
Ecology, 91(4), 2010, pp. 951–957
� 2010 by the Ecological Society of America

Individual heterogeneity in studies on marked animals using
numerical integration: capture–recapture mixed models
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Abstract. In conservation and evolutionary ecology, quantifying and accounting for
individual heterogeneity in vital rates of open populations is of particular interest. Individual
random effects have been used in capture–recapture models, adopting a Bayesian framework
with Markov chain Monte Carlo (MCMC) to carry out estimation and inference. As an
alternative, we show how numerical integration via the Gauss-Hermite quadrature (GHQ) can
be efficiently used to approximate the capture–recapture model likelihood with individual
random effects. We compare the performance of the two approaches (MCMC vs. GHQ) and
finite mixture models using two examples, including data on European Dippers and Sociable
Weavers. Besides relying on standard statistical tools, GHQ was found to be faster than
MCMC simulations. Our approach is implemented in program E-SURGE. Overall, capture–
recapture mixed models (CR2Ms), implemented either via a GHQ approximation or MCMC
simulations, have potential important applications in population biology.
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generalized linear mixed models; likelihood-ratio test; mark–recapture models; random effects; Sociable
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INTRODUCTION

Estimation of demographic parameters (e.g., survival,

reproductive success, or dispersal) involves the analysis

of individual monitoring data. In the wild, these are

obtained from a capture–recapture protocol (CR;

Williams et al. 2002), in which individuals are captured,

marked, and released in their environment. CR models

allow inferring demographic processes in spite of the

practical impossibility to detect all individuals at each

sampling session. Because they allow addressing impor-

tant questions in ecology, management and evolution

while accounting for the uncertainty of detection, CR

methods have become extremely popular in the field of

population biology.

Besides estimating vital rates, biologists are often

interested in explaining individual variations in demo-

graphic parameters. If individual characteristics such as

age or phenotype are measured in the field, it is relatively

easy to incorporate them in CR models (Pollock 2002),

using a framework inspired by generalized linear models

theory (Lebreton et al. 1992). However, there are

important situations in which the information cannot

be measured at the individual level, and yet, individual

variation still needs to be accounted for and quantified.

Ignoring between-individual heterogeneity generated by

individuals having contrasted performances over life

may mask senescence or hamper the understanding of

life history trade-offs (Cam et al. 2002), or may decrease

the viability of small populations (Conner and White

1999). Moreover, failing to incorporate unexplained

residual variance may induce bias in parameter estimates

(Barry et al. 2003) and lead to detecting an effect of the

individual covariate more often than it should be: an

inflated type I error rate (Lin 1997).

How is individual heterogeneity usually incorporated

in situations with perfect detectability? Nonlinear and

generalized linear mixed models (Pinheiro and Bates

2000) are often used, which extend classical models by

including random or subject-specific effects in addition

to the (traditional) fixed effects in the structure for the

mean response. Mixed models have long been used in

the fields of social sciences, medicine, and agriculture.

This has been facilitated in part by their implementation

in popular statistical programs such as SAS with its

procedure MIXED, or R with its package LME4.

Whereas applications of mixed models are currently

rapidly developing in ecology and evolution (Bolker et

al. 2009), traditional CR models remain fixed-effect

models.

Pledger et al. (2003) developed capture–recapture

(CR) models in which individual heterogeneity was

modeled according to a finite mixture of individuals.

Recently, a proposal was made for incorporating

individual heterogeneity in open CR models via a

continuous mixture using random effects (Royle 2008;

see also Clark et al. 2005, Gimenez et al. 2006a). A state–

space formulation of the Cormack-Jolly-Seber (CJS)

model (Lebreton et al. 1992) was adopted, in line with

previous work (Clark et al. 2005, Gimenez et al. 2007).
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Because the resulting likelihood was high dimensional

with no closed form, estimation and inference were

accomplished in a Bayesian framework using Markov

chain Monte Carlo (MCMC). However, the Bayesian

approach using extensive MCMC simulation methods

remains difficult to implement (Gimenez 2008). First,

some nonbasic knowledge is required, such as a training

in Bayes theory and in the use of MCMC algorithms, as

well as programming skills. Second, fitting a model can

be very time consuming, if not intractable when a model

selection step involving several candidate models is at

stake.

