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(Pollock 2002). Generally however, complex situations 
arise where multiple covariates are required to capture 
patterns in survival. In such situations, one usually favors 
a multiple regression-like CR modeling framework that is 
however hampered by two issues: first, because it increases 
the number of parameters to be estimated, incorporating 
many covariates results in a loss of statistical power and a 
decrease in the precision of parameter estimates; second, 
correlation among the set of predictors—aka multicollin-
earity—may alter interpretation (see below).

To overcome these two issues, Grosbois et  al. (2008) 
recommended to perform a principal component analysis 
(PCA) on the set of explanatory variables before fitting CR 
models. PCA is a multivariate technique that explains the 
variability of a set of variables in terms of a reduced set 
of uncorrelated linear combinations of such variables—aka 
principal components (PCs)—while maximizing the vari-
ance (Jolliffe 2002). Grosbois et al. (2008) then expressed 
survival as a function of the PCs that explained most of the 
variance in the set of original covariates, typically the first 
one or the first two ones.

However, the main drawback of this approach is that 
the PCs are selected based on covariates variation pat-
tern alone, regardless of the response variable, and with-
out guarantee that survival is most related to these PCs 
(Graham 2003). To deal with this issue in the context of 
logistic regression, Aguilera et al. (2006) proposed to test 
the significance of all PCs to decide which ones should be 
retained, instead of a priori relying on the PCs that explain 
most of the variation in the covariates.

In this paper, we implement the algorithm proposed by 
Aguilera et al. (2006) to deal with many possibly correlated 
covariates in CR models, a method we refer to as princi-
pal component capture–recapture (P2CR). We apply this 
new approach to a case study on survival of Snow petrels 

Abstract Capture–recapture models for estimating demo-
graphic parameters allow covariates to be incorporated to 
better understand population dynamics. However, high-
dimensionality and multicollinearity can hamper estimation 
and inference. Principal component analysis is incorpo-
rated within capture–recapture models and used to reduce 
the number of predictors into uncorrelated synthetic new 
variables. Principal components are selected by sequen-
tially assessing their statistical significance. We provide an 
example on seabird survival to illustrate our approach. Our 
method requires standard statistical tools, which permits an 
efficient and easy implementation using standard software.
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Introduction

Capture–recapture (CR) methods (e.g., Lebreton et  al. 
1992) are widely used for assessing the effect of explana-
tory variables on demographic parameters such as survival 
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(Pagodroma nivea) that is possibly affected by climatic 
conditions. In this example, the issue of multicollinearity 
occurs, and summarizing the set of covariates in a subset of 
lower dimension is also crucial to get precise survival esti-
mates. Overall, P2CR models can be fitted with statistical 
programs that perform PCA and CR data analysis. The data 
and R code are available from GitHub at https://github.
com/oliviergimenez/p2cr.

Methods

We used capture–recapture (CR) models to study open 
populations over K capture occasions to estimate the prob-
ability �i (i = 1, …, K−1) that an individual survives to 
occasion i + 1 given that it is alive at time i, along with the 
probability pj (j = 2, …, K) that an individual is recaptured 
at time j—aka as the Cormack–Jolly–Seber (CJS) model 
(Lebreton et al. 1992). Covariates were incorporated in sur-
vival probabilities using a linear-logistic function:

where � is the intercept parameter, Xij is the value of covar-
iate j (j = 1,…, p) in year i (i = 1,…, K−1), and βj is its asso-
ciated slope parameter. Covariates were standardized to 
avoid numerical instabilities. To assess the significance of 
a covariate in CR models, we used the analysis of deviance 
(ANODEV; Skalski et al. 1993) that compares the amount 
of deviance explained by this covariate with the amount 
of deviance not explained by this covariate, the CR model 
with fully time-dependent survival serving as a reference. 
The ANODEV test statistic is given by:

where Dev(constant), Dev(X) and Dev(time) stand for the 
deviance of models with constant, covariate-dependent and 
time-dependent survival probabilities. To obtain the associ-
ated P value, the value of the ANODEV is compared with 
the quantile of Fisher–Snedecor distribution with 1 and 
K−1 degrees of freedom.

