can appear in response to marked differ-
ences between individuals in terms of constraints (of genetic, 
developmental or environmental origin). The axis of demo-
graphic variation will thus involve a low-high continuum of 
performance opposing individuals weakly constrained that 
will perform extremely well in terms of both survival and 
reproduction, to individuals subjected to high constraints 
(sometimes called “runt”, Koenig et al. 1995) that will per-
form extremely poorly. Individual heterogeneity in that case 
will lead the axis of demographic variation to correspond to 
a low-high continuum of individual fitness, and is often des-
ignated as a continuum of individual quality (Wilson and 
Nussey 2010). Alternatively, individual heterogeneity can be 
associated with a set of different life history tactics so that 
each tactic is characterized by the same mean individual 
fitness. For instance, some individuals will allocate a lot of 
energy to reproduction and pay a cost in terms of decreased 
survival, whereas others will allocate a lot to avoid mortal-
ity risks and pay a cost in terms of reduced reproduction,  
leading to the negative co-variation between survival and 
reproduction expected from the allocation principle (Cody 
1966) to show up.

Owing to the multiplicity of factors that shape individual 
heterogeneity, it is impossible to account for the total amount 
of individual heterogeneity by measuring even a large set 
of traits. For a given trait, we can distinguish a measured 

individual heterogeneity using for instance phenotypic attri-
butes such as age, sex and size from an unmeasured indi-
vidual heterogeneity that includes all the remaining variation 
for given age, sex and size (Plard et al. 2015). Until recently, 
this unmeasured individual heterogeneity was most often 
neglected. Assessing unmeasured individual heterogeneity is 
especially tricky when studying survival (or mortality) because 
this trait simply corresponds to a state shift for a given indi-
vidual. Thus, an individual dying at five years of age will have 
survived over the first five years in a row and then will have 
died at five years, leaving the standard mixed model approach 
generally used for assessing individual heterogeneity in most 
traits (van de Pol and Verhulst 2006, van de Pol and Wright 
2009) not directly applicable. However, CR models do pro-
vide a general and flexible framework for estimating and 
modeling both population size and demographic parameters 
(including survival, dispersal and recruitment) in the face of 
imperfect detection that is inherent to populations in the wild 
(Gimenez et al. 2008). These methods rely on the longitudi-
nal monitoring of individuals that are marked (or identifi-
able) ideally at birth, and then encountered (i.e. recaptured 
or seen) on subsequent occasions. The first CR methods that 
dealt with individual heterogeneity were developed with the 
aim to get unbiased estimates of population size in presence 
of differential individual responses to trapping (Otis et al. 
1978). The context has changed in recent years, and CR stud-
ies now often focus on the process of individual heteroge-
neity per se to assess the diversity of life history trajectories 
within populations, to test for the existence of different life 
history tactics within populations, or to assess the differential 
susceptibility of individuals to environmental insults.

Here we aim at providing a review of individual hetero-
geneity in the context of CR studies. We first define what 
we mean by individual heterogeneity by examining the land-
mark papers on the subject and clarifying the terminology 
with regards to more recent uses of the concept. Then we 
review the literature and illustrate why individual heteroge-
neity is used in CR studies by focusing on the detection of 
life-history tradeoffs, including senescence. In a third section, 
we explain how to model individual heterogeneity in CR 
models. The distinction is made between situations in which 
heterogeneity can be explicitly handled by using states (e.g. 
breeding or disease states) or individual (time-varying or not) 
covariates (e.g. age or phenotype) and situations in which 
part of the heterogeneity remains unobserved. Regarding 
the latter, we outline recent developments of random-effect 
models and finite-mixture models. Lastly, we discuss several 
avenues for future research.

What is individual heterogeneity? 

History and definitions

In CR modeling, consideration of heterogeneity between 
individuals of a population in demographic parameters (e.g. 
survival or probability of successful reproduction) has a long 
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Table 1. Case studies1 reporting an analysis of individual heterogeneity in demographic parameters (i.e. survival and reproductive traits) 
within a CR context. The table lists the reference, the studied species, the main outcome as explicitly stated in the paper, and how individual 
heterogeneity was assessed. Individual heterogeneity corresponded either to the total amount of heterogeneity (‘a priori’ cases) or to 
heterogeneity measured using some metrics (‘a posteriori’ cases). In these latter cases, the metrics used are provided.

Authors Studied species Main finding Metric of individual heterogeneity

Guéry et al. 2017 common eider
Somateria mollissima

survival of the two migrating arctic populations 
was impacted directly by changes in the 
NAO, whereas the subarctic resident 
population was affected by the NAO with 
time lags of 2–3 years. Moreover, we found 
evidence for intra-population heterogeneity 
in the survival response to the winter NAO in 
the Canadian eider population, where 
individuals migrate to distinct wintering areas

a priori: two classes of 
heterogeneity (finite mixture 
models)

Péron et al. 2016 birds (five species) and 
mammals (four species)

individual heterogeneity in survival was higher 
in species with short-generation time ( 3 
years) than in species with long generation 
time ( 4 years)

a priori: two classes of 
heterogeneity (finite mixture 
models) and continuous 
distribution of heterogeneity

Kennamer et al. 2016 wood duck
Aix sponsa

strong positive relationship between survival 
and the number of successful nests body 
mass was not a good proxy of quality

a posteriori: early incubation body 
mass

Fay et al. 2016a wandering albatross
Diomedea exulans

age at first reproduction is negatively related to 
both reproductive performance and adult 
survival

a priori: two classes of 
heterogeneity (finite mixture 
models)

Garnier et al. 2016 alpine ibex
Capra ibex

adverse environmental conditions, such as 
disease outbreaks, may lead to survival costs 
of reproduction in long-lived species

a priori: two classes of 
heterogeneity (finite mixture 
models)

Hileman et al. 2015 milksnake
Lampropeltis trinagulum

estimate adult survival (0.72  0.16) and 
abundance (n = 85  35.2)

a posteriori: observed maximum 
detection frequency

Link and Hesed 2015 red-backed salamander
Plethodon cinereus

female P. cinereus mature earlier and grow 
more quickly than males

a priori: continuous distribution of 
heterogeneity

Hartson et al. 2015 steelhead trout
Oncorhynchus mykiss

negative relationship between density and 
specific growth rate over a wide range of 
densities, but reductions in survival only at 
the highest densities

a posteriori: body length

Hua et al. 2015 Cumberlandian combshell
Epioblasma brevidens

the overall mean detection probability and 
survival rate of released individuals reached 
97.8 to 98.4% and 99.7 to 99.9% (per 
month)

a priori: continuous distribution of 
heterogeneity

Chambert et al. 2015 Weddell seal
Leptonychotes weddellii

the probability of being absent from colonies 
was higher 1) in years when the extent of 
local sea ice was larger, 2) for the youngest 
and oldest individuals, and 3) for females 
with less reproductive experience

a priori: continuous distribution of 
heterogeneity

Pirotta et al. 2015 bottlenose dolphin
Tursiops troncatus

there were marked inter-individual differences 
in the predicted amount of time dolphins 
spent in the presence of boats, and 
individuals tended to be consistently over- 
orunderexposed across summers

a priori: continuous distribution of 
heterogeneity

Stoelting et al. 2015 California spotted owl
Strix occidentalis 

occidentalis

Breeding reduced the likelihood of reproducing 
in the subsequent year by 16% to 38%, but 
had no influence on subsequent survival

a priori: continuous distribution of 
heterogeneity

Souchay et al. 2014 greater snow goose
Chen caerulescens 

atlantica

Cost of reproduction on breeding propensity in 
the next year, but once females decide to 
breed, nesting success is likely driven by 
individual quality

a posteriori: previous breeding 
status

Koons et al. 2014 wild boar
Sus scrofa and lesser snow 

goose
Chen caerulescens 

caerulescens

Senescence can be severe for natural causes of 
mortality in the wild, while being largely 
non-existent for anthropogenic causes

a posteriori: cause-specific 
mortality

Horswill et al. 2014 macaroni penguin
Eudyptes chrysolophus

survival of macaroni penguins is driven by a 
combination of individual quality, top–down 
predation pressure and bottom–up 
environmental forces

a posteriori: body mass

Continued
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Authors Studied species Main finding Metric of individual heterogeneity