We offer an alternative to MCMC methods for the

incorporation of individual heterogeneity in open CR

models. We refer to this class of models as capture–

recapture mixed models (CR2Ms) as they include both

fixed and random effects. When estimating the param-

eters of mixed models, the marginal likelihood is

obtained by integrating out the random effects. To cope

with this issue, several methods have been proposed in

the literature, MCMC algorithms being one of them

(Evans and Swartz 1995). Noteworthy, standard statis-

tical software have not adopted Bayesian methods to

incorporate random effects (e.g., SAS or R). They rather

have favored frequentist methods, including quasi-

likelihood methods (Breslow and Clayton 1993) and

numerical integration (Liu and Pierce 1994). The latter

has been used in the context of closed CR models (Coull

and Agresti 1999), but never to our knowledge for

approximating the likelihood of open-population CR

models. We show here that this approach is particularly

efficient to handle with individual random effects as only

one- or two-dimensional integrals are involved. When

compared to the Bayesian approach using MCMC

algorithms, numerical integration has appealing advan-

tages: (1) the computational speed is often faster, and

convergence criteria are well defined and easily imple-

mented in an automatic way; (2) it relies on the well-

established standard maximum-likelihood theory; and,

last but not least, (3) because it requires only slight

modifications of the likelihood and the use of standard

optimization methods, it opens an avenue for the

implementation of individual random effects in existing

frequentist CR programs like MARK (White and

Burnham 1999; note that this program implements a

simple MCMC algorithm, which does not allow

incorporating individual effects) or E-SURGE (Choquet

et al. 2009). We aim at investigating these advantages in

the context of open-population CR models.

We describe how individual random effects can be

incorporated in a frequentist framework using numerical

integration. We compare our results with that of a

MCMC analysis on the European dipper data using the

CJS model with heterogeneity in the survival and

recapture probabilities. We consider another example

on Sociable weaver data using a mixed-effect structure

on survival probabilities, with an individual covariate

and a random effect to cope with unexplained variabil-

ity. In both case studies, we compare our approach with

finite-mixture models developed by Pledger et al. (2003).

HETEROGENEOUS CORMACK-JOLLY-SEBER MODELS

Assume we have K capture occasions and N

individuals. Let the encounter history for individual i

be hi¼ (di1, . . . , diK) where dik denotes whether individual
i is observed (dik¼ 1) or not (dik¼ 0) at time k. Let ei be

the occasion where individual i is captured for the first

time, li the last occasion where individual i is recaptured.

Then the likelihood component corresponding to

individual i is

L
�

pi2; . . . ; piK ;/i1; . . . ; /iðK�1Þ; hi

�

¼
Yli�1

k¼ei

/ik

( ) Yli

k¼eiþ1

pdik

ik ð1� pikÞ1�dik

( )
vili ð1Þ

where pik is the probability of recapture at time k of

individual i (piei
¼ 1 as the likelihood is conditional upon

the first capture), /ik is the probability of survival over

the interval (k, k þ 1) of individual i, and vik the

probability that animal i, alive at time k, is not

subsequently recaptured, calculated recursively as vik ¼
1 – /ikf1 – (1 – pi(kþ1))vi(kþ1)g, with viK¼ 1 (Lebreton et

al. 1992). Assuming independence among individuals,

the likelihood is the product of the probabilities of all

individual encounter histories given by PN
i¼1 L( pi2, . . . ,

piK, /i1, . . . , /i(K�1); hi ). Assuming the same survival and

recapture parameters for all individuals (homogeneity

assumption), this likelihood corresponds to the CJS

model f/(t), p(t)g in which both survival and recapture

probabilities are time dependent.

