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Methods

Abstract

Invasive rodents pose significant ecological, economic, and public health challenges. Robust 
methods are needed for estimating population abundance to guide effective management. Tra-
ditional methods such as capture-recapture are often impractical for invasive species due to ethi-
cal, legal and logistical constraints. Here, the application of hierarchical multinomial N-mixture 
models for estimating the abundance of invasive rodents using removal data is highlighted. Firstly, 
a simulation study was performed which demonstrated minimal bias, as well as good precision 
and reliable coverage of confidence intervals across a range of sampling scenarios. Additionally, 
the consequences of violating the population closure assumption were illustrated by showing 
how between-occasion dynamics can bias inference. Secondly, removal data was analyzed for 
two invasive rodent species, namely coypus (Myocastor coypus) in France and muskrats (Ondatra 
zibethicus) in the Netherlands. Using hierarchical multinomial N-mixture models, the effect of 
temperature on abundance was examined, while accounting for imperfect and time-varying cap-
ture probabilities. Additionally, this study demonstrated how to accommodate spatial variability 
using random effects, quantify uncertainty in parameter estimates, and account for violations of 
closure by fitting an open-population model to multi-year data. Taken together, these approaches 
demonstrate the flexibility and utility of hierarchical models in invasive species management.
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Introduction

Invasive species are a significant global issue, with wide-ranging impacts on ecosys-
tems, economies, and public health (Pyšek et al. 2020; Roy et al. 2024). Among 
these, the financial, epidemiological, social, and ecological costs associated with in-
vasive rodents are substantial, as they damage infrastructures, degrade agricultural 
systems, and act as reservoirs for zoonotic diseases (Diagne et al. 2023).

Effective management of invasive species requires the estimation of popula-
tion abundance for guiding control efforts and evaluating the success of erad-
ication or regulation programs (Williams et al. 2002; Thompson et al. 2021). 
However, the challenge in estimating animal abundance is that, because of 
imperfect detection, individuals are not always observed even when present 
(Borchers et al. 2010; Seber and Schofield 2023). Ignoring imperfect detection 
leads to biased estimates of population abundance (Kéry and Schmidt 2008). To 
account for imperfect detection, capture-recapture methods are usually used to 
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correct observed counts (McCrea and Morgan 2014). Yet, for invasive species, 
capture-recapture is often impractical, as ethical and management concerns typ-
ically prevent the release of captured animals.

An alternative approach involves the use of removal methods (Rodriguez de 
Rivera and McCrea 2021) in which individuals are captured and permanently 
removed from the study area during successive sampling occasions. This process 
leads to a decrease in the expected number of captures by a consistent proportion 
over time (rather than by a fixed amount decline), which informs on the total 
abundance as the initial population determines how quickly the number of indi-
viduals available for capture diminishes.

While standard removal methods are well-established (Moran 1951; Zippin 
1956; 1958, Rodriguez de Rivera and McCrea 2021) recent advances in popula-
tion ecology remain underutilized in the context of invasive species. Hierarchical 
models, in particular, have gained traction (Royle and Dorazio 2008; Kéry and 
Royle 2015) due to their ability to: (i) explicitly separate biological processes of 
interest (e.g., population dynamics) from observation processes (e.g., imperfect 
detection), thus enabling more accurate modeling; (ii) incorporate environmental, 
spatial, or temporal covariates at multiple levels, allowing exploration of how vari-
ous factors influence ecological processes; and (iii) share information across groups 
(e.g., years) by modeling parameters hierarchically with random effects, which im-
proves estimates for groups with fewer data.

In this paper, I showcase the application of a hierarchical formulation of 
removal models, the multinomial N-mixture model (Dorazio et al. 2005), to 
estimate the abundance of rodents in Europe. In this study, I focus on the 
coypu (Myocastor coypus) in France and the muskrat (Ondatra zibethicus) in the 
Netherlands. Both species are semi-aquatic rodents introduced to Europe in 
the early 20th century following escapes or releases from fur farms. The coypu, 
native to South America, has formed widespread invasive populations in France 
(Bonnet et al. 2023), where it causes significant damage to infrastructure and 
crops. Additionally, it serves as a healthy carrier of leptospirosis, a zoonotic 
disease with potentially serious consequences. Similarly, the muskrat, native to 
North America, has established extensive populations in the Netherlands. By 
burrowing into riverbanks, dykes, and dams, muskrats compromise the integ-
rity of these structures, posing a threat to public safety (Van Loon et al. 2017). 
Both species are also widespread in other European countries; updated distri-
bution maps are available via the European Alien Species Information Network 
(EASIN) platform (https://easin.jrc.ec.europa.eu/spexplorer/search/).