Lindberg et al. 2013 Pacific black brant 
Branta bernicla nigricans

annual survival of individuals marked as 
goslings was heterogeneous among 
individuals and year specific […]. Adult 
survival (0.85  0.004) was homogeneous 
and higher than survival of both groups of 
juveniles. The annual recruitment probability 
was heterogeneous for brant 1-year-old

a priori: two classes of 
heterogeneity

Chambert et al. 2013 Weddell seal
Leptonychotes weddellii

existence of a latent individual heterogeneity in 
the population, with robust individuals 
expected to produce twice as many pups as 
'frail' individuals

a priori: continuous distribution of 
heterogeneity

Barbraud et al. 2013 wandering albatross
Diomedea exulans

strong evidence for heterogeneity in survival 
with one group of individuals having a 5.2% 
lower annual survival probability than another 
group

a priori: two classes of 
heterogeneity

Blomberg et al. 2013 greater sage grouse
Centrocercus urophasianus

evidence for heterogeneity among females with 
respect to reproductive success; compared 
with unsuccessful females, females that 
raised a brood successfully in year t were 
more than twice as likely to be successful in 
year t + 1

a posteriori: previous breeding 
status

Morano et al. 2013 North American elk
Cervus elaphus

no difference in survival probabilities between 
pregnant and nonpregnant individuals or as a 
function of recruiting an offspring […and] 
negative effect of recruiting an offspring in 
the current year on becoming pregnant the 
following year

a posteriori: lactation status and 
body condition

Pradel et al. 2012 greater flamingo
Phoenicopterus roseus

breeding probability varied within three levels 
of experience. [… and] with random effects, 
the advantage of experience was unequivocal 
only after age 9 while in young having  1 
experience was penalizing

a priori: continuous distribution of 
heterogeneity and a posteriori: 
Experience

Reichert et al. 2012 Florida snail kite
Rostrhamus sociabilis 

plumbeus

Experience is an important factor determining 
whether or not individuals attempt to breed 
during harsh environmental conditions

a posteriori: experience

Robert et al. 2012 Monteiro's storm petrel
Oceanodroma monteiroi

reproductive costs act on individuals of 
intermediate quality and are mediated by 
environmental harshness

a posteriori: successful versus 
unsuccessful breeders

Hernandez-
Matias et al. 2011

Bonelli's eagle
Aquila fasciata

4-year-old and older successful breeders were 
more likely to breed the following year than 
failed adult breeders (0.869 versus 0.582), 
suggesting that the cost of reproduction is 
small in comparison with the variation in 
quality among individuals or their territories

a posteriori: successful versus 
unsuccessful breeders

Briggs et al. 2011 Swainson’s hawks
Buteo swainsoni

adult survival was inversely correlated with 
average reproductive output, with individuals 
producing 2 offspring having decreased 
survival [… and] reproduction in any year 
was positively correlated with survival

a posteriori: average annual nest 
productivity

Lee 2011 northern elephant seals 
Mirounga angustirostris

primiparous breeders did not suffer more than 
experienced breeders during years of 
environmental stress. [… and] Lower 
variances in survival of multiparous breeders 
suggest that primiparous adults constitute a 
more heterogeneous portion of the 
population

a posteriori: inexperienced versus 
experienced breeders

Moyes et al. 2011 red deer
Cervus elaphus

the probability of reproducing unsuccessfully 
after a successful year is relatively low and 
varies very little, but is highest in young 
individuals with low PARE. […and] 
Reproduction costs increase with declining 
PARE

a posteriori: proportional 
age-specific reproductive effort 
(PARE)

Continued

Table 1. Continued
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Authors Studied species Main finding Metric of individual heterogeneity

Marzolin et al. 2011 dipper
Cinclus cinclus

strong evidence for actuarial senescence with 
an onset of senescence estimated at about 
2.3 years

a priori: continuous distribution of 
heterogeneity

Buoro et al. 2010 Atlantic salmon
Salmo salar

cost of reproduction on survival for fish staying 
in freshwater and a survival advantage 
associated with the "decision" to migrate

a priori: continuous distribution of 
heterogeneity

Kovach et al. 2010 intertidal snail
Nucella lima

survival estimates from the best-fit model were 
different between habitat types

a posteriori: microhabitat use, 
individual color and length

Reid et al. 2010 red-billed choughs
Pyrrhocorax pyrrhocorax

the negative correlation between offspring 
survival and maternal lifespan was strongest 
when environmental conditions meant that 
offspring survival was low across the 
population

a posteriori: longevity

Maniscalco et al. 2010 steller sea lion
Eumetopias jubatus

females which gave birth had a higher 
probability of surviving and giving birth in 
the following year compared to females that 
did not give birth 

a posteriori: give birth versus do 
not give birth

Millon et al. 2010 tawny owl
Strix aluco

females who postponed reproduction to breed 
for the first time at age 3 during an Increase 
phase, produced more recruits, even when 
accounting for birds that may have died 
before reproduction. No such effects were 
detected for males

a posteriori: age at first breeding

Lescroël et al. 2009 Adélie penguin
Pygoscelis adeliae

adult survival ranged from 64–79%, with BQI 
accounting for 91% of variability in the entire 
study population, but only 17% in 
experienced breeders"

a posteriori: breeding quality 
(BQI)

Bonenfant et al. 2009 bighorn sheep
Ovis canadensis

in all age classes, natural survival was either 
weakly related to (lambs, adult rams) or 
positively associated (yearling rams) with 
early horn growth

a posteriori: early horn growth

Sedinger et al. 2008 black brent geese
Branta bernicla nigricans

individuals with a higher probability of 
breeding in one year also had a higher 
probability of breeding the next year

a posteriori: bred in the previous 
years versus did not

Pistorius et al. 2008 southern elephant seal
Mirounga leonina

mean postbreeding (pelagic phase between 
breeding and molting, about 62 days) survival 
of primiparous females was 0.830 compared 
to 0.912 for more-experienced females

a posteriori: reproductive 
experience

Weladji et al. 2008 reindeer
Rangifer tarandus

successful breeders had higher survival and 
subsequent reproductive success than 
experienced non-breeders and unsuccessful 
breeders, independently of the age at 
primiparity. [… and] successful females at 
early primiparity remained successful 
throughout their life

a posteriori: age at primiparity

Le Bohec et al. 2007 king penguin
Aptenodytes patagonicus

failed breeders in year t have a lower 
probability to reproduce successfully in year 
t + 1 than non-breeders in year t [… and] 
successful breeders showed higher survival 
probability

a posteriori: successful versus 
unsuccessful breeders

Zheng et al. 2007 Glanville fritillary butterfly
Melitaea cinxia

we found that mortality rate increased with age, 
that mortality rate was much higher during 
the day than during the night, and that the 
life span of females originating from newly 
established populations was shorter than the 
life span of females from old populations

a priori: continuous distribution of 
heterogeneity

Hadley et al. 2007 Weddell seal
Leptonychotes weddellii

presence of reproductive costs to survival (mean 
annual survival probability was 0.91 for 
breeders versus 0.94 for nonbreeders) [… and] 
Reproductive costs to subsequent reproductive 
probabilities were also present for first-time 
breeders (mean probability of breeding the 
next year was 31.3% lower for first-time 
breeders than for experienced breeders)

a posteriori: breeding experience

Continued

Table 1. Continued
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Authors Studied species Main finding Metric of individual heterogeneity

Beauplet et al. 2006 subantarctic fur seal
Arctocephalus tropicalis

survival was lower for non-breeders than for 
breeders, among both prime-aged (0.938 
versus 0.982) and older (0.676 versus 0.855) 
females [… and] non-breeders exhibited 
higher probabilities of being non-breeders 
the following year than did breeders (0.555 
versus 0.414)

a posteriori: breeders versus 
non-breeders

Blums et al. 2005 tufted duck
Aythya fuligulacommon 

pochard
Aythya ferinanorthern 

shoveler
Anas clypeata

for all three species, females that tended to nest 
earlier than the norm exhibited the highest 
survival rates, but very early nesters 
experienced reduced survival and late nesters 
showed even lower survival. For shovelers, 
females in average body condition showed 
the highest survival, with lower survival rates 
exhibited by both heavy and light birds. For 
common pochard and tufted duck, the 
highest survival rates were associated with 
birds of slightly above-average condition, 
with somewhat lower survival for very heavy 
birds and much lower survival for birds in 
relatively poor condition

a posteriori: relative body 
condition and relative time of 
nesting

Barbraud et al. 2005 blue petrel
Halobaena caerulea

survival of first-time breeders was lower than 
that of inexperienced nonbreeders […]. 
Survival of inexperienced individuals (both 
breeders and nonbreeders), but not of 
experienced ones, was negatively affected by 
poor environmental oceanographic 
conditions [… and] survival and the 
probability of breeding in the next year for 
experienced birds were higher for breeders 
than for nonbreeders

a posteriori: breeding experience

Wintrebert et al. 2005 kittiwake
Rissa tridactyla

survival is positively correlated with breeding 
indicating that birds with greater inclination 
to breed also had higher survival

a priori: continuous distribution of 
heterogeneity

Roulin et al. 2003 tawny owls
Strix aluco

the proportion of all breeding females that were 
reddish-brown was greater in years when the 
breeding density was lower [… and] greyish 
females bred less often than reddish-brown 
females, although their survival probability 
was similar

a posteriori: colour polymorphism

Reid et al. 2003 red-billed choughs
Pyrrhocorax pyrrhocorax

females that ultimately reached the greatest 
ages had laid small clutches and fledged few 
offspring during their first few breeding 
attempts. Females that were more productive 
when they were young had relatively shorter 
lives

a priori: lifespan

Cam et al. 2003 kittiwake
Rissa tridactyla

individuals with shorter rearing periods had 
lower local survival during the first winter [… 
and] the length of the rearing period had 
long-term consequences on reproductive 
performance [… and] negative influence of 
rank on survival before recruitment and 
recruitment probability