We consider individual heterogeneity in the CJS

model by incorporating an individual random effect on

survival and/or recapture probabilities. We now show

how to write down the likelihood of the resulting

models. Following Royle (2008), we assume

logitðpikÞ ¼ ak þ ai ð2Þ

logitð/ikÞ ¼ bk þ bi ð3Þ

where ak and bk are fixed yearly effects, and ai and bi are
independent random effects, with ai ; N(0, r2

p) and bi ;

N(0, r2
/). By integrating out the random effects, we

obtain the marginal likelihood of model f/(tþ h), p(tþ
h)g adopting notation as in Royle (2008):

YN
i¼1

Z þ‘

�‘

Z þ‘

�‘

Lða2; . . . ; aK ; b1; . . . ; bK�1; ai; bi; hiÞ

3 f ðaijrpÞf ðbijr/Þ daidbi ð4Þ

where f(� jr) is the density function of N(0, r2). If we

consider no individual heterogeneity on the recapture

probabilities, i.e., ai ¼ 0 in Eq. 2, then the likelihood in

Eq. 4 simplifies to:
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YN
i¼1

Z þ‘

�‘

Lða2; . . . ; aK ; b1; . . . ; bK�1; bi; hiÞf ðbijr/Þ dbi

ð5Þ

which corresponds to model f/(t þ h), p(t)g. The

marginal likelihood of model f/(t), p(t þ h)g is easily

obtained in the same way by setting bi ¼ 0 in Eq. 3:

YN
i¼1

Z þ‘

�‘

Lða2; . . . ; aK ; b1; . . . ; bK�1; ai; hiÞf ðaijrpÞ dai:

ð6Þ

The likelihoods in Eqs. 4, 5, and 6 involve integrals

that cannot be evaluated analytically due to the

complexity of the CR model likelihood. To circumvent

this issue, Royle (2008) uses MCMC algorithms which

directly generate random values from a Markov chain

whose stationary distribution is the posterior distribu-

tion of the parameters under interest. In the next section,

we show how this problem can be tackled using

numerical integration.

RANDOM EFFECTS WITH NUMERICAL INTEGRATION

Numerical integration aims at getting an approxima-

tion to the integral by building a grid of points at which

to evaluate the function, this function being the

likelihood here. We use the Gauss-Hermite quadrature

(GHQ), which is known to work well for a large class of

problems, at least for low-dimensional integrals and a

Gaussian distribution for the random effects (e.g., Butler

and Moffit 1982, Hedeker and Gibbons 1994).

Formulas 4, 5, and 6 involve integrals of the form

I ¼
Z þ‘

�‘

gðzÞexpð�z2Þ dz ð7Þ

pending a change of variable we make explicit below.

The integral of Eq. 7 can be approximated using a GHQ

by a weighed sum

I ’ IQ ¼
XQ

q¼1

wqgðzqÞ ð8Þ

where Q is the number of quadrature points, the zq are

the zeros of the Qth order Hermite polynomial, and the

wq are corresponding weights. The quadrature points (or

nodes) zq and the weights wq are tabulated (Abramowitz

and Stegun 1964). The precision of the GHQ approx-

imation is discussed in Appendix A. Throughout the

paper we used Q ¼ 15.

We focus on the model f/(t þ h), p(t)g. Let bi ¼
ci
ffiffiffi
2
p

r/, then Eq. 5 becomes

YN
i¼1

1ffiffiffi
p
p
Z þ‘

�‘

Lða2; . . . ; aK ; b1; . . . ; bK�1; ci

ffiffiffi
2
p

r/; hiÞ

3 expð�c2
i Þ dci ð9Þ

which has the same form as Eq. 7. As a consequence, the

marginal likelihood of the model f/(tþ h), p(t)g can be

approximated by

YN
i¼1

1ffiffiffi
p
p
XQ

q¼1

wqLða2; . . . ; aK ; b1; . . . ; bK�1; zq

ffiffiffi
2
p

r/; hiÞ:

ð10Þ

Posing ai ¼ gi

ffiffiffi
2
p

rp in Eq. 6, we also get an

approximation of the marginal likelihood of model

f/(t), p(tþh)g of the same form, and a similar reasoning

leads to an approximation of the marginal likelihood of

model f/(t þ h), p(t þ h)g (Appendix B). We obtain

maximum-likelihood estimates (MLEs) of the model

parameters by maximizing the GHQ approximate

marginal likelihood using a quasi-Newton algorithm.