Using removal data, I demonstrate the application of the multinomial 
N-mixture model to estimate the abundance of rodent populations. First, I 
conduct a simulation study to evaluate the model’s performance under varying 
numbers of sampling sites and sampling occasions. Second, I present a case 
study on a coypu population in France to illustrate the hierarchical structure 
of the multinomial N-mixture model, demonstrating how covariates can be 
incorporated to account for variations in abundance and capture probabilities. 
Third, I use a case study on muskrats in the Netherlands to illustrate the inte-
gration of random effects within the model and demonstrate how to relax the 
closure assumption. To facilitate reproducibility, I provide the accompanying 
code and data, aiming to promote the broader adoption of removal models in 
the study of biological invasions.

https://easin.jrc.ec.europa.eu/spexplorer/search/
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Methods

Multinomial N-mixture model

Think of a dice with six sides. The dice has a 1 in 6 chance of landing on face 1, the 
same for face 2, and so on. If I roll the dice 30 times, I would expect, on average 
over many repetitions of this experiment, to get face 1 five times, face 2 five times, 
and so on. You can test this in program R by running the command “rmul9nom” 
(with arguments n = 1, size = 30 and prob = c(1/6, 1/6, 1/6, 1/6, 1/6, 1/6)) repeat-
edly. In this experiment, y1, the number of 1s, y2, the number of 2s, ..., and y6, the 
number of 6s, follows a multinomial distribution with parameters the number of 
rolls (30) and probabilities (1/6, 1/6, ..., 1/6).

Now think of a removal campaign conducted over 3 months. We record the 
number of rodents y1 captured in month 1, y2 in month 2, y3 in month 3, and 
let y4 represent the number of rodents never captured. Let p be the probability of 
capturing a rodent in a given month. The probability of capturing a rodent in the 
first month is π1 = p. The probability of capturing a rodent in the second month is 
π2 = (1-p)p the probability of not capturing it in the first month (1 - p) multiplied 
by the probability of capturing it in the second month p. The probability of captur-
ing a rodent in the third month is π3 = (1-p)(1-p)p, the probability of not capturing 
it in the first and second months, (1 - p)(1 - p), multiplied by the probability of 
capturing it in the third month, p. Finally, the probability of never being captured 
is π4 = 1 - (π1 + π2 + π3) the complement of the probability of being captured in the 
first, second, or third month. If we assume that N represents the abundance, then 
we have that the vector of counts (y1, y2, y3, y4) follows a multinomial distribution 
with parameters N and probabilities (π1, π2, π3, π4). This is the observation process. 
In general, we assume that N follows a Poisson distribution with parameter the 
expected number of rodents denoted λ. This is the state or ecological process. And 
there you have it, the multinomial N-mixture model for a removal experiment, 
which is similar to throwing a dice N times and the π’s give the probabilities that 
I get a given face of that dice. Unlike a fair die, however, the probabilities in a 
removal experiment are not equal; they reflect varying detection probabilities over 
time, which depend on factors like effort, animal behavior, or environmental con-
ditions. Also, in general, we monitor rodents in several populations i = 1,...,S and 
we need to estimate local abundance Ni. To do so, Dorazio et al. (2005) extended 
multinomial N-mixture models to account for spatial variation in abundance and/
or capture, and showed that abundance estimates had similar or better precision 
than those obtained from analyzing removal data for each population separately.

Parameters N, p, and λ are unknown and need to be estimated. In a frequentist 
framework, marginalization is performed by summing over all possible values of N 
(Dorazio et al. 2005). In a Bayesian framework, all these parameters are estimated 
directly, which simplifies the process (Royle and Dorazio 2006). Both parameters, 
λ and p, can be modeled as functions of explanatory spatial and temporal variables, 
in the spirit of generalized linear models, and Poisson (with a log link function) or 
logistic regressions (with a logit link function) for example.