a posteriori: rank and length of the 
rearing period

Cam et al. 2002a kittiwake
Rissa tridactyla

birds that were more likely to survive were also 
more likely to breed, given that they survived

a priori: continuous distribution of 
heterogeneity

Cam et al. 2002b kittiwake
Rissa tridactyla

squatters have a higher survival and recruitment 
probability, and a higher probability of 
breeding successfully in the first breeding 
attempt in all age-classes where this category 
is represented

a posteriori: squatters versus 
non-squatters

Cam and Monnat 
2000a

kittiwake
Rissa tridactyla

the influence of age on survival and future 
breeding probability is not the same in 
nonbreeders and breeders

a posteriori: yearly reproductive 
state

Continued

Table 1. Continued
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history: ”For predictive or modeling purposes, [...], heteroge-
neity can lead to seriously misleading conclusions, particu-
larly if the product of two or more parameters is involved, 
and heterogeneity affects both of them” (Johnson et al. 1986). 
Early work emphasized the distinction between situations 
where members of populations differ with respect to some 
measurable attribute (e.g. sex, age), and situations where 
“heterogeneity is not clearly identified with a measurable 
variable” (Johnson et al. 1986). In the latter situation, devel-
oping methods that account for heterogeneity between indi-
viduals to estimate demographic parameters is more difficult. 
Early efforts toward this end echo their contemporary stud-
ies of heterogeneity in mortality risk and of aging in human 
demography (Vaupel et al. 1979, Manton et al. 1981, Hou-
gaard 1984): “Unrecognized heterogeneity can lead to biased 
inferences, especially in time or age effects in cohort studies” 
(Johnson et al. 1986). In ecology, one of the earliest stud-
ies that investigated the consequences of unmeasured (and 
sometimes impossible to measure) variation between individ-
uals in survival probability concerned the estimation of nest 
success probability using longitudinal data from nest activity 
(Green 1977, Johnson 1979): a nest that becomes inactive 
before chicks hatched is considered “dead’. The authors of 
early papers on CR modeling were aware of the contribution 
of human demographers to the development of models taking 
heterogeneity between individuals into account to estimate 
changes in mortality risk throughout life (e.g. papers cited in 
Johnson et al. 1986 included e.g. Keyfitz and Littman 1979, 
Vaupel et al. 1979 and Manton et al. 1981). According to 
Johnson et al. (1986), “the impact of such heterogeneity has 
been recognized only occasionally in animal ecology, possibly 
because it is difficult to deal with, and it is often relatively 
unimportant in many estimation problems.” 

Unobserved heterogeneity can be handled using models 
including a continuous or discrete distribution of param-
eter values (recapture, breeding or detection probability). 
Early work by human demographers has pioneered the use 
of continuous distributions of mortality risks (Vaupel et al. 
1979). In survival models, continuous distributions for 

individual heterogeneity translate the idea that individuals 
are characterized by a unique value of ‘mortality risk’ (or its 
complement, survival probability). In human demography, 
‘frailty’ is traditionally used in time-to-event models, where 
the event of interest is death (data consist in the duration of 
time until death occurs). Generally, data from wild animals 
are longitudinal data (i.e. either they include information on 
whether individuals are alive or dead at each sampling occa-
sion, or they include information on whether individuals are 
contacted alive at each sampling occasion, and sometimes 
on whether individuals are reported as dead). The idea that 
populations are composed of individuals that are more or less 
likely to experience an event (i.e. they differ in their prob-
ability of experiencing an event) is common to several areas of 
research. According to Wienke (2003), “Frailty corresponds 
to the notions of liability or susceptibility in different set-
tings” (Falconer 1967). In the 1960s and 1970s, investiga-
tors developed parallel ideas in different areas of research and 
designed analytical methods to account for continuous dis-
tributions of ‘risks’ in populations. In quantitative genetics, 
Falconer (1967) analyzed disease incidence data and assumed 
a continuous distribution of risks of developing the disease: 
“All the causes, both genetic and environmental, that make 
individuals more or less likely to develop a disease, can be 
combined in a single measure that is called ‘liability’. The 
liabilities of individuals in a population form a continuous 
variable”. In econometrics, investigators developed duration 
models for employment data including unobserved hetero-
geneity (Chamberlain 1979), where “The heterogeneity is 
in individual specific differences in separation rates” (i.e. the 
fraction of employed workers who lose jobs per time interval, 
see also Heckman and Borjas 1980). Heckman and Willis 
(1977) focused on beta-logistic models for binary data of 
female labor participation and assumed a random effect for 
unobserved individual heterogeneity in participation prob-
ability: “It is reasonable to suppose that many of the unob-
served variables remain reasonably constant over time but 
vary considerably among women”. Obviously, the 1960s and 
1970s stimulated the development of analytical approaches 

Authors Studied species Main finding Metric of individual heterogeneity

Cam and Monnat 
2000b 
 
 
 
 
 
 

kittiwake
Rissa tridactyla 
 
 
 
 
 
 
 

first-time breeders have a lower probability 
of success, a lower survival and a lower 
probability of breeding in the next year 
than experienced breeders [… and] neither 
experienced nor inexperienced breeders 
have a lower survival or a lower probability 
of breeding in the following year than birds 
that skipped a breeding opportunity. [… 
and] when age and breeding success are 
controlled for, there is no evidence of an 
influence of experience on survival or future 
breeding probability

a posteriori: breeding experience 
and breeding status 
 
 
 
 
 
 

1The literature survey was performed in ISI Web of Knowledge by looking for references corresponding to the following ‘Topic’ keywords: 
(((‘individual variability’ OR ‘individual heterogeneity’ OR ‘individual quality’) AND (‘capture–recapture’ OR ‘mark–recapture’ OR 
‘capture–mark–recapture’))). A total of 162 references were recovered. We read all summaries and only selected case studies looking for 
individual heterogeneity in demographic parameters estimated from CR models.

Table 1. Continued
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designed to handle situations where investigators acknowl-
edge that they do not know all the relevant variables affect-
ing individuals’ response, or where they cannot measure all  
of them. 

Clearly, the issue raised in early CR studies is that the 
assumption of homogeneity of populations can lead to flawed 
inferences about identified parameters such as survival proba-
bility or population size (Carothers 1973). In situations where 
survival probability varies with age, this issue has sometimes 
been called a Simpson’s paradox in statistics, or an “ecological 
fallacy” (Kramer 1983), and has been illustrated by Cohen 
(1986) as follows: “The crude death rate of population A 
may be less than that of country B even if every age-specific 
death rate of country A is greater than each corresponding 
one of country B”. If populations are stratified according 
to variables that have not been considered yet, inequality of 
rates can be reversed, and any demographic parameter can 
be involved. Papers by Green (1977), Johnson (1979), John-
son et al. (1986) and the very influential paper by Vaupel and 
Yashin (1985) have all used analogous examples of situations 
with two groups to explain the consequences of unrecognized 
heterogeneity on inferences about mortality in ecology and 
human demography, respectively. 

In the context of closed populations (i.e. assuming a popu-
lation with no immigration, no emigration, no recruitment 
and no mortality), data are collected several times during the 
period when assumptions characterizing closed populations 
hold. CR models are restricted to the estimation of popu-
lation size and can account for individual heterogeneity in 
the probability of being detected (Burnham and Overton 
1979, Pollock 1981a, Pollock et al. 1990, Link 2004, Pledger 
2005, Farcomeni and Tardella 2010). In such a situation, 
“Individuals with high detection probabilities would tend to 
appear in the encountered sample in greater proportion than 
they occur in the population” (White and Cooch 2017). In 
CR models, the probability of detection can be assumed to 
vary between individuals in relation to, e.g. sex or age-related 
behavioral differences and more recently to space (Efford 
2004, Borchers 2012). In some studies, populations are not 
assumed to be composed of clusters (e.g. sex, age-classes) 
with different detection probabilities, but each individual is 
“assumed to have its own unique capture probability which 
remains constant over all the sampling times” (Pollock 1981a, 
Pollock et al. 1990). In CR studies where heterogeneity in 
the probability of detecting an individual cannot be identi-
fied using measured variables, investigators can assume that 
there is a distribution of individual detection probabilities 
and use models with individual random effects (White and 
Cooch 2017). In such situations, early approaches have used 
Jackknife estimators (Burnham and Overton 1979) or point 
estimators (Chao 1987). Mixture models have also been used 
more recently in such situations (Norris and Pollock 1996, 
Pledger 2000, Morgan and Ridout 2008), where populations 
are assumed to be composed of several hidden groups with 
different detection probabilities.

In the context of open populations (i.e. allowing immi-
gration and emigration and/or recruitment and mortality to 

occur), models are used to estimate a variety of demographic 
parameters (e.g. survival rates, transition probabilities between 
reproductive states in successive years, populations size). 
Early papers (Cormack 1964, Jolly 1965, Seber 1965) have 
assumed homogeneous populations. Stratification according 
to age-classes (Manly and Parr 1968, Pollock 1981b) and 
groups (Lebreton et al. 1992) was one of the first attempts to 
accommodate variation between individuals in survival prob-
ability. Arnason (1972, 1973), Schwarz et al. (1993), Hest-
beck et al. (1991), and Nichols et al. (1994) laid the ground 
for models accounting for the fact that individuals might not 
belong to the same cluster during their entire life (Lebreton 
and Pradel 2002), but might move between states (e.g. loca-
tions, breeding states) in a stochastic manner (as opposed to 
movement between age-classes in a deterministic manner). 