Approximate standard errors (SEs) are obtained from

the inverse Hessian calculated from a standard finite-

difference scheme.

TESTING INDIVIDUAL HETEROGENEITY

Royle (2008) tested the heterogeneity components by

calculating posterior probabilities of the models consid-

ered above. In a frequentist framework, considering the

model f/(t þ h), p(t)g, we need a test of the null

hypothesis of homogeneity H0:r2
/ ¼ 0 vs. the alternative

hypothesis of heterogeneity H1:r2
/ . 0. This can be

accomplished by calculating the likelihood ratio test

(LRT) between models f/(tþ h), p(t)g and f/(t), p(t)g.
However, because H0 is on the boundary of the

parameter space, classical inference no longer holds

(Self and Liang 1987). The asymptotic null distribution

of the LRT is a 50:50 mixture of v2 distributions with 0

and 1 degrees of freedom (Stram and Lee 1994). In the

general case, Shapiro (1988) showed that if H0 and H1

involves q and qþ q0 uncorrelated random effects, then

the null LRT distribution is a mixture of the form

Xq 0

r¼0

2�q 0 q 0

r

� �
v2

r : ð11Þ

If we want to test for heterogeneity in both survival

and recapture probabilities, we need a test of H0:r2
/ ¼ 0

and r2
p ¼ 0 vs. H1:r2

/ . 0 and r2
p . 0, which requires a

LRT between models f/(tþ h), p(tþ h)g and f/(t), p(t)g
with null distribution a 25:50:25 mixture of v2 distribu-
tions with 0, 1, and 2 degrees of freedom.

Once the structure of the random effects has been

selected via LRTs, one can then use standard model

selection procedures using the Akaike information

criterion (AIC) to determine a structure on the fixed

effects, as illustrated in the next section.

EXAMPLE 1: THE EUROPEAN DIPPER DATA

We consider data on the European Dipper (Cinclus

cinclus) that were collected over seven years (1981–1987)

in France, and consist of 255 individuals. A detailed

analysis by Lebreton et al. (1992) showed that a flood
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during the breeding season in 1983 had a negative

impact on survival. The model best supported by the

data incorporated two distinct survival probabilities,

one for the two flood periods 1982–1983 and 1983–1984,

and another for the remaining non-flood periods. Here,
we considered individual heterogeneity on both the

recapture and survival probabilities. Parameter esti-

mates for model f/(flood þ h), p(h)g are provided in

Table 1. For the Bayesian analysis, we used the same

priors as in Royle (2008), in particular a U(0, 8) (where
U stands for the uniform distribution) for the standard

deviation of the individual random effects. Following

Royle (2008), we generated three chains of length 65 000,

discarding the first 5000 as burn-in and produced

MCMC posterior summaries using WinBUGS (Speigel-
halter et al. 2003). We also calculated MLEs and SEs

using the GHQ. The estimation results are very similar

for the two methods, although there is a discrepancy for

r/ which may be due to the sensitivity of the Bayesian

analysis to the prior on r/ and the uncertainty in the
variance estimation. To understand this difference in the

magnitude of r/, we simulated data according to the

MCMC model results (Table 1), and the frequentist and

Bayesian methods were applied to that simulated data.

We found that the discrepancy disappeared, with similar

results for the frequentist (MLE ¼ 0.121, SE ¼ 0.189)
and the Bayesian (posterior mean ¼ 0.152, SD¼ 0.124)

analyses.

The MCMC simulations took approximately 42

minutes vs. 37 minutes for the GHQ on a PC (2Go

RAM, 2.6 GHz CPU) for the model f/(flood þ h),

p(h)g. The difference in the computational costs was
more pronounced for model f/(flood), p(h)g, with

approximately 30 minutes for the MCMC approach

vs. 2 minutes for the GHQ approximation.