To evaluate model adequacy, I used standard goodness-of-fit procedures adapted 
to both frequentist and Bayesian frameworks. In the frequentist framework, we ap-
ply a parametric bootstrap approach: we generate a large number of replicate data-
sets from the maximum likelihood estimates, refit the model to each replicate, and 
compute diagnostic statistics such as the Freeman–Tukey statistic. If the resulting 
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bootstrap p-values fall within a non-extreme range, this indicates no evidence of 
lack of fit. In the Bayesian framework, I assessed model adequacy using posterior 
predictive checks based on Bayesian p-values. At each MCMC iteration, a replicate 
dataset is drawn from the joint posterior distribution, and the Freeman–Tukey dis-
crepancy is computed for both the observed and replicate data. Given the condi-
tional multinomial structure of the model, which separates the observation process 
from the abundance process, I calculated two discrepancy measures: one for the 
detection histories and another for the total counts observed. Bayesian p-values 
near 0.5 (and away from 0 or 1) indicate no evidence of systematic lack of fit.

For a detailed description of the multinomial mixture model, I warmly recom-
mend chapter 7 in Kéry and Royle (2015).

Simulation study

I conducted a simulation study to evaluate the model’s performance by examining 
parameter bias under varying numbers of sampling sites and sampling occasions. I 
simulated removal data over 1, 5, 10 and 50 sites using a Poisson distribution with 
expected number of animals λ between 10 and 100 (20 values) for the ecological 
process. I simulated the observation process with a capture probability p varying 
between 0.3 and 0.9 (20 values) across 3, 5 and 10 occasions per site. In total, I 
considered 4800 scenarios. I fitted the multinomial N-mixture model to the sim-
ulated data within the frequentist framework using function “multinomPois()” in 
the R package “unmarked” (Kellner et al. 2023), and I repeated this procedure 100 
times. Eventually, I calculated the relative bias, root mean square error (RMSE), 
and coverage of the 95% confidence interval for each parameter.

To assess the effect of violating the closure assumption, I implemented an addi-
tional set of simulations in which the population could change between sampling oc-
casions. Specifically, individuals staying in the population with probability 0.8, and 
new individuals arrive according to a Poisson process with mean 1. Apart from these 
between-occasion dynamics, all other aspects of the simulation setup remained the 
same. This setup breaks the closure assumption in two ways. Some individuals leave 
the population between sampling occasions, violating the assumption that declines 
in abundance are due to removal alone; this can bias detection probability and abun-
dance estimates. New individuals enter between sampling occasions, inflating the 
pool of animals available for detection and leading to overestimation of abundance. 
Since I deliberately fit a closed model to data from an open process, any resulting 
bias directly reflects the impact of violating closure. While this simulation focuses 
on geographic closure, the same logic applies to demographic closure, where the stay 
and arrivals parameters correspond to survival and recruitment processes.

Note that I used a frequentist implementation for the simulation study to re-
duce computation time given the large number of scenarios. The model structure 
remains hierarchical, as in the Bayesian case studies, and both inferential approach-
es would yield similar results. The aim was to assess model performance across 
ecological and sampling conditions, not to compare statistical paradigms.

Case studies

In this section, I analyzed removal data from two rodent species: coypus in France and 
muskrats in the Netherlands. With these case studies, I aimed at illustrating specific fea-
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tures of hierarchical multinomial N-mixture models. For both species, I explored the 
potential effect of temperature on abundance (e.g., Gosling 1981; Simpson and Bou-
tin 1993). A comprehensive analysis of the ecological factors influencing population 
dynamics was beyond the scope of this work and will be addressed in future studies.

Coypus in France

Removal data on coypus were collected from annual control operations conducted 
since 2015 in several cities within the Hérault department, located in the Occitanie 
region of southern France. These operations are carried out year-round, with the ex-
ception of July and August. Coypus are trapped using cages by a network of volun-
teers coordinated by the Syndicat Mixte du Bassin de l’Or and the Fédération Dépar-
tementale des Chasseurs de l’Hérault (https://etang-de-l-or.com/lutte-ragondins/). 
For this study, I focus on data from 2022, specifically from sampling occasions in Feb-
ruary, March, and April. The data, covering S = 6 cities, are summarized in Table 1. 
I fitted a model where the expected number of coypus was modeled as a function 
of temperature, while the capture probability was allowed to vary by month. A key 
assumption of the multinomial N-mixture model is that abundance follows a Poisson 
distribution, which implies equal mean and variance. When this assumption is vio-
lated - i.e., in the presence of overdispersion - a common and effective solution is to 
replace the Poisson with a negative binomial distribution. I illustrate how to fit such 
an over-dispersed model using the coypu dataset. Note that a site random effect was 
not included here, as the spatial scale of the coypu dataset was limited. However, such 
effects may be important to consider in broader-scale programs where unobserved 
spatial heterogeneity is likely to be more pronounced, as in the muskrat case study.