Naturally, early papers drew the same distinction as for 
closed populations between situations where individuals differ 
with respect to some measurable attribute (e.g. sex, age) and 
situations where “heterogeneity is not clearly identified with 
a measurable variable” (Pollock 1981a, Johnson et al. 1986). 
Because open-population models can be used to estimate 
population size, early work also focused on the consequences 
of heterogeneity in detection probability on population size 
estimation (Carothers 1973). Just as for detection probabil-
ity, two approaches have been used to account for unobserved 
sources of heterogeneity in survival probability in CR studies 
(Johnson et al. 1986): finite mixture models (Pledger et al. 
2003) and random effects models (Royle 2008, Gimenez and 
Choquet 2010). Early studies that have assumed a continu-
ous distribution of survival probability have also highlighted 
the methodological difficulties encountered in the 1990s 
(Rexstad and Anderson 1992, Burnham and Rexstad 1993). 
In random effects models, individual heterogeneity refers to 
permanent differences between individuals in demographic 
parameters (Royle 2008, Gimenez and Choquet 2010). 
This definition matches exactly the concept of unobserved 
individual frailty proposed by Vaupel et al. (1979) where 
frailty designates the risk of a given individual (that is con-
stant throughout its lifespan) to die at a given age relative to 
the average risk of all individuals in the population to die at 
this age. Up to now, most CR studies that have used mix-
ture models for survival probability have also considered that 
individuals do not change cluster during their life (Fay et al. 
2016a), but CR models can now accommodate situations 
where they do (see Cubaynes et al. 2010 for an application to 
detection probability). 

Historically dominating views of what ‘heterogeneity’ 
means in CR modeling depended on the class of models 
used. For example, ‘heterogeneity’ models in early papers 
focusing on closed populations referred to models where 
“each animal has its own unique capture probability” (Pollock 
1981a). Conversely, for open population models, early work 
on ‘heterogeneity’ considered any degree of stratification of 
populations, from discrete groups, or age-structured popu-
lations, to a distinct survival probability for each individual 
(Johnson et al. 1986). However, ‘individual heterogeneity’ has 
rapidly been reserved for “variation in survival probabilities 
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among individuals after taking into account variability due to 
age, sex or time” (Rexstad and Anderson 1992). 

Individual heterogeneity in contemporary CR studies

Demographic parameters are the target parameters to 
estimate in CR models (Lebreton et al. 1992, 2009). Other 
parameters such as detection probability are required to 
estimate demographic parameters from CR models; detec-
tion probability is relevant to sampling in wild popula-
tions, but is not a demographic parameter. However, 
the impact of individual heterogeneity on every type of 
parameter has consequences on demographic parameter 
estimation. CR models allow the estimation of all types 
of parameters. 

To address individual heterogeneity in demographic 
parameters, the survival process (alive versus dead), or the 
reproductive process (e.g. breeder versus non-breeder or suc-
cess versus failure) is treated as a random variable. Individual 
heterogeneity measures differences between individuals in 
model parameters. Today, a broad range of approaches is used 
to account for individual heterogeneity in CR studies. Indi-
vidual heterogeneity is understood as any source of variation 
between individuals in demographic parameters that cannot 
be accounted for by temporal or spatial heterogeneity alone, 
with a particular focus on the fate of individuals, their early 
development conditions, their ontogeny, or their past allo-
cation to reproduction as experienced breeders. Advances 
in statistical methods over the past 40 years have progres-
sively enlarged the scope of models accounting for ‘individual 
heterogeneity’. In CR studies, the sample scheme involves 
attempting to detect individuals on a discrete time basis. 
Contrary to continuous-time models used in human demog-
raphy (Allison 1982), this specific feature must have eased the 
development of models in the CR arena. 

Different levels of heterogeneity lead to different percep-
tions of ‘heterogeneity’, but the current view of ‘individual 
heterogeneity‘ incorporates a large range of biologically rel-
evant situations. At the lowest level individuals have their 
own unique demographic value (Marzolin et al. 2011;  
Table 1), as in the frailty context (Vaupel et al. 1979), with 
a possible variation during life (Enki et al. 2014). At a 
broader level, heterogeneity can correspond to differences 
in demographic parameters between identifiable categories 
of individuals (e.g. identifiable groups; Drummond et al. 
2011), or between hidden classes or states (Péron et al. 
2010, Pradel 2005, Johnson et al. 2016). Once included in 
the study, individuals can belong to the same cluster perma-
nently (e.g. sex, hidden class; Péron et al. 2010) or temporar-
ily (e.g. age, body condition, breeding state; Nichols et al. 
1994, Pradel 2009, Johnson et al. 2016). What ‘heteroge-
neity’ covers in CR models inherently depends on model 
specification. In all cases, populations are considered as 
being heterogeneous.

From a biological viewpoint, individual heterogeneity 
in life history traits is often considered to include two 
components. 

1) Cases in which differences between individuals are shaped 
early in life and are permanent during the course of the life 
correspond to a fixed heterogeneity. In such cases, individ-
ual heterogeneity can be accounted for by using measur-
able covariates a priori assumed to capture much of the 
individual heterogeneity (e.g. rank of offspring in birds’ 
clutch, Drummond et al. 2011 or body mass at the end of 
the maternal care period in large mammals, Hamel et al. 
2009). Whether measurable individual features are 
translated into differences in estimates of demographic 
parameters, and with which method, is part of the sta-
tistical exercise. When measurable variables are missing, 
or insufficient to account satisfactorily for heterogene-
ity (Hougaard 1991), investigators can assume a discrete 
or continuous distribution of demographic parameters 
(Royle 2008, Péron et al. 2010). In agreement with the 
concept of frailty, investigators assume that there are dif-
ferences in demographic parameters between individuals 
that cannot be associated with measurable covariates and 
use latent variables to quantify them (Hougaard 1995, 
Yashin et al. 2008, Cam et al. 2013, 2016, Hamel et al. 
2014).

2) However, not all individual heterogeneity is fixed. Individ-
ual differences in a given trait at a given time are subjected 
not only to the influence of early-life conditions, but also 
to current conditions both at that time and between early 
life and that time. As above, in some situations, observ-
able variables are available to account for variation in 
individuals’ demographic parameters throughout their life 
(e.g. age: Pollock 1981b; group: Lebreton et al. 1992; state: 
Nichols et al. 1994). However, when such observable vari-
ables are missing or inefficient at capturing most individual 
heterogeneity (Hougaard 1991), unobserved, latent traits 
changing over life can be used. Such cases correspond to 
‘dynamic frailty’ (Cam et al. 2004, Pennell and Dunson 
2006, Duffie et al. 2009, Chambert et al. 2013). 

Irrespective of the component shaping individual heteroge-
neity in a given population, the total amount of individual 
heterogeneity in that population is not constant and varies 
over time. Thus, Lomnicki (1978) pointed out that asym-
metric responses of individuals to increased competition 
that occur in presence of harsh environmental conditions 
(Lomnicki developed his argument in the context of density-
dependence but the same pattern is expected whatever the 
cause of resource limitation) lead individual heterogeneity 
within a population to increase.

Why individual heterogeneity in a CR context?

Individual heterogeneity seen as a nuisance 

Because analyzing most CR datasets requires using models 
that include detection probability, the existence of individual 
heterogeneity in this parameter has stimulated a large num-
ber of works in the early CR literature (Otis et al. 1978). As 
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Eberhardt (1969) pointed out, “various sets of data indicate 
that the equal-probability-of capture assumption is not ful-
filled.” Unequal detection rates may lead to biases in abun-
dance estimate, estimated survival probability or population 
growth in the context of open populations (Carothers 1973, 
Schwarz 2001). Heterogeneity in detection probability is  
still receiving attention in contemporary studies (Crespin  
et al. 2008, Cubaynes et al. 2010, Pradel et al. 2010, 
Marescot et al. 2011, Oliver et al. 2011, Fletcher et al. 2012, 
Abadi et al. 2013, White and Cooch 2017), and new meth-
ods are being developed to address heterogeneity, such as 
multievent models (Pradel 2009).