We tested the null hypothesis of homogeneity, which

favors the model with no heterogeneity (LRT f/(flood),
pg vs. f/(flood þ h), p(h)g, 0.25v2(0) þ 0.5v2(1) þ
0.25v2(2) ¼ 2.803, P ¼ 0.109). Heterogeneity in survival

was less likely (LRT f/(flood), pg vs. f/(floodþ h), pg,
0.5v2(0) þ 0.5v2(1) ¼ 0.000, P ¼ 0.5) than heterogeneity

in recapture (LRT f/(flood), pg vs. f/(flood), p(h)g,
0.5v2(0) þ 0.5v2(1) ¼ 2.803, P ¼ 0.047). In brief, in

agreement with Royle (2008), we found evidence of

heterogeneity in recapture but not in survival. Keeping

heterogeneity in the recapture, the comparison of

f/(flood), p(h)g with models having time-varying (DAIC

¼ 7.77) or constant (DAIC¼ 3.91) survival probabilities

showed the importance of the flood effect (Appendix C:

Table C1). Finally, we fitted finite-mixture models

(Pledger et al. 2003) with two classes of individuals on

the recapture, on the survival or on both. We found that

models using random effects were overall better

supported by the data (DAIC ¼ 6.05, Appendix C:

Table C1). Note that, among finite-mixture models, we

still found evidence for heterogeneity in recapture but

not in survival (Appendix C: Table C1).

EXAMPLE 2: THE SOCIABLE WEAVER DATA

In the previous example, we did not attempt to

explain sources of heterogeneity. Here, we consider a

modification of the CJS model with heterogeneity where

an individual covariate is thought to influence survival

probability. We use a data set on the relationship

between body mass and survival of Sociable Weavers

(Philetairus socius) in South Africa. The data were

collected over eight years in South Africa and consist of

977 individuals that were weighed as adults. A detailed

analysis is provided by Covas et al. (2002) using fixed-

effects CR models, in which survival was assumed to be

completely determined by individual body mass. In a

subsequent analysis, Gimenez et al. (2006a) adopted a

Bayesian approach similar to that of Royle (2008) and

showed that, accounting for an individual effect on

survival, a cubic relationship with no time effect was

appropriate. We consequently modified Eq. 3 in the

following way:

logitð/ikÞ ¼ j0 þ j1xi þ j2x2
i þ j3x3

i þ bi ð12Þ

where the j’s are fixed-effects regression parameters, xi
is the body mass of individual i, and bi is a random

effect, with bi ; N(0, r2
/). The j’s capture the effect of

the covariates on survival for the average individual in

the population, while bi modifies the average response to

make it specific to individual i. Recapture probabilities

were constant over time with no individual heterogene-

ity. Parameter estimates for this mixed model, denoted

TABLE 1. Maximum-likelihood estimates (MLEs) and associated standard errors (SEs) for the 15-
node Gauss-Hermite quadrature (GHQ) approximation as well as Markov chain Monte Carlo
(MCMC) results (posterior modes and standard deviations [SDs] are given) for the model
f/(floodþ h), p(h)g applied to the European Dipper data.

Parameter
GHQ analysis
MLE (SE)

MCMC analysis
mode (SD)

/flood 0.480 (0.045) 0.477 (0.050)
/non-flood 0.614 (0.034) 0.616 (0.036)
p 0.959 (0.038) 0.957 (0.033)
rp 2.083 (1.276) 2.041 (1.105)
r/ 2.872 3 10�5 (2.623 3 10�6) 0.104 (0.192)

Note: The parameters / and p are the survival and detection probabilities respectively; h stands
for heterogeneity; rp and r/ are the standard deviations of the individual random effects on the
detection and survival probabilities, respectively.
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f/(x þ x2 þ x3 þ h), pg, are given in Table 2. We

calculated MLEs and SEs using the GHQ. For the

Bayesian analysis, we used a U(0, 1) for p, a N(0, 100)

for the regression coefficients j’s, and a U(0, 8) for r/.