To reduce the dimension of the set of covariates (X1, 
…, Xp), we used PCA which aims at finding a small num-
ber of linear combinations of the original variables—the 
principal components (PCs)—while maximizing the vari-
ance in (X1, …, Xp). Because the variables measurement 
units often differ, we performed the PCA on the corre-
lation matrix (Jolliffe 2002). To select PCs, we used a 
forward model selection algorithm as proposed by Agu-
ilera et al. (2006) for the logistic regression. The forward 
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algorithm begins with no covariates in the model. Each 
PC is incorporated in simple linear regression-like CR 
models and the ANODEV P value calculated. The PC 
that has the lowest P value is added to the null model, say 
 PCk. Then the PCs that were not retained are incorporated 
along with  PCk in multiple regression-like CR models, 
and ANODEV P values are calculated. In other words, 
we need to assess the effect of  PCj for j ≠ k in the presence 
of  PCk to decide whether  PCj should be retained. To do 
so, Dev(constant) and Dev(X) are replaced by Dev(PCk) 
and Dev(PCk + PCj) in Eq. 2, where Dev(PCk + PCj) is the 
deviance of the model with survival as a function of both 
principal components  PCk and  PCj. We repeat the process 
until no remaining PC is selected.

All models were fitted using the maximum-likelihood 
method using MARK (White and Burnham 1999) called 
with R using package RMark (Laake 2013).

Case study

The Snow petrel is a medium sized Procellariiform spe-
cies endemic to Antarctica that breeds in summer. Birds 
start to occupy breeding sites in early November, lay-
ing occurs in early December and chicks fledge in early 
March. This highly specialized species only forages 
within the pack-ice on crustaceans and fishes. Data on 
survival were obtained from a long-term CR study on Ile 
des Pétrels, Pointe Géologie Archipelago, Terre Adélie, 
Antarctica. We refer to Barbraud et  al. (2000) for more 
details about data collection. We removed the first cap-
ture to limit heterogeneity among individuals, and 
worked with a total of 604 female capture histories from 
1973 to 2002.

The following covariates were included to assess the 
effect of climatic conditions upon survival variation: sea 
ice extent (SIE; http://nsidc.org/data/seaice_index/); air 
temperature, which was obtained from the Météo France 
weather station at Dumont d’Urville, as a proxy for sea 
surface temperature; southern Oscillation Index (SOI) as a 
proxy for the overall climate condition (https://crudata.uea.
ac.uk/cru/data/soi/). These environmental variables were 
averaged over seasonal time periods corresponding to the 
chick rearing period (January–March: summer period), the 
non-breeding period (April–June: autumn and July–Sep-
tember: winter), and the laying and incubation period of 
the same year (October–December: spring). In total, nine 
covariates were included in the analysis: sea ice extent in 
summer (SIEsummer), in autumn (SIEautumn), in winter 
(SIEwinter), in spring (SIEspring), annual SOI, air tem-
perature in summer (Tsummer), in autumn (Tautumn), in 
winter (Twinter) and in spring (Tspring).
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Results

The CJS model poorly fitted the data (χ2 = 221.2, df = 127, 
P < 0.01), and a closer inspection of the results revealed 
that the lack of fit was explained by a trap-dependence 
effect (Test2CT, χ2 = 103.1, df = 27, P < 0.01). Conse-
quently, we estimated two recapture probabilities that dif-
fered according to whether or not a recapture occurred the 
occasion before. By first attempting to simplify the struc-
ture of recapture probabilities, we were led to consider an 
additive effect of time and a trap effect (Electronic Supple-
mentary material, ESM). Estimates of recapture probabili-
ties ranged from 0.14 [standard error (SE) 0.07] to 0.79 (SE 
0.09) when no recapture occurred the occasion before and 
from 0.25 (SE 0.18) to 0.89 (SE 0.09) when a recapture 
occurred the occasion before (ESM).

Because of multicollinearity, we were led to counter-
intuitive estimates of regression parameters in the CR 
model including all covariates (ESM): the coefficient of 
SIE in autumn was estimated at 0.5 (SE 0.24) and that of 
SIE in winter was estimated at −0.5 (SE 0.21) while these 
two covariates were significantly positively correlated 
(rP = 0.67, P < 0.01).