Individual heterogeneity as a biological process

Methodological developments of CR models have consider-
ably increased the relevance of CR studies to address ques-
tions not only in ecology, but also in evolution. A key feature 
of this development is the increased ability of CR models 
to account for variation between individuals in demographic 
parameters as well as detection probability at the scale 
assumed to be relevant in the studied context. This scale can 
be the individual, rather than permanent groups (e.g. sex), 
or temporary aggregates of individuals (e.g. reproductive 
states). The development of evolutionary biology as a power-
ful conceptual and methodological framework for biological 
disciplines (Dobzhansky 1973) has brought a new perspec-
tive on individual heterogeneity. In CR studies, instead of 
being addressed because of potential biases in estimates of 
abundance, survival probability or population growth rate 
(Crespin et al. 2008, Cubaynes et al. 2010, Pradel et al. 2010, 
Oliver et al. 2011, Abadi et al. 2013), individual heterogene-
ity has become the focus of studies because of its biological 
relevance. For evolutionary biologists, the individual level can 
be relevant to address natural selection if heritable variation 
is expressed at this level (Chambert et al. 2014). In addition, 
variation between individuals in demographic parameters 
is relevant to population ecology and dynamics, whether it 
concerns traits that are heritable, or not, and whether it can 
be accounted for using observed variables, or not (Kendall 
and Fox 2002). Indeed, both population extinction risk and 
viability depend on the degree and structure of individual 
heterogeneity in survival probability and reproductive param-
eters (Conner and White 1999, Stover et al. 2012). 

Starting from classes of models where demographic 
parameters varied with time (Jolly 1965), groups of indi-
viduals, or age, the development of software programs to 
build multistate models (Arnason 1972, 1973) in the 1990s 
has considerably increased the attractiveness of CR models. 
These models indeed allow biologists to address questions 
about a large range of factors structuring a population, which 
determine individual sequences of states between which indi-
viduals move in a stochastic manner (Nichols et al. 1994, 
Nichols and Kendall 1995). These models triggered studies of 
life histories using CR models (Cam et al. 1998, Hadley et al. 
2007). Another class of approaches, multievent models 
(Pradel 2005), has also helped biologists address questions 

about the influence of ‘state’ on demographic parameters 
(Sanz-Aguilar et al. 2011). Indeed, one of the difficulties 
in CR studies is that ‘state’ may not be observed with cer-
tainty, or even not be observed at all (Desprez et al. 2013). 
Moreover, the development of user-friendly software to build 
models with individual covariates has also stimulated work 
in evolutionary ecology using CR data (Gimenez et al. 
2009). The question of time-specific individual covari-
ates with missing values is still a current issue (Bonner and 
Schwarz 2006). The ability of CR models to accommodate 
variation between individuals in demographic parameters 
raises the issue of methods of inference about model param-
eters in CR studies (Pledger and Schwarz 2002, Royle 2008, 
Gimenez and Choquet 2010). This issue is tightly linked 
to the level of stratification of populations, or of aggrega-
tion of observations (Cooch et al. 2002). As emphasized by 
Nichols (2002): “If we view an individual organism’s fate or 
behavior at any point in space and time as a unique event 
not capable of informing us about the likelihood of the 
event for other individuals or points in space and time, then 
generalization and prediction become impossible”. To allow 
formal statistical inferences about variation in demographic 
parameters and detection probability in populations, CR 
models rely on assumptions, notably regarding unobserved 
heterogeneity (e.g. a distribution of random effects; Royle 
2008, or a mixture model; Péron et al. 2010, Marescot et al. 
2011). 

Assessing senescence in the wild: an increasingly 
popular focus of CR studies

The process of senescence, which can be interpreted in the 
context of the allocation principle as the tradeoff opposing 
performance during early life and performance in late life 
(Baudisch and Vaupel 2012, Lemaître et al. 2015), has been 
the focus of a large number of empirical studies during the 
last decade (reviwed by Nussey et al. 2013). As imperfect 
detection of individuals is the rule in free-ranging populations 
(Gimenez et al. 2008), CR has become the gold standard to 
measure reliably actuarial senescence in the wild (Loison et al. 
1999, Bouwhuis et al. 2012). The question of level of infer-
ence has recently emerged as a critical point in CR studies of 
senescence (Péron et al. 2010, Marzolin et al. 2011). Based 
on early work by human demographers addressing heteroge-
neity in mortality risk (Vaupel et al. 1979), ecologists have 
often used the concept of frailty. However, Vaupel and Yashin 
(1985) considered the case of a heterogeneous population 
with two classes of individuals, frail and robust ones. As time 
passes and individuals age, there is a disjunction between the 
variation of the mean survival probability (i.e. when pooling 
frail and robust individuals) with age, and the variation in 
survival probability with age within each group (Fig. 1, 2). 
Ignoring heterogeneity in mortality risk may lead to flawed 
inferences about aging rate (Vaupel and Yashin 1985, Zens 
and Peart 2003), a phenomenon documented in wild animals 
using CR models (Nussey et al. 2008, Péron et al. 2016). This 
phenomenon has long been acknowledged in wildlife studies 
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for life stages other than senescence (e.g. nest mortality; 
Green 1977 and Johnson et al. 1986 and Burnham and Rex-
stad 1993 in the context of CR studies). The consequences 
of ignoring individual heterogeneity in survival probability 
have also been investigated in CR studies using special data-
sets with perfect detection of individuals (Cam et al. 2002a, 
2013, Wintrebert et al. 2005, Fox et al. 2006, Aubry et al. 
2011, Knape et al. 2011). 

The requirement of accounting for heterogeneity in sur-
vival studies was raised by human demographers very early 
(which distribution to use to account for individual het-
erogeneity in mortality risk, Manton et al. 1986) and has 
become a key topic in ecology. Some demographers argued 
that observable criteria might not account for individual 
heterogeneity in a satisfactory manner, and developed mixed 
models or mixture models for time to event data (Kannisto 
1991, Abbring and Van Den Berg 2007). The debate about 
the appropriate distribution to consider is also taking place 
in ecology (Gimenez and Choquet 2010, Péron et al. 2010, 
2016). However, in CR studies, biologists use discrete data 
(e.g. mixed binomial models for survival), which may lead 
to fewer issues with parameter identifiability and assump-
tions than hazard models with frailty (Wienke 2010). More-
over, to some extent, the idea of addressing heterogeneity 

using a distribution of latent demographic traits is coherent 
with approaches to quantify variation in populations that 
are familiar to evolutionary biologists, namely, variances 
in traits in quantitative genetics (Lynch and Walsh 1998, 
Chambert et al. 2013, 2014). Recently capture–recapture 
animal models (CRAM) have been developed to estimate 
heritability of demographic parameters (Papaïx et al. 2010).

Detection of tradeoffs between life history traits

Tradeoffs are one of the cornerstones of the theory of life 
histories (Roff 1992). They are based on the principle of 
allocation (Cody 1966) and express the idea that individuals 
possess a limited amount of energy and have thereby to share 
energy among various functions so that individuals allocating 
a lot of energy into current reproduction cannot allocate as 
much into survival or future reproduction (Roff 1992). How-
ever, empirical analyses have often failed to detect tradeoffs 
in the wild because of individual heterogeneity in resource 
acquisition. van Noordwijk and de Jong (1986) indeed dem-
onstrated that positive associations between current repro-
duction and future survival or reproduction occur when 
individual heterogeneity in resource acquisition is greater 

Figure 2. Senescence is masked when individual heterogeneity is not 
accounted for: finite-mixture capture–recapture model. We simu-
lated the fate of 1000 individuals from a single cohort that were 
split into a group of robust individuals in proportion π with con-
stant high survival ϕR and a group of frail individuals with survival 
ϕF that aged over the 20 years of the study according to the relation-
ship logit a aF( ( ))φ β β= +0 1 . We used π = 0.3, ϕR = 0.85, β0 = 0 and 
β1 = −0.07. We considered the same detection probability p = 0.5 
for all individuals. We report the age-specific survival patterns from 
two models in which 1) we ignored individual heterogeneity (in 
blue) and 2) we used mixture models with two hidden classes of 
individuals to handle with heterogeneity (in green), both to be 
compared to the actual trend that we used to simulate the data (in 
grey). Clearly, ignoring individual heterogeneity obscures senescence 
in survival. We refer to the Supplementary material Appendix 1 for 
more details.

Figure 1. Senescence is masked when individual heterogeneity is not 
accounted for: random-effect capture–recapture model. We 
simulated the fate of 500 individuals (in grey) from a single cohort 
with survival decreasing as they age over a 20-year study. We  
also added a frailty for each individual logit a ai i( ( ))φ β β ε= + +0 1  
where ε σi N∼ ( , )0 2 . We used β0 = 1, β1 = −0.05, and σ = 1. We 
considered the same detection probability p = 0.5 for all individuals. 
We report the age-specific survival patterns from two models in 
which 1) we ignored individual heterogeneity (in blue) and 2) we 
incorporated an individual random effect to handle with this source 
of heterogeneity (in green), both to be compared to the actual trend 
that we used to simulate the data (in red). Clearly, ignoring indi-
vidual heterogeneity obscures senescence in survival. We refer to the 
Supplementary material Appendix 1 for more details.
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than individual heterogeneity in resource allocation. The 
development of multistate models has attracted evolutionary 
biologists to study tradeoffs within the CR arena (Cam et al. 
1998, Yoccoz et al. 2002). Individuals are assumed to make 
allocation decisions according to their own state (McNamara 
and Houston 1996). Consequently, any unobserved feature 
of ‘state’ may explain why tradeoffs are not detected. Experi-
mental approaches may help unveil tradeoffs (Reznick 1985), 
but may also go against heterogeneity (Festa-Bianchet et al. 
1998, Yoccoz et al. 2002). At the extreme, each individual can 
be assumed to be in a unique ‘state’ that cannot be measured, 
and tradeoffs might not be detected. Some observational CR 
studies have provided evidence of tradeoffs after identifying 
traits that reliably described changes in individual state (e.g. 
social rank, mass, etc., Hamel et al. 2009), by taking advan-
tage of unfavorable conditions (Descamps et al. 2009) or by 
distinguishing direct from indirect effects (Cubaynes et al. 
2012a). The development of hierarchical CR models with 
individual heterogeneity has allowed investigators to assume 
a distribution of latent life history traits in populations 
(Royle 2008, Gimenez and Choquet 2010). In particular, 
Buoro et al. (2010, 2011) have been successful at detecting 
tradeoffs using this type of approach. 