Muskrats in the Netherlands

Removal data on muskrats in the Netherlands were collected by professional trap-
pers. The data were registered in atlas blocks (5 × 5 km) per periods of four weeks. 
For this study, I focus on data from 2014, specifically from sampling occasions in 
January, February, and March. The data were made available through the LIFE 
MICA project (Cartuyvels et al. 2024) and can be freely downloaded from https://
www.gbif.org/dataset/7d75109d-a6cb-4e90-89d0-79d08577c580 (Moerkens et 
al. 2025). The data, covering S = 215 cities (out of the 342 cities in the Neth-
erlands), are presented in Fig. 1. I fitted the same model as for the coypus data, 
except that I added a site random effect on abundance to accommodate the spatial 
variation that was not explained by temperature.

Table 1. Number of invasive coypus removed monthly and the average 3-month temperature across 
several cities in the Herault department, France, in 2022.

City
Removed in 

February
Removed in 

March
Removed in 

April
Averaged 

temperature

Candillargues 18 12 38 9.5
Lansargues 15 17 75 8.8
Mauguio 20 9 6 9.2
Saint-Nazaire-de-Pezan 169 41 15 9.3
Saint-Just 85 61 77 9.2
Valergues 0 1 3 9.4

https://etang-de-l-or.com/lutte-ragondins/
https://www.gbif.org/dataset/7d75109d-a6cb-4e90-89d0-79d08577c580
https://www.gbif.org/dataset/7d75109d-a6cb-4e90-89d0-79d08577c580
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Figure 1. Total number of invasive muskrats removed over the period January-February-March (top panel), and the average 3-month 
temperature (bottom panel) across the Netherlands in 2014.
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A key assumption underlying the proper use of multinomial N-mixture models 
is that of population closure, which assumes no births, deaths, immigration, or 
emigration occur during the trapping period. A straightforward approach to relax 
this assumption is to fit multiple years of data (a.k.a. stacking the data) into a 
standard multinomial N-mixture model. In this approach, year-site combinations 
are treated as separate sites, and year is included as a site covariate or random effect 
in the model. I used this method to evaluate a temporal effect on the relationship 
between temperature and abundance. Assuming an increase in temperature over 
time, one might predict a decoupling or weakening of the relationship between 
abundance and temperature. To test this, I conducted an additional analysis span-
ning the 1987–2014 period, modeling the slope of the temperature-abundance 
relationship as a linear function of time.

Implementation

For all analyses, I used the statistical language R (R Core Team 2024). I used the 
“tidyverse” (Wickham et al. 2019) suite of packages for data manipulation and 
visualization, “sf ” (Pebesma and Bivand 2023) for dealing with spatial data and 
“krigR” (Kusch and Davy 2022) to get temperature data. For the simulations, I 
used the R package “unmarked” (Kellner et al. 2023), see the “Simulation study” 
section. For the two case studies, I fitted models within a Bayesian framework 
using Markov chain Monte Carlo (MCMC) algorithms. I used both the “NIM-
BLE” (de Valpine et al. 2017) and the “ubms” (Kellner et al. 2022) packages. The 
former offers high flexibility, enabling users to define custom likelihoods, though 
it requires manual coding, while the latter features simpler syntax with pre-built 
multinomial N-mixture models, albeit limited to a Poisson distribution for abun-
dance. I specified weakly informative priors for all parameters, specifically normal 
distributions with mean 0 and standard deviation 1.5 for regression parameters, 
and a uniform distribution for the standard deviation of the random effects. I ran 
two chains for a total of 200,000 iterations with a burn-in of 20,000 iterations. I 
summarized posterior distributions with posterior mean and 95% credible inter-
vals. I assessed convergence using standard Bayesian diagnostics: the R-hat statistic 
(values close to 1 indicate convergence), effective sample size (which reflects the 
amount of independent information in the posterior sample, should be > 100), 
and visual inspection of trace plots (which should show good mixing and station-
arity of the chains).

Results and discussion

The results of the simulation study are presented in Figs 2, 3. Overall, the analysis 
revealed minimal bias, good precision and satisfying coverage, with the exception 
of one site that showed a notable deviation (Fig. 2).