When we applied the P2CR approach, the algorithm 
selected two PCs, namely PC3 (F1,27 = 7.34, P = 0.01) at 
step 1 and PC4 (F1,26 = 4.63, P = 0.04) at step 2 (ESM), but 
never did we pick PC1 as we would have done using a clas-
sical approach (Grosbois et  al. 2008). PC3 was positively 
correlated to SIE in summer and negatively correlated to 
temperature in winter, while PC4 was positively correlated 
to temperature in spring and negatively correlated to SIE in 
summer (ESM). Survival increased with increasing values 
of PC3 (Fig. 1), with high values of SIE in summer and low 
values of temperature in winter (resp. low values of SIE in 
summer and high values of temperature in winter) corre-
sponding to high (resp. low) survival.

Survival decreased with increasing values of PC4 
(Fig. 2), with high values of temperature in spring and low 
values of SIE in summer (resp. low values of temperature 
in spring and high values of SIE in summer) corresponding 
to low (resp. high) survival.

The P2CR approach also led to more precise survival 
estimates when compared to the model incorporating all 
original covariates (Fig. 3).

Discussion

We introduce a new approach combining principal com-
ponent analysis and capture–recapture models to deal 
with many possibly correlated explanatory covariates. Our 
approach requires standard statistical tools, which allows an 
efficient and easy implementation using standard software.

Fig. 1  Estimated survival of Snow petrel as a function of PC3 (solid 
line) with 95% confidence interval (shaded area). Low survival is 
associated with low values of PC3 that correspond to high values of 
air temperature in winter and low values of sea ice extent (SIE) in 
summer; high survival is associated with high values of PC3 that cor-
respond to low values of air temperature in winter and high values of 
SIE in summer

Fig. 2  Estimated survival of Snow petrel as a function of PC4 (solid 
line) with 95% confidence interval (shaded area). High survival is 
associated with low values of PC4 that correspond to low values of 
air temperature in spring and high values of sea ice extent (SIE) in 
summer; low survival is associated with high values of PC4 that cor-
respond to high values of air temperature in spring and low values of 
SIE in summer
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Snow petrels and climatic conditions

In summer, snow petrels exclusively forage within the 
pack-ice tens to hundreds of kilometers from the colony 
where they catch sea ice-associated species, such as 
Antarctic silverfish (Pleuragramma antarcticum) and 
Euphausiids, to feed their chick (Ridoux and Offredo 
1989). This is an energetically demanding period for 
breeding adults and, during years with reduced sea-ice 
extent, food resources may be less abundant and snow 
petrels may be forced to cover larger distances to find 
suitable foraging habitats, with potential survival costs. 
Assuming air temperature was a proxy of sea surface 
temperature variations, the negative effect of warmer 
temperatures on survival is coherent with general pat-
terns found between sea surface temperature and demo-
graphic parameters in seabirds (Barbraud et  al. 2012). 
In many marine ecosystems warmer temperatures are 
associated with decreased primary production and food 
resources for top predators. Although the low survival in 
1996 corresponded to a year with reduced sea-ice extent 
in summer, the drop in survival was high and remains 
unexplained at the moment.

Principal component CR models

When multiple covariates have to be considered to esti-
mate survival, both issues of dimensionality and multi-
collinearity can lead to biased estimates, inflated preci-
sion as well as lack of statistical power. In such a context, 
the P2CR modeling framework has proved particularly 
useful in our example, mainly because few PCs were 
selected which were easily interpretable. We acknowl-
edge that PCs with little interpretability might have been 
picked up by our method. To make the interpretation eas-
ier, PCA results can be post-processed by rotating axes 
to improve correlations between raw variables and PCs 
like in the varimax method (Kaiser 1958). Recent devel-
opments in the field of multivariate analyses could also 
be useful, like methods to handle with missing values in 
PCA (Dray and Josse 2015).

In statistical ecology, one of our objectives is to try 
and explain variation in state variables such as abun-
dance, survival and the distribution of species. Dimen-
sion-reduction methods are promising to deal with many 
correlated covariates for the analysis of CR or occupancy 
data.

Fig. 3  Survival of Snow petrel over time as estimated from the model with all original covariates (solid line, top panel) vs. the PC2R model 
(solid line, bottom panel). 95% confidence intervals are also displayed (shaded area)
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