How to infer individual heterogeneity in CR 
models

In this section, we provide details about the CR models used 
in the case studies reviewed above. Specifically, we focus on 
multistate, random-effect and finite-mixture CR models 
possibly including individual covariates because these are 
currently the most commonly used tools to incorporate indi-
vidual heterogeneity and deal with detectability less than one. 
We focus on survival and open populations in the following 
tutorial, but the methods are applicable to other CR model 
parameters (Matechou et al. 2016), including the detection 
probability, and in other contexts such as closed populations. 
For the sake of illustration, we simulate data in R that we 
analyze 1) in a frequentist framework using maximum likeli-
hood methods with program MARK (White and Burnham 
1999) called from R using the package RMark (Laake 2013; 
alternatively, see the R package marked by Laake et al. 2013) 
and E-SURGE (Choquet et al. 2009) and 2) in a Bayes-
ian framework using Markov chain Monte Carlo methods 
with program JAGS (Plummer 2003) called from R using 
the package R2Jags. Below we present results from the fre-
quentist approach only. The code to simulate data and fit CR 
models is available in the Supplementary materials and from 
GitHub (https://github.com/oliviergimenez/indhet_in_
CRmodels). 

Measured individual heterogeneity: individual 
covariates and multistate CR models

Individual covariates
We start with a simple example of an individual i with the 
encounter history hi = 101 where ‘1’ is for detected and ‘0’ 

for non-detected. Here, individual i was detected on the first 
sampling occasion, then missed and eventually detected again 
on the last sampling occasion. We consider the Cormack–
Jolly–Seber model for open populations and assume that 
neither survival probability ϕ between two sampling occa-
sions nor detection probability p at a sampling occasion vary 
between individuals. Then, the contribution of individual i to 
the model likelihood is:

Pr h p pi( ) = −( )φ φ1  (1)

Now let us assume that we are able to measure individual 
heterogeneity under the form of an individual covariate, 
say xi, which takes a specific value for individual i (Pollock 
2002). We assume the covariate to characterize the individual 
throughout the CR study (i.e. it is not a time-varying covari-
ate). Then, individual variation in the survival probability 
(or the detection probability) can be partly explained by this 
covariate through: 

logit φ β βi ix( ) = +0 1  (2)

where ϕi is the survival probability for individual i, 

logit u( ) =
−
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 is the logit function and is used here as 

a constraint to make sure that survival is estimated between  
0 and 1, and the β’s are regression coefficients to be estimated 
(North and Morgan 1979). Assuming now a model with 
individual-specific survival, Eq. 1 becomes:

Pr h p pi i i( ) = −( )φ φ1  (3)

We do not estimate survival for each individual, but instead 
the regression coefficients β’s in Eq. 2 by first using the reciprocal 
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The covariate xi may be continuous such as body mass or dis-
crete such as sex. If the covariate is discrete, it is usually referred 
to as a group in the CR literature (Lebreton et al. 1992).

So far, we have assumed that this covariate does not 
vary over time, in other words that an individual i has the 
same value xi of the covariate whatever the sampling occa-
sion (i.e. matching with the concept of frailty sensu stricto). 
When dealing with time-varying individual covariates, which 
matches the concept of dynamic frailty (for unobserved 
heterogeneity), we then need to distinguish between discrete 
and continuous covariates.

Discrete time-varying individual covariates and multistate CR 
models
Discrete time-varying individual covariates are referred to 
as ‘states’ in the CR literature (e.g. breeder/non-breeder 
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or infected/non-infected), and are analyzed with so-called 
multistate CR models (Schwarz et al. 1993, Lebreton et al. 
2009). Let us assume that we measure a time-varying indi-
vidual covariate with two levels, A and B, and that individual 
i has now the encounter history hi = A0B with obvious inter-
pretation. Two things might have happened on the second 
sampling occasion at which the individual was not detected: 
either it stayed in state A or it made a transition to state B. 
The transition event immediately calls for the introduction of 
additional parameters, namely the transition probability ψAB 
from state A to state B and ψAB from state B to state A. The 
probability of staying in state A (or B) is obtained as the com-
plementary probability ψ ψAA AB= −1  (or ψ ψBB BA= −1 ). 
The two events ‘being alive in state A’ and ‘being alive in state 
B’ at the second sampling occasion cannot occur together: 
these are mutually exclusive. As a result, the contribution 
of individual i to the model likelihood has two components 
depending on the actual underlying encounter history AAB 
or ABB:

Pr h p p

p p

i A
AB

A
AB

A
AB

B
BA

( ) = −( ) −( ) +

−( ) −( )
φ ψ φ ψ φ ψ

φ ψ

1 1

1 1
 (5)

Note that p does not depend on state for simplicity, but 
this does not need to be the case. An example of the use  
of multistate CR models to detect life-history tradeoffs 
in the presence of individual heterogeneity is provided in 
Table 2.

Continuous time-varying individual covariates
Continuous time-varying individual covariates are difficult to 
deal with. Ideally, we have:

Pr h p pi i i( ) = −( )φ φ1 21  (6)

with

logit φ β βit itx( ) = +0 1  (7)

where ϕit is the survival probability for individual i between 
sampling occasions t and t + 1 and xit is the value of the 
covariate for individual i at occasion t. However, this only 
corresponds to the ‘ideal’ situation because when an indi-
vidual is not detected at a particular sampling occasion, 
then the value of the covariate is generally unknown, which 
makes it impossible to form Eq. 7. A first possibility is to 
omit individuals with missing values or to replace the miss-
ing values by, for example, the mean of all covariate values 
observed for an individual. These ad hoc approaches result 
in a loss of information and bias in parameter estimates and 
should be avoided (Kendall et al. 2003, Lee et al. 2016). A 
more formal approach consists in imputing missing covari-
ate values from an underlying distribution that is used to 
model the change in covariate values over time, typically 
a first-order Markov process such as a random walk (Bon-
ner and Schwarz 2006, Langrock and King 2013; see also 
Worthington et al. 2015). A second possibility involves the 
discretization of the covariate in two or more levels so that 
multistate CR models can be used (Nichols et al. 1992). 
Lastly, inference can be based on a conditional likelihood 
approach using only the observed covariate values – the so-
called trinomial approach (Catchpole et al. 2010). Several  
studies have compared the statistical performances of these 
methods (Bonner et al. 2010, Langrock and King 2013) 
and found that imputation methods were sensitive to the 
covariate model and that all methods were sensitive to the 
detection probability and the number of missing values. In 
practice, discretizing the continuous covariate and using 
multistate CR models is a pragmatic approach that can 
easily be implemented in existing software packages.

Unmeasured individual heterogeneity: random-effect 
and finite-mixture CR models

If for some reason, heterogeneity cannot be measured, or 
there is a reason to believe that individual covariates do not 
capture the relevant variation, it can yet be incorporated 
using two approaches. 

Table 2. Detection of a tradeoff between reproduction and survival using multistate capture–recapture models after individual heterogeneity 
is accounted for. We simulated multistate capture–recapture data with two states, non-breeding (NB) and breeding (B). To mimic individual 
heterogeneity, we considered robust individuals with NB survival equal to 0.7 and B survival equal to 0.8 and frail individuals with NB 
survival equal to 0.7 and B survival equal to 0.6, the only difference being in the survival of frail breeders that is much lower than that of 
robust breeders. For each group, we simulated the fate of 100 newly marked individuals in each year of a 6-year experiment. We report 
parameter estimates from two multistate models in which 1) we ignored individual heterogeneity (column ‘ignoring individual heterogeneity) 
and 2) we explicitly incorporated an individual covariate to handle this source of heterogeneity (column ‘incorporating individual 
heterogeneity’). The parameters we used to simulate the data are given in the column ‘truth’. We refer to the Supplementary material 
Appendix 1 for more details. The cost of breeding on survival is detected only in frail individuals after accounting for individual heterogeneity 
through quality (∆AICc=120).