To compare our results with the MCMC analysis, we

used WinBUGS (Spiegelhalter et al. 2003) to generate

two chains of length 50 000, discarding the first 10 000 as

burn-in. The results of the GHQ and MCMC analyses

are quite similar. The MCMC simulations took approx-

imately 2.3 hours while in comparison the GHQ took

only 10 minutes. We performed a likelihood ratio test of

the null hypothesis of homogeneity, which showed that

the heterogeneity term r/ was needed (0.5v2(0) þ
0.5v2(1) ¼ 11.710, P , 0.001). Note that, to get the P

value of this test, using the mixture of distributions

0.5v2(0) þ 0.5v2(1) corresponds to halving the P value

from using the v2(1) distribution.
Keeping heterogeneity in the survival, the comparison

of model f/(x þ x2 þ x3 þ h), pg vs. a model without

body mass f/(h), pg (DAIC ¼ 10.57) showed the

importance of the covariate (Appendix C: Table C2).

Finally, we fitted finite–mixture models (Pledger et al.

2003) with two classes of individuals on the survival.

Individual heterogeneity in survival was better captured

by two classes of individuals than a random effect

(DAIC¼ 10; Appendix C: Table C2). This might be due

to the fact that we did not incorporate the gender in our

analyses, while males and females might experience

different selection pressures on body mass. Note that

using a two-class mixture, we still found an effect of

body mass on survival (DAIC ¼ 4.99; Appendix C:

Table C2).

DISCUSSION

Modeling individual heterogeneity in demographic

parameters is crucial in evolutionary ecology and

conservation biology. Royle (2008) developed models

in which heterogeneity was handled with individual

random effects, while Pledger et al. (2003) used finite

mixtures. We propose a maximum-likelihood implemen-

tation of Royle’s approach using GHQ to carry out

estimation and inference about individual heterogeneity

in open CR models.

The GHQ was found to be faster than the MCMC

algorithm used by Royle (2008). This discrepancy in the

computational burden was marked in the Sociable

Weaver example as there were about four times as

many individuals as in the European Dipper example.
When random effects were considered for both survival

and recapture probabilities as in the European Dipper

case study, the GHQ approximation was slower than

when individual heterogeneity was applied to only one

of these parameters, but yet faster than the MCMC
algorithm.

To test homogeneity, we relied on the null hypothesis
testing framework using LRT. We acknowledge that the

AIC is often preferred in CR analyses. Nevertheless, the

use of AIC in testing random effects is still the object of

research. It is not clear to what extent AIC suffers from

the boundary issue described in Section 4. Besides,
counting the number of parameters is problematic,

some authors using the number of fixed effects and

variance components (marginal AIC; Wager et al.

2007), others using an ‘‘effective degrees of freedom’’

(conditional AIC; Vaida and Blanchard 2005). While
the latter would need to be adapted to CR2Ms, the

former is straightforward to implement since numerical

integration provides an approximation of the likeli-

hood. Inference based on the marginal AIC was

qualitatively similar to LRT results (see Appendix C),
with a marginal effect of individual heterogeneity on

recapture of European Dippers (DAIC ¼ 0.8 between

models f/(flood), p(h)g and f/(flood), pg), and strong

individual heterogeneity on survival of Sociable Weav-

ers (DAIC¼ 9.7 between the models f/(xþ x2þ x3þ h),
pg and f/(x þ x2 þ x3), pg).

Our approach has some limitations. First, if the
random effects have large variance, GHQ may perform

poorly (Lesaffre and Spiessens 2001). Adaptive GHQ

(AGHQ; Liu and Pierce 1994) has been proposed to

overcome this issue. For the variances we encountered in

the examples, GHQ performed well. Second, the GHQ
approximation may be time consuming for integrals

with more than two dimensions. This is the case when

heterogeneity is to be combined with other random

effects. For example, one might want in the European

Dipper analysis to consider the yearly effects as random

TABLE 2. Maximum-likelihood estimates (MLEs) and associated standard errors (SEs) for the 15-
node Gauss-Hermite quadrature (GHQ) approximation as well as Markov chain Monte Carlo
(MCMC) results (posterior modes and standard deviations [SDs] are given) for model f/(xþx2

þ x3 þ h), pg applied to the Sociable Weaver data.