Increasing the number of sites to 10 significantly reduced this bias, and no bias 
was observed with 50 sites, supporting the recommendation by (Dorazio et al. 
2005) to analyze data jointly rather than separately.

When the closure assumption was not met, the analysis revealed that both bias 
and precision metrics were highly sensitive to the introduction of between-occa-
sion population dynamics (Fig. 3). Specifically, relative bias increased and coverage 
dropped in many scenarios, particularly when detection probability was low or the 
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Figure 2. Relative bias (top panel), root mean square error (RMSE; middle panel) and coverage of the 95% confidence interval (bottom 
panel) for abundance estimates from a multinomial N-mixture model with constant parameters. Capture probabilities (X-axis) range from 
0.3 to 0.9, while abundance (Y-axis) varies between 10 and 100 individuals. Scenarios consider 3, 5, and 10 capture occasions (columns) 
and 1, 5, 10, and 50 sites (rows). Results are based on 100 simulations.
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Figure 3. Relative bias (top panel), root mean square error (RMSE; middle panel) and coverage of the 95% confidence interval (bottom 
panel) for abundance estimates from a multinomial N-mixture model with constant parameters, fitted to data where the closure assump-
tion was deliberately violated. Between capture occasions, individuals remained in the population with probability 0.8, and new individu-
als arrived according to a Poisson process with mean 1, introducing both emigration and immigration between sampling events. Capture 
probabilities (X-axis) range from 0.3 to 0.9, while abundance (Y-axis) varies between 10 and 100 individuals. Scenarios consider 3, 5, and 
10 capture occasions (columns) and 1, 5, 10, and 50 sites (rows). Results are based on 100 simulations.
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number of sites and occasions was limited. These results highlight how violations 
of closure can substantially compromise the reliability of abundance estimates de-
rived from closed-population models.

Overall, these findings align with previous simulation studies on binomial N-mix-
ture models (e.g., Womack-Bulliner et al. 2019; Fogarty and Fleishman 2021).

To enhance reproducibility, I provide the code for the simulation study in the 
Suppl. materials 1–4. This resource can be adapted for various purposes, such as 
conducting custom simulation studies or designing removal protocols and con-
ducting power analyses.

In the coypus case study, temperature was found to have a negative effect on 
abundance, with a slope estimate of -0.14 (-0.22, -0.07). Capture probabilities 
were estimated at 0.43 (0.29, 0.49) in February, 0.35 (0.19, 0.44) in March and 
0.84 (0.35, 1.00) in April. The posterior distributions of abundance across the 
different sites are presented in Fig. 4.

The Poisson assumption does not appear valid based on the estimated abundance 
in Fig. 4, which shows a skewed posterior distribution of site-level abundances and 
wide credible intervals, suggesting greater variability than expected under a Poisson 
distribution. This is confirmed by a goodness-of-fit test, which yielded a p-value of 
0.04, indicating a lack of fit. Fortunately, this limitation can be addressed by relax-
ing the Poisson assumption and use a negative binomial distribution instead. This 
adjustment can be implemented in both “NIMBLE” and “unmarked” but is not 
currently supported by “ubms”. Interestingly, under the negative binomial model, 
the effect of temperature on abundance was no longer significant, with a slope es-
timate of -0.27 (-1.29, 0.60). Moreover, the goodness-of-fit test for the abundance 
component of the model no longer indicated a lack of fit, with a p-value of 0.39.

Figure 4. Posterior density plots for coypu abundance across several cities in the Hérault department, France, in 2022. The vertical shaded 
line indicates the posterior mean abundance, accompanied by its credible interval. See Table 1 for the raw data.
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In the muskrats’ case study, temperature was found to have a negative effect 
on abundance, with a slope estimate of -0.48 (-0.70, -0.26). The standard de-
viation of the site random effect was estimated at 1.62 (1.46, 1.79). Capture 
probabilities were estimated at 0.12 (0.05, 0.25) in January, 0.25 (0.15, 0.35) 
in February and 0.60 (0.53, 0.75) in March. Estimated abundance across sites 
after removal is presented in Fig. 5. A goodness-of-fit test for the abundance 
component of the model yielded a p-value of 0.44, indicating no evidence of 
lack of fit. However, the test for the observation component revealed a lack of fit 
(p-value = 0), for reasons that remain to be investigated.