Parameter Ignoring individual heterogeneity Incorporating individual heterogeneity Truth 

Survival of frail non-breeders 0.69 [0.67; 0.72] 0.70 [0.66; 0.73] 0.7 
Survival of frail breeders 0.70 [0.68; 0.72] 0.58 [0.55; 0.61] 0.6
Survival of robust non-breeders 0.69 [0.67; 0.72] 0.69 [0.65; 0.72] 0.7
Survival of robust breeders 0.70 [0.68; 0.72] 0.80 [0.77; 0.82] 0.8
Transition from non-breeding to breeding 0.78 [0.75; 0.80] 0.78 [0.75; 0.80] 0.8
Transition from breeding to non-breeding 0.31 [0.29; 0.33] 0.31 [0.28; 0.33] 0.3
Detection 0.90 [0.88; 0.91] 0.90 [0.88; 0.91] 0.9
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Random-effect CR models
The usual random-effect approach has been adapted to CR 
models (Coull and Agresti 1999, Royle 2008, Gimenez and 
Choquet 2010). We write:

logit φ β εi i( ) = +0  (8)

where the εi’s are normally distributed with mean 0 and 
variance σ2 to be estimated, which is to be plugged in Eq. 3  
using the reciprocal logit function. To fit this random-effect 
model, one can adopt a Bayesian (Royle 2008) or a Frequen-
tist approach (Gimenez and Choquet 2010). More complex 
structures in the random effects can be considered (heritabil-
ity: Papaïx et al. 2010; nested effects: Choquet et al. 2013). 
An example of the use of random-effect CR models to detect 
senescence in the presence of individual heterogeneity is 
provided in Fig. 1.

Finite-mixture CR models
Another avenue to handle with unobserved individual hetero-
geneity is to use finite-mixture models (Pledger et al. 2003, 
2010, Pledger 2005, Pledger and Phillpot 2008). These mod-
els assume that individuals can be categorized into a finite 
number of heterogeneity classes (hidden states). More explic-
itly, an individual may be alive in class C1 or class C2. Then, 

Pr h p p p pi
C C C C( ) = −( ) + −( ) −( )π φ φ π φ φ   1 1 2 21 1 1  (9)

where π (resp. 1 − π) denotes the proportion of newly marked 
individuals in class C1 (resp. C2). Transition between classes 
can be considered (Pradel 2009). An example of the use of 
finite-mixture CR models to detect senescence in the pres-
ence of individual heterogeneity is provided in Fig. 2. 

Hidden-Markov modeling framework

CR models can be fruitfully expressed as state-space mod-
els in which the biological process (survival for example) is 
explicitly distinguished from the observation process (detec-
tion) (Gimenez et al. 2007, 2012, Royle 2008, King 2012). In 
particular, multistate CR models incorporating uncertainty 
in state assignment – multievent CR models – have been for-
mulated as hidden-Markov models (HMM; Zucchini et al. 
2016) by Pradel (2005; reviewed by Gimenez et al. 2012), 
a particular case of state–space models in which the states 
are Markovian (i.e. the next state depends only on the cur-
rent state and not on the sequence of states that occurred 
before). An advantage of the HMM formulation of CR mod-
els is that it provides high flexibility in the way individual 
heterogeneity is modeled. For example, the HMM formula-
tion of finite-mixture CR models can easily be extended to 
consider transitions between classes of heterogeneity (Pradel 
2009, Cubaynes et al. 2010). Let us define the states alive in 
class 1 (‘C1’), alive in class 2 (‘C2’) and dead (‘D’). The indi-
viduals can go undetected (‘0’) or detected (‘1’). Initially, the 
state of an individual is driven by the vector of initial state 
probabilities:

Π = − π π1 0

where the states C1, C2 and D are in columns in that order. 
Then the observation process at first capture applies through:
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where the states are in rows and the observations (or events) 
are in columns (0 and 1 in that order). Now that the fate of 
individuals at first capture occasions is modeled, the survival 
and observation processes occur successively at the subse-
quent occasions. The survival process is governed by: 
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where the states at t are in rows and the states in t + 1 are 
in columns. Individuals can be allowed to move from one 
heterogeneity class to the other through transition prob-
abilities ψ by multiplying the survival matrix by a transition 
matrix:
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The observation process at occasion t is modeled using: 
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where states are in rows and observations in columns. The 
probability in Eq. 9 can be written as the product of the 
matrices above (Pradel 2005).

Is individual heterogeneity statistically relevant?

Testing the statistical relevance of individual heterogeneity 
can be done in two ways. First, the quality of fit of models 
with heterogeneity to CR data can be assessed using goodness-
of-fit tests. An ad-hoc procedure was proposed in the context 
of finite-mixture models by considering specific combina-
tions of components of the goodness-of-fit test for homoge-
neous models (Péron et al. 2010). A more formal approach is 
being developed (Jeyam et al. pers.comm.) based on methods 
used in behavioral sciences. Second, models with and with-
out heterogeneity can be compared using hypothesis testing 
or model selection. For multistate models, model selection 
using the Akaike information criterion (AIC; Burnham and 
Anderson 2002) is usually favored as illustrated in Table 2. 
In the Bayesian context, several methods have been used 
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and we refer to review papers for guidelines (O’Hara and 
Sillanpää 2009, Tenan et al. 2014, Hooten et al. 2015). In 
random-effect models, the question boils down to testing 
whether the variance of the random effect is zero, which can 
be addressed using likelihood ratio tests (Gimenez and Cho-
quet 2010) but may be difficult to do in a model selection 
framework (Bolker et al. 2009). We refer to O’Hara and Sil-
lanpää (2009) for Bayesian methods (see also Royle 2008, 
Chambert et al. 2014). In finite-mixture models, standard 
tools from the model selection framework, namely the AIC, 
can be used (Cubaynes et al. 2012b), although it may fail 
in the context of detecting senescence (Supplementary mate-
rial A in Péron et al. 2016). In a Bayesian context, the devi-
ance information criterion (DIC; Spiegelhalter et al. 2014) 
is known to perform poorly on mixture models, and the 
Watanabe–Akaike information criteria (wAIC; Gelman et al. 
2014) holds promise in this context, although it is yet to be 
used with CR models.

Discussion and research perspectives 

Random effects versus mixture?

In studies based on CR models built in the context of 
closed or open population CR models, as well as in human 
demography, there is currently a debate about the distribu-
tion to consider to account for individual heterogeneity in 
demographic parameters (Yashin et al. 2001, Péron et al. 
2010). This debate sometimes focuses on the biological jus-
tification of continuous distributions versus mixture models 
(Péron et al. 2010). The debate also focuses on alternatives 
to distributions that might be unrealistic or inadequate 
(Péron et al. 2010). This question is not specific to CR mod-
eling (Hamel et al. 2016). Clusters of individuals sharing 
values of latent traits can be identified using mixture mod-
els. Recently, Hamel et al. (2016) addressed the question of 
the identification of reproductive and growth tactics in long-
lived mammals using mixture models. They also used simula-
tions and showed that in many cases the number of clusters 
can be chosen using an information theoretic or a bootstrap 
approach. Alternatively, infinite mixture models could be 
developed for CR data (Rasmussen 2000, Ohlssen et al. 
2007, Raman et al. 2010), where the number of clusters is 
a priori very large, but the number of clusters including at 
least one individual is estimated and can range from 1 to a 
large number; the latter situation leads to a distribution of 
demographic parameters that approaches a continuous one 
(Ohlssen et al. 2007). Rather than comparing models that 
vary in complexity using for instance an information crite-
rion, Bayesian nonparametric approaches fit a single model 
that can adapt its complexity to the data (Gershman and 
Blei 2012; see Ford et al. 2015 and Manrique-Vallier 2016 
for applications to CR models). Moreover, the question of 
how to account for heterogeneous detection probability in 
CR models designed to estimate population size has a very 
long history (Carothers 1973, Link 2003, Ghosh and Norris 

2005). Carothers (1973) investigated the consequences of 
violations of the assumption of equal detection probability 
on estimates from the Jolly–Seber model. He concluded that 
“any distribution is, from the point of view of investigating 
bias, as good as any other with the same [mean detection 
probability] and [coefficient of variation], and it is therefore 
justifiable to select a distribution on the grounds of compu-
tational convenience alone”. The number of classes might be 
itself of interest, but in the framework of closed populations, 
there is no straightforward means of determining the number 
of components of a mixture model for detection probability 
(Link 2003), and it is strongly advised against trying to inter-
pret the mixture parameters (Shirley Pledger pers. comm.). 

Change in latent values of demographic parameters 
over lifetime

In standard models for longitudinal data with individual 
heterogeneity, an independent subject-specific random 
effect is assumed to be constant over time for each subject 
(Vaupel and Missov 2014), which matches early versions 
of the concept of frailty (Vaupel et al. 1979). Generally, in 
CR studies using mixture models, each individual is also 
assumed to be a member of a latent class when it enters 
the study, and it does not change class. Mortality risk or 
breeding success at time 0 (when the individual enters the 
study) is assumed to be perfectly correlated with the risk 
later in life (Wienke 2010). However, this assumption does 
not necessarily hold, and models accommodating changes 
in individual latent vital rates may offer an interesting 
basis to test biological hypotheses. An alternative approach 
allowing individuals to experience (reversible) changes in 
latent vital rates could be based on the ontogenetic view 
of individual differences (Senner et al. 2015). This can be 
achieved with ‘dynamic frailty’ models (Manda and Meyer 
2005, Putter and Van Houwelingen 2014), hidden Markov  
models (Johnson et al. 2016), Latent Class transition models 
or mixture models, in which individuals can change latent 
class over time (Kaplan 2008). Hidden Markov models are 
now commonly used in CR studies, but specific applica-
tions to change in latent demographic parameters are still 
rare (Pradel 2005, Cubaynes et al. 2010).