Parameter
GHQ analysis
MLE (SE)

MCMC analysis
mode (SD)

j0 0.509 (0.117) 0.500 (0.116)
j1 0.016 (0.131) 0.020 (0.139)
j2 �0.268 (0.088) �0.275 (0.091)
j3 0.081 (0.044) 0.093 (0.048)
p 0.427 (0.023) 0.431 (0.023)
r/ 0.824 (0.163) 0.835 (0.170)

Note: The j’s are the regression parameters to be estimated; p is the detection probability; r/ is
the standard deviation of the individual random effect on the survival probability.
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(Barry et al. 2003), or in the Sociable Weaver analysis to

consider a nonlinear relationship (Gimenez et al. 2006a),

which requires a mixed effect formulation (Gimenez et

al. 2006b). Because the total number of nodes increases

at an exponential rate with the number of dimensions,

product-rule formulas cannot be used as in Random

effects with numerical integration. One promising solu-

tion is to use sparse grids integration (Heiss and

Winschel 2008) which combines one-dimensional quad-

rature as does the product-rule technique but in a

different way such that it decreases computational costs

in high dimensions. The use of sparse grids is the object

of ongoing work.

We envisage several extensions to our approach,

which may help in relaxing the assumption of perfect

detectability that is often made to analyze CR data with

individual random effects. First, we assumed indepen-

dent random effects in the European Dipper analysis

although there exists an interest for considering multi-

variate distribution for the random effects to study

relationships among parameters. Cam et al. (2002)

incorporated a possible correlation between individual

effects on both survival and reproduction, while Cam et

al. (2004) considered a correlation between breeding and

success probabilities before and after dispersal, resulting

in a 23 2 and a 43 4 covariance matrix respectively. To

deal with multivariate distributions, one can apply a

transformation to obtain uncorrelated random effects,

then apply standard univariate GHQ (Todem et al.

2007). Second, rather than accounting for between-

individual variability, one may be interested in dealing

with clusters of individuals. For example, Cohas et al.

(2007) investigated the effect of offspring type (extra-

pair young vs. within-pair young) on juvenile survival

using ‘‘family’’ as a random effect to specify the same

between-individual variance among all members of a

same cluster. Because clusters are independent, the

likelihood turns out to be a product of one-dimensional

integrals for which the GHQ can be applied. Third, if

one is interested in inference about the random effects

(the breeding values in a quantitative genetic analysis,

for example), the Bayesian approach is quite convenient

as posterior distributions are easily obtained. Interest-

ingly, these quantities can also be obtained using an

additional round of GHQ.

Based on generalized linear models, Lebreton et al.

(1992) proposed a unified framework for analyzing CR

data which has had a strong influence. Inspired by

generalized linear mixed models, we call for a move

forward from fixed-effects to CR mixed models

(CR2Ms). We hope that the Bayesian approach using

MCMC simulations developed by Royle (2008) and the

frequentist approach using numerical integration pro-

posed here will motivate further developments of CR

models, with important applications in population

biology. In that spirit, we implemented GHQ and its

adaptive version in program E–SURGE (Choquet and

Gimenez, in press). (Program E-SURGE [Choquet et al.

2009] is available online.)2 We also provided a step-by-
step illustration of a typical E–SURGE analysis in

Appendix D using the Sociable Weaver data.
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APPENDIX A

Precision of the Gauss-Hermite quadrature approximation (Ecological Archives E091-067-A1).

APPENDIX B

Approximating the marginal likelihood of models f/(t), p(t þ h)g and f/(t þ h), p(t þ h)g using a Gauss-Hermite quadrature
approximation (Ecological Archives E091-067-A2).

APPENDIX C

Model selection in the Sociable Weaver and European Dipper case studies (Ecological Archives E091-067-A3).

APPENDIX D

Incorporating individual random effects using program E-SURGE (Ecological Archives E091-067-A4).
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