Figure 5. Posterior mean estimates of the number of muskrats remaining after removal in the Netherlands in 2022 (top panel) and the 
corresponding coefficient of variation (bottom panel). See Fig. 1 for the raw data.
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An important feature of multinomial N-mixture models is their ability to quan-
tify uncertainty, which is often overlooked in spatial analyses. Here, I provide the 
coefficient of variation to represent the uncertainty surrounding abundance esti-
mates. This metric can help identify specific areas where increased sampling effort 
might be beneficial to improve estimate precision.

Turning to the open-population analysis, the results revealed a negative trend in 
the slope, estimated at -0.040 (-0.042, -0.039), providing evidence to support the 
hypothesis of a temporal weakening of this relationship.

Several perspectives arise from this work. From a methodological standpoint, 
this study highlights the suitability of hierarchical models for capturing depen-
dencies in space and time, which are common in ecological systems and removal 
experiments in particular. Two areas stand out as particularly worth exploring. 
First, although much of the paper focuses on static models under the assumption 
of population closure, I have taken a first step toward relaxing this assumption by 
fitting an open-population model in the muskrats’ case study. This extension does 
not yet incorporate explicit demographic mechanisms, but it illustrates the poten-
tial of such models to better account for temporal population dynamics. When 
the mechanisms underlying population dynamics—such as survival, recruitment, 
or dispersal—are of interest, multinomial N-mixture models can be extended to 
open populations (Matechou et al. 2016; Link et al. 2018; Zhou et al. 2019; Tib-
erti et al. 2021). These extended models can be implemented using “unmarked” or 
“NIMBLE”, though they are not yet available in “ubms”.

A second area of investigation concerns the spatial dimension of multinomial 
N-mixture models, particularly the assumption of independence among removal 
sites (i.e., that removals at one site do not influence those at another). One pos-
sible solution is to include site random effects, as demonstrated in the muskrat 
case study. To better address spatial autocorrelation, restricted spatial regression 
(RSR) can also be employed (Johnson et al. 2013; Broms et al. 2014) to impose 
a structure where spatially adjacent sites are modeled to have correlated random 
effects, effectively accounting for spatial autocorrelation. RSR models are advan-
tageous because their random effects are constructed to be uncorrelated with fixed 
covariates, avoiding potential confounding issues, and they are computationally 
efficient. These models are easy to fit using “ubms” and can also be implemented in 
“NIMBLE” (Cook et al. 2022), although they are not currently supported by “un-
marked”. A promising extension would involve adapting the covariance structure 
in these models to account for stream networks (Gimenez 2024; Lu et al. 2024), 
which is particularly relevant for semi-aquatic rodents.

Third, in many real-world removal programs, detection probability is strongly influ-
enced by effort-related factors such as trap density, frequency of checks, or personnel 
availability (e.g., Davis et al. 2016). Unfortunately, explicit effort data were not avail-
able for the case studies analyzed here. To account for temporal variation in detection 
probability, likely driven in part by effort and other factors such as weather, seasonal 
activity, or habitat changes, I modelled detection as a time-varying parameter. While 
this approach provides a practical solution when effort is missing or inconsistently re-
ported, it does not allow for prospective analyses, such as estimating the level of effort 
required to achieve a desired level of precision on abundance estimates or statistical 
power to detect changes or trends in abundance over time. Addressing such questions 
requires explicitly incorporating effort into the model. I therefore emphasize the im-
portance of properly recording removal effort and caution against interpreting its omis-
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sion here as a reason to neglect it. On the contrary, I hope this work underscores the 
value of systematic effort reporting to improve both inference and future survey design.

From an ecological perspective, the main contribution of this paper is to 
demonstrate the estimation of abundance for rodent populations in Europe. The 
European Union Regulation No. 1143/2014 was established to mitigate the neg-
ative impacts of invasive alien species on biodiversity. This regulation mandates 
measures to prevent the introduction of invasive alien species and manage their 
established populations. In this study, I focused on two species listed as species of 
Union Concern under the regulation, which requires member states to implement 
appropriate management actions.

In this context, although it is straightforward to calculate the number of coypus 
or muskrats remaining after removal campaigns (including associated uncertainty; 
see Fig. 5), abundance estimates realize their full potential only when integrated 
into a decision-making framework. Such a framework allows for evaluating the 
efficiency of eradication or control efforts, optimizing the allocation of limited 
resources, and accounting for uncertainty in the management of invasive species 
(Shea et al. 2002; Yackel Adams et al. 2024).
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