Initial conditions

An overlooked issue in CR studies using multistate models 
is the issue of ‘initial conditions’. Before estimating the 
parameters of a model accounting for a stochastic process 
with dependence between consecutive states (e.g. breeding 
states), one has to think about how the process was ‘initial-
ized’. Studies of reproduction necessarily start recording 
breeding outcomes at the first breeding event (recruitment, 
or first observed breeding attempt). More generally, studies 
modeling reproductive outcomes from recruitment onwards 
(Cam et al. 1998, Yoccoz et al. 2002) assume that the start of 
the process generating the observed reproductive states coin-
cides with the start of reproductive life for each individual 
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(Wooldridge 2005). Nevertheless, the process governing the 
first breeding outcome can be the same as the process gener-
ating the subsequent observations in the individual lifetime 
trajectory (Skrondal and Rabe-hesketh 2014). Such a process 
can include unobserved determinants of breeding outcome. 
In dynamic models of reproduction incorporating the effect 
of past breeding outcome at time t on the probability of breed-
ing successfully at time t + 1 (e.g. multistate CR models), the 
outcome of the first reproductive attempt (at time t) is not 
considered as the realization of a random process, because 
there is no reproduction at time t – 1. Nevertheless, failure 
to incorporate unobserved factors governing breeding success 
probability at recruitment can translate into overestimation 
of transition probabilities between subsequent reproduc-
tive states (Heckman 1981, Prowse 2012). This is particu-
larly problematic in studies of changes in reproductive costs 
throughout the lifetime (Sanz-Aguilar et al. 2008), or of expe-
rience-specific variation in breeding outcome (Nevoux et al. 
2007). Interestingly, Sanz-Aguilar et al. (2008) have inter-
preted evidence of higher reproductive costs of reproduction 
at recruitment as a consequence of within-cohort mortality 
selection, with frailer individuals incurring higher reproduc-
tive costs than robust ones. The initial conditions problem 
can be overcome using a joint modeling approach of the 
processes governing reproductive success at recruitment and 
subsequent breeding occasions (Skrondal and Rabe-hesketh 
2014). If CR data are available from the pre-breeding period, 
then unobserved and observed determinants of breeding state 
can be considered simultaneously (Fay et al. 2016b). 

Inference about individual heterogeneity

Two papers have revived interest in unobserved heterogene-
ity in demographic parameters in CR studies: Steiner et al. 
2010 and Orzack et al. 2011. More specifically, these papers 
have drawn attention to the approaches used to discrimi-
nate between hypotheses about sources of variation in CR 
histories. In CR studies, an influential book by Burnham 
and Anderson (2002) has promoted the use of multimodel 
inference such as information criteria to address non-mutu-
ally exclusive biological hypotheses about the processes gov-
erning mortality, or the arrangement of reproductive states 
over lifetime trajectories of animals. For example, models 
accounting for state-dependence in survival or reproduc-
tion can be considered (multistate or multievent models; 
Sanz-Aguilar et al. 2008), models accounting for unobserved 
heterogeneity in these demographic parameters too (Royle 
2008, Marzolin et al. 2011), as well as models accounting 
for both sources of variation in survival and reproduction 
(Fay et al. 2016a). This contrasts with approaches based on 
a single model (namely, state-dependence) and evaluation of 
the degree of consistency of observed individual CR histories 
with metrics summarizing key features of histories simu-
lated using parameters estimated with the model in question 
(Steiner et al. 2010, Orzack et al. 2011).

By definition, variation in individual trajectories sim-
ulated using parameters estimated with multistate CR 

models is not caused by fixed, unobserved heterogene-
ity between individuals in their demographic parameters 
(Tuljapurkar et al. 2009, Steiner and Tuljapurkar 2012). 
The variation in arrangements of states in simulated data 
stems from the realization of random variables governed 
by probabilities; the resulting pattern is called ‘dynamic 
heterogeneity’ (Tuljapurkar et al. 2009), or ‘individual sto-
chasticity’ (Caswell 2009). Several papers have provided 
evidence that there is a good match between observed and 
simulated features of individual histories (Steiner et al. 
2010, Orzack et al. 2011, Steiner and Tuljapurkar 2012). 
These studies suggest that stochastic demographic processes 
have been overlooked in life history studies, and that latent, 
unobserved heterogeneity in demographic parameters 
might have been overstated in studies of longitudinal data 
from animals, whether detection probability is lower than 
one or not (Cam et al. 2002a, 2013, Steiner et al. 2010, 
Orzack et al. 2011). From a conceptual viewpoint, these 
studies attempt to caution biologists against over-inter-
preting amounts of unobserved individual heterogeneity in 
demographic parameters (“biologists commonly argue that 
large differences in fitness components are likely adaptive, 
resulting from and driving evolution by natural selection” 
Steiner and Tuljapurkar 2012, Cam et al. 2016). However, 
they have moved away from one of the dominating statis-
tical inference approaches in the CR area, namely multi-
model inference and information criteria (Burnham and 
Anderson 2002). Current research is addressing the ques-
tion of whether simulations based on multistate CR models 
or simply models with state-dependence used for longitu-
dinal data analysis allow discriminating between alterna-
tive hypotheses about the processes generating variability in 
individual histories (Plard et al. 2012, Bonnet and Postma 
2016, Cam et al. 2016).

Importantly, proponents of dynamic heterogeneity have 
overlooked notes of caution from other areas of research 
also using multistate models for inferences about longitu-
dinal data concerning possible biases in estimates of ‘state-
dependence’ (Heckman 1981, Ahmad 2014). A key issue 
in discriminating between processes generating variation in 
individual histories is that a Markov process (i.e. the basis 
of multistate models) and unobserved individual heteroge-
neity (for instance a random effect model, Royle 2008) can 
create similar patterns in arrangements of states along indi-
vidual trajectories (Ahmad 2014, Authier et al. 2017). This 
issue has stimulated a large body of work in econometrics 
(Heckman 1981, Ahmad 2014, Skrondal and Rabe-hesketh 
2014, Andriopoulou and Tsakloglou 2015). The hypothesis 
of a ‘communicating vessels’ phenomenon between sources 
of variation in CR histories should be considered in wild 
animal populations, as in econometrics studies (Ahmad 
2014, Plum and Ayllón 2015, Cam et al. 2016). Interest-
ingly, several CR studies have hypothesized that their results 
obtained using multistate models partly reflect heterogene-
ity between individuals in baseline breeding and survival 
probability (Cam et al. 1998), or phenotypic within-cohort 
mortality selection (i.e. the change in the composition of 
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a heterogeneous cohort including individuals with dif-
ferent baseline survival probabilities; Cam et al. 2002a, 
Barbraud and Weimerskirch 2004, Nevoux et al. 2007, 
Sanz-Aguilar et al. 2008). That is, they have hypothesized 
that their result may be caused by unobserved individual 
heterogeneity, a question now being addressed in studies of 
senescence (Péron et al. 2010, 2016). This suggests that CR 
models with both a Markovian structure (for observable, 
partially observable, or unobservable states) and unobserved 
individual heterogeneity might perform well with some 
datasets from wild animal populations (Fay et al. 2016a, b). 

Conclusion

Our review, although not exhaustive, demonstrates that the 
tremendous advances in CR modeling accomplished over 
the past 40 years provide investigators with a reliable way to 
address multiple facets of the process of individual heteroge-
neity in demographic parameters. Pioneer works by quanti-
tative wildlife biologists focused on individual heterogeneity 
in recapture or survival probability to avoid biased estimates 
of population size. The emergence of more general ques-
tions such as cause-specific sources of mortality in game- and 
non-game species (Johnson et al 1986, Koons et al. 2014) 
and the need for accurate assessment of the impact of global 
change on the demography of structured populations (Gul-
lett et al. 2014) have triggered collaborations between biolo-
gists and statisticians to make efficient use of data, robust 
inferences about demographic parameters, and achieve an 
increasing degree of realism in both the sampling and eco-
logical processes handled by CR models. As emphasized by 
Conroy (2009), the nature of questions that can be addressed 
nowadays has been greatly expanded to include evolution-
ary ecology, whose cornerstone is variation in demographic 
parameters between individuals both within and between 
populations. The relevance of dealing with individual het-
erogeneity to study eco-evolutionary processes has placed the 
topic of individual heterogeneity at the core of many empiri-
cal investigations using CR data (Table 1). Provided appro-
priate sampling design and sufficient data are available, the 
flexibility of modern CR models now allows assessing reliably 
the role of individual heterogeneity in ecology and evolution-
ary processes in the wild.

Data deposition

Data available from the Github: https://github.com/
oliviergimenez/indhet_in_CRmodels (Gimenez et al. 2017).
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