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Abstract. Two approaches have been classically used in disease ecology to estimate 

epidemiological parameters from field studies: cross-sectional sampling from unmarked 

individuals and longitudinal capture-recapture setups, which generally involve more limited 

numbers of marked individuals due to cost and logistical constrains. Although the benefits of 

longitudinal setups are increasingly acknowledged in the disease ecology community, cross-

sectional data remain largely over-represented in the literature, probably because of the inherent 

costs of longitudinal surveys. In this context, we used simulated data to compare the performances 

of cross-sectional and longitudinal designs to estimate the force of infection (i.e., the rate at which 

susceptible individuals become infected). Then, inspired from recent method developments in 

quantitative ecology, we explore the benefits of integrating both cross-sectional (seroprevalences) 

and longitudinal (individuals histories) datasets. In doing so, we investigate the effects of host 

species life history, antibody persistence and degree of a priori knowledge and uncertainty on 

demographic and epidemiological parameters, as those are expected to affect in different ways the 

level of inference possible from the data. Our results highlight how those elements are important 

to consider to determine optimal sampling designs. In the case of long-lived species exposed to 

infectious agents resulting in persistent antibody responses, integrated designs are especially 

valuable as they benefit from the performances of longitudinal designs even with relatively small 

longitudinal sample sizes. As an illustration, we apply this approach to a combination of empirical 

and simulated data inspired from a case of bats exposed to a rabies virus. Overall, this work 

highlights that serology field studies could greatly benefit from the opportunity of integrating 

cross-sectional and longitudinal designs. 

Key-words:  eco-epidemiology, detectability, immunity persistence, sampling strategy, study 

design, wildlife

INTRODUCTION

Understanding the ecology and evolution of infectious diseases in wildlife has been highlighted 

as critical for public health (Jones et al. 2008) and biodiversity conservation (Smith et al. 2006). 

Natural host-parasite systems also offer useful models to obtain valuable insights on evolutionary 

ecology processes such as coevolution and local adaptation (Gandon 2002) or host and vector 

movements (Boulinier et al. 2016). However, investigations in the wild have been hampered by A
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the difficulty of collecting data allowing efficient inference of eco-epidemiological dynamics 

(Plowright et al. 2019). For instance, the force of infection (i.e., the rate at which susceptible 

individuals acquire an infectious disease), a key eco-epidemiological parameter (Hens et al. 2012), 

is difficult to estimate from field data as it requires assessing how many individuals went from 

susceptible (e.g., non-infected and non-immunized) to infected in a given time period, which is 

rarely observable. Estimating these parameters is however a critical step in the characterization of 

epidemiological dynamics and factors impacting them. Methods allowing their estimation from 

field data are thus needed. 

The benefits of longitudinal setups, defined here as the repeated sampling of the same 

individuals across time, notably using capture-recapture designs, are increasingly acknowledged in 

the disease ecology community (e.g., Jenelle et al. 2007, Lachish et al. 2007, Chambert et al. 2012, 

Buzdugan et al. 2017, Marescot et al. 2018). However, cross-sectional data, defined here as the 

sampling of unmarked individuals at one or more points in time, remain largely over-represented 

in the literature, probably because of the inherent costs of longitudinal surveys. It requires much 

more time and skills to spot marked individuals and to recapture them than to capture a random 

sample of individuals in a target population (e.g., if a marked fur seal is spotted in the middle of a 

harem, field workers may have to postpone the capture to limit disturbance and biting risks, while 

in a cross-sectional sampling design, the capture of another, more peripheral, individual would be 

much easier). 

Recent advances in population ecology, such as the advent of integrated modeling, may open 

new perspectives for the estimation of eco-epidemiological parameters. Indeed, Integrated 

Population Modelling (IPM) has proven effective to improve demographic parameter estimations 

by integrating datasets of different natures (e.g., capture-recapture and counts) on the condition 

that they depend partly on the same set of (demographic) parameters (Besbeas et al. 2002, Schaub 

et al. 2007, Abadi et al. 2010, Fletcher et al. 2019). In disease ecology, a similar approach could 

thus be used to integrate low cost cross-sectional data with longitudinal data that provide key 

elements about processes underlying the dynamics of the considered variables (e.g., the kinetics of 

the immune response). IPM has been recently applied in an epidemiological context (McDonald et 

al. 2016), but to our knowledge approaches integrating cross-sectional and capture-recapture 

epidemiological data have never been explicitly used to estimate epidemiological parameters. A
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In some species, individuals can be marked and repeatedly (re)captured across time, allowing 

longitudinal sampling. This is particularly true for long-lived vertebrates showing seasonal and 

colonial breeding (such as seabirds, pinnipeds, and chiropterans) and which are often faithful to 

their breeding or roosting site (e.g., Chambert et al. 2012b, Robardet et al. 2017, Gamble et al. 

2019a). In these systems, capture-recapture approaches have started to be used to estimate 

epidemiological state transition probabilities (e.g., from healthy to symptomatic) while accounting 

for recapture probabilities below unity, which are unavoidable in wild settings (Jennelle et al. 

2007, Conn and Cooch 2009). However, longitudinal studies are usually based on relatively small 

sample sizes because field efforts needed to resight and recapture marked individuals tend to be 

intensive. In contrast, cross-sectional studies are usually less costly and may also allow the 

estimation of epidemiological state transition probabilities. This type of data can generally be used 

to monitor variations of prevalences (i.e., the proportion of infected individuals) or 

seroprevalences (i.e., proportions of seropositive individuals). However, linking variations of 

prevalences or seroprevalences to epidemiological dynamics often requires additional data seldom 

available in wild populations, such as knowledge on the infectious period (e.g., Hénaux et al. 

2010) and/or refined antibody kinetic curves (e.g., Borremans et al. 2016, Pepin et al. 2017), or 

strong assumptions on the host demography (e.g., Samuel et al. 2015). Both approaches 

(longitudinal and cross-sectional) thus present relative pros and cons. Because cross-sectional and 

longitudinal data are outcomes of the same eco-epidemiological processes based on the same 

demographic and epidemiological parameters (notably survival, force of infection, and antibody 

level persistence), their combination into an integrated model should improve the estimation of 

these parameters. 

Serology has proven effective to detect patterns of exposure to many infectious agents and infer 

eco-epidemiological processes (Gilbert et al. 2013, Metcalf et al. 2016). Moreover, a wide range 

of approaches are now available to apply serology to wild settings (e.g., Garnier et al. 2017). 

However, the interpretation of serological data is not straightforward as they do not directly 

inform on the timing of infection. The reliability of the inference that can be made from 

serological data is thus dependent on the ecological and epidemiological characteristics of the 

considered system. Sampling schemes may need to be adjusted to reflect both these characteristics 

and what is possible in terms of field efforts. For instance, in some host-parasite systems, A
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detectable antibody levels persist for many years after exposure (e.g., antibody level against the 

Newcastle disease virus vaccine in Ramos et al. 2014), while in other cases, they wane within a 

few weeks (e.g., antibody level against the avian cholera agent in Samuel et al. 2003), 

complicating interpretation of serological data. Methods allowing the estimation of the force of 

infection from serological data when the kinetics of the immune response is not known are needed 

to better characterize the factors driving epidemiological dynamics.

In the present study, we use a simulation approach to compare the performances of different 

sampling designs to estimate the seroconversion probability, a proxy of the force of infection, 

when the kinetics of the immune response after exposure is not known. This parameter can be 

estimated either from the temporal variations of the seroprevalence based on cross-sectional data 

(e.g., Samuel et al. 2015) or as the transition probability from seronegative to seropositive states in 

a capture-recapture model based on longitudinal data (e.g., Conn and Cooch 2009). We moreover 

consider the possibility of integrating both sources of data in an integrated framework inspired 

from IPM. Based on data simulated under different scenarios, we notably account for several key 

parameters expected to have a strong impact on the observation process and the inference that can 

be made from serological data: host lifespan, temporal persistence of antibody levels, and 

detection and recapture probabilities. For instance, low annual survival will increase the turnover 

of individuals in the host population, which is expected to lower the benefit of longitudinal 

sampling designs, which rely on the repeated sampling of individuals. Finally, we illustrate how 

this method could be used on empirical data by considering the case of a serotine bat (Eptesicus 

serotinus) colony exposed to a rabies virus.

The results of the present study could have important implications regarding current practices 

in eco-epidemiology by (1) highlighting the benefits of longitudinal sampling designs compared to 

cross-sectional sampling designs, and (2) opening to possibility of integrating the two types of 

approaches to design cost-efficient sampling protocols in study systems not yet subject to 

longitudinal monitoring programs. 

MATERIALS AND METHODS

Eco-epidemiological model

Individual data resulting from an eco-epidemiological inter-annual process were simulated with 

a set of parameters fixed to different values in order to represent different demographic and A
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epidemiological situations (Fig. 1 a): survival (ϕ), seroconversion (λ; i.e., the probability for a 

seronegative individual to become seropositive, which usually corresponds to the mounting of an 

antibody response after exposure to an infectious agent) and seroreversion (ω; i.e., the probability 

for a seropositive individual to become seronegative, which corresponds to the waning of the 

antibody response) probabilities. To illustrate how eco-epidemiological parameters could be 

quantified from serological data, we have chosen the simple situation of populations at the 

demographic and endemic equilibria with all individuals recruiting as seronegative and exposure 

having no impact on survival or detectability. Additional details and illustrations are given in 

Appendix S1: Section S1.

Cross-sectional sampling

Each year, nCS individuals are randomly captured and sampled for serological analyses. 

Seroprevalence at time t (πt) is calculated as the proportion of seropositive individuals among the 

tested individuals. πt thus corresponds to the probability for a sample randomly collected in a 

population to be seropositive at time t. Seroprevalences at times t and t+1 are linked by a function 

of survival, seroreversion, and seroconversion probabilities. Such approaches have previously 

been used to estimate seroconversion probabilities in wild populations (e.g., Hénaux et al. 2013, 

Samuel et al. 2015). Under the eco-epidemiological model assumptions (see above), this relation is 

given by equation 1: 

πt+1 = πt ϕ (1 − ω) +  πt ϕ ω λ + (1 − πt) ϕ λ + r λ  (1)

In equation 1, the first additive term [πt ϕ (1 − ω)] corresponds to seropositive individuals at 

time t that survive and maintain detectable antibody levels between time t and t+1; the second [πt ϕ 

ω λ] to seropositive individuals at time t that survive, lose their antibodies and seroconvert 

between t and t+1; the third [(1 − πt) ϕ λ] to seronegative individuals at time t that survive and 

seroconvert between t and t+1; and the last [r λ] to individuals that recruit (here with a probability 

r) and seroconvert between t and t+1. 

Under the assumption of demographic equilibrium, recruitment exactly compensates for 

mortality and r can be written as (1 – ϕ); and under the assumption of endemic equilibrium, 

seroprevalence (π*) is stable over time (equation 2; intermediary steps are clarified in Appendix 
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S1, equations S1-S3). Serological states of the samples thus follow the binomial distribution given 

in equation 3.

 (2)  (3)π *  = ― λ
ϕ (1 ― ω +  ω λ ― λ) ― 1 y ~ B (𝑛𝐶𝑆, ― λ

ϕ (1 ― ω +  ω λ ― λ) ― 1)
The estimation of unknown parameters will be facilitated if some of these parameters are known a 

priori. In this study, we thus notably considered the case when the model was informed with some 

values for the survival and the seroreversion probabilities (true or erroneous, e.g., based on the 

literature). Additional details are given in Appendix S1: Section S1 

Longitudinal sampling

On the first year of the observation process, nLG random individuals are captured and marked 

with a tag allowing individuals to be identified without recapture (e.g., rings or PIT tags). Each of 

the following years, each alive marked individual is resighted with a probability p and its 

serological state is ascertained with a probability δ corresponding to the recapture probability after 

resighting (the serological state being ascertained at the same time from a blood sample). A fixed 

number of individuals is captured each year, with a priority on marked individuals and some newly 

marked individuals if necessary to complete the sample size to nLG. An observation event is then 

attributed each year to each marked individual of the study and recorded in the matrix m: 0 if not 

seen (for an individual either dead, alive but not present in the study site, or present but not 

detected), 1 if captured and ascertained as seronegative, 2 if captured and ascertained as 

seropositive or 3 if seen but not captured (uncertain serological state; Appendix S1: Section S1). 

Note that we considered no state misclassification (i.e., test sensitivity and specificity are equal to 

one). These assumptions are discussed in Appendix S1: Section S1. Multievent models allowing 

for state uncertainty (corresponding to event 3) were then fitted on the individual histories (Pradel 

2005), similarly to classical applications to demographic studies (Gimenez et al. 2012). Such 

models are increasingly used in population ecology and in eco-epidemiology (e.g., Conn and 

Cooch 2009, Robardet et al. 2017, Buzdugan et al. 2017, Marescot et al. 2018). 

Integrated modelling

For a given simulated population, the cross-sectional and the longitudinal datasets (y and m 

respectively) can be integrated together (Fig. 1 b; Schaub et al. 2007). Under the assumption of 

independence of the two datasets (only data from unmarked individuals are included in the cross-A
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sectional dataset), the combined likelihood function (LIPM) can thus be expressed as the product of 

the likelihood function of the cross-sectional ( ) and longitudinal ( ) models:LCS LLG

LIPM (y, m | ϕ, λ, ω, p, δ) = LCS (y | ϕ, λ, ω) × LLG (m | ϕ, λ, ω, p, δ) (4)

These parameters can thus conjointly be estimated based on the cross-sectional and longitudinal 

datasets (y and m). As both datasets result from processes sharing some similar eco-

epidemiological parameters, the integrated estimator of these parameters is expected to be less 

biased and more precise (Schaub et al. 2007, Abadi et al. 2010). As we considered situations in 

which a small proportion of the population is sampled (≤ 10 % unmarked individuals and ≤ 10 % 

marked individuals) and cross-sectional and longitudinal samples were chosen randomly, leading 

to only a potentially small overlap of the two datasets, we made the assumption that our cross-

sectional and longitudinal datasets were independent. In addition to the assumption of 

independence of the two datasets typical to integrated models, the main assumptions are the ones 

made by the multievent capture-recapture model (see for instance Riecke et al. 2019) and when 

formalizing the temporal variations of the seroprevalence. These assumptions are discussed in 

more details in Appendix S1: Section S1.

Simulations and model fitting

For each set of parameters, 1000 populations with a size of 600 individuals were simulated 

using a specifically developed individual based model (see Appendix S2 for codes). To compare 

the performances of both designs under various scenarios, one cross-sectional sample and one 

longitudinal sample of 50 individuals (nCS = nLG) per year were then taken per simulated 

population following the designs described above. In the case of integrated modelling, several 

combinations of cross-sectional (nCS = 20, 40 or 60) and longitudinal (nLG = 20 or 40 or 60) sample 

sizes were tested. Unless otherwise stated, the resighting (p) and recapture (δ) probabilities were 

set to 0.80 and sampling was conducted over five years after having reached the endemic 

equilibrium (Appendix S1: Fig. S1). Within a time step, samples were collected after exposure. 

The performances of the estimators were then compared based first on their bias, and second on 

their Mean Square Error (MSE = bias2 + variance) in order to account for the bias and the 

precision of the estimators; the lower the bias or MSE, the more accurate the estimator. In the 

three cases (cross-sectional, longitudinal and integrated), eco-epidemiological parameters were 

estimated from the data by maximization of likelihood using a frequentist approach. This method A
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was preferred due to reduced computation time compared to Bayesian inference. Sensitivity 

analyses were conducted to explore the validity of the results for ranges of biological and 

observation parameters. All simulations and analyses were run within R 3.3.3. Simulation codes 

are provided in Appendix S2, including examples of frequentist and Bayesian estimations of the 

parameters. 

Illustrative example 

The integrated estimator was then applied to a real case study of serotine bats (Eptesicus 

serotinus) exposed to a bat rabies virus (European Bat Lyssavirus type 1; EBLV-1) in Pagny-sur-

Moselle, France (Robardet et al. 2017). Because we were unable to find a dataset combining cross-

sectional and capture-recapture setups in the literature, we chose to use this capture-recapture 

dataset and to simulate additional cross-sectional data using the simulation model presented above 

and parameterized based on the demographic and epidemiological parameters estimated using a 

multievent model. Juvenile serotine bats from the study site are known to be exposed to EBLV-1 

(Robardet et al. 2017). Thus, instead of making the assumption that individuals recruit as 

seronegative (as in equation 1), we made the assumption that females recruit in the breeder pool 

with the same probability of being seropositive as former breeders (i.e., seroprevalence is similar 

in the new recruit and former breeder pools), leading to equation 5 in which new recruits and 

former breeders are not distinguished: 

πt+1 bats, EBLV-1 = πt bats, EBLV-1 ϕ (1 − ω) +  πt bats, EBLV-1 ϕ ω λ + (1 − πt bats, EBLV-1) ϕ λ (5)

And seroprevalence at the equilibrium can be written: 

 (6)π * bats, EBLV - 1 =
λ

(ω ―  ω λ +  λ)

The simulation of the cross-sectional data was also modified to reflect this assumption. 

We considered 102 marked individuals captured between one and five times over eight capture 

occasions (corresponding to the empirical longitudinal data). In parallel, during each of the eight 

capture occasions, ncs (20, 40 or 60) unmarked individuals were randomly captured and used to 

calculate the seroprevalence at each occasion (corresponding to the simulated cross-sectional 

data). We then estimated the survival, seroconversion and seroreversion probabilities using the 

integrated estimator based on the best model retained in Robardet et al. (2017), in which the 

resighting probability varies over time: ϕ(.), λ(.), ω(.), p(t), δ(.). Additional details are given in 

Appendix S1: Section S2 and codes in Appendix S3.A
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RESULTS

Cross-sectional estimator. The seroconversion probability (λ) was estimated without bias (i.e. 

absolute difference between the true and estimated value close to zero) when using the cross-

sectional estimator informed with the true values of the survival (ϕ) and seroreversion (ω) 

probabilities (Fig. 2 a and b). In contrast, informing the cross-sectional estimator with slightly 

erroneous values for these parameters led to biases when lifespan and antibody persistence were 

long (when ϕ tends to one and ω tends to zero). The bias was smaller when lifespan or antibody 

persistence were short, which can easily be explained by the fact that when ϕ tends to zero and/or 

ω tends to one, π* tends to λ (equation 2) and the seroconversion probability can thus be directly 

deducted from the observed seroprevalence. Hence, the cross-sectional estimator overall 

performed better (lower MSE independently of the a priori knowledge) when ϕ was low (i.e., 

short-lived host species) and/or ω was high (i.e., short-lived immune response; Fig. 2 a and b and 

sensitivity analyses presented in Appendix S1: Fig. S4).

Longitudinal estimator. When using the longitudinal estimator, the seroconversion probability 

(λ) was estimated without bias without any a priori knowledge of the true survival (ϕ) and 

seroreversion (ω) probabilities, except when the survival probability was close to zero (Fig. 2 a). 

In addition to the higher bias, precision was also lower at low survival probabilities. The lower 

performances observed for low survival probabilities are expected when using capture-recapture 

models as fewer individuals can be recaptured over the years, reducing the effective sample size. 

Precision was also slightly decreased when antibody level persistence was longer (low ω). This 

could be explained by the model not being able to distinguish individuals that maintained their 

antibody levels (at a probability 1 − ω) from individuals that were observed seropositive once and 

then seroreverted and got exposed again (at a probability ω × λ) as both situations fit with the 

observation of the individuals as seropositive during two consecutive occasions. This is supported 

by the fact that the precision was lower for higher seroconversion probabilities when the 

seroreversion was low but not when it was high (Fig. 2 c and d). Hence, the longitudinal estimator 

overall performed better when ϕ was high (i.e., long-lived host species) and/or ω was high (i.e., 

short-lived immune response; sensitivity analyses presented in Appendix S1: Fig. S4). 

Integrated estimator. Similarly to the longitudinal estimator, the integrated estimator of the 

seroconversion probability (λ) was unbiased without having to rely on any a priori knowledge on A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

the survival (ϕ) and/or seroreversion (ω) probabilities (Fig. 3). In addition, integrating cross-

sectional data to longitudinal data increased the precision of the estimator for any fixed 

longitudinal sample size. For instance, when antibody level persistence was long, adding 20 

unmarked individuals to 20 marked individuals at each sampled occasion allowed the standard 

error of the estimated values to be divided by 1.7. The results are not trivial though: for instance, 

for intermediate antibody level persistence, sampling longitudinally 20 marked individuals and a 

novel batch of 20 unmarked individuals at each yearly sampling occasion gives a more accurate 

estimation than sampling longitudinally 40 marked individuals (Fig. 3 b), while this is not the case 

for persisting antibody levels (Fig. 3 a). In such comparisons, one need to keep in mind the relative 

field costs (in time spent and skills required) associated with (re)capturing marked versus 

unmarked individuals (see Appendix S1: Fig. S9 for illustrative examples). Additional results are 

presented in the Appendix S1: Section S3, notably considering the effects of various biological 

(host survival, antibody persistence; Appendix S1: Fig. S5) and observations parameters 

(resighting and recapture probabilities, study duration, sample sizes; Appendix S1: Fig. S6-S8).

Illustrative example. The estimation of seroconversion probability was improved (smaller 

confidence interval) when longitudinal and cross-sectional data were integrated together 

(compared to using only longitudinal data; Table 1). For instance, the seroconversion probability 

[95% confidence interval] was estimated at 0.085 [0.033; 0.201] using the longitudinal design and 

0.079 [0.043; 0.139] using the integrated design including data from 60 unmarked individuals each 

year. The estimates of survival, resighting and recapture probabilities were unchanged, as expected 

considering that these parameters were not expected to impact seroprevalence (equation 5).

DISCUSSION

Based on an eco-epidemiological model and simulations under different sampling scenarios, 

our results suggest that longitudinal data analyzed in capture-recapture frameworks are preferable 

to cross-sectional data when poor a priori knowledge (for instance on the survival and 

seroreversion probabilities) is available on the system, which is the case with most wildlife-

parasites systems. The cross-sectional estimator can nonetheless be accurate for hosts with short 

lifespan and/or short antibody level persistence or when informed with reliable a priori knowledge 

on these parameters. In contrast, the longitudinal approach provided accurate estimates and also A
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allowed survival and seroreversion probabilities to be estimated along with observation parameters 

(resighting and recapture probabilities; e.g., the serotine bat example). Finally, the integrated 

estimator benefited from the performances of longitudinal designs, notably it did not rely on any a 

priori known parameters, even with relatively small longitudinal sample sizes. Based on these 

results, we hope to encourage researchers to think about the benefits of implementing longitudinal 

setups, potentially of relatively small scope, in parallel to already existing cross-sectional studies. 

We also propose a method to integrate these two types of data, which we believe could be useful 

in the future to motivate researchers to switch from cross-sectional to integrated designs. The 

method we present here also offers the possibility to integrate datasets that were previously 

analyzed independently, and thus to improve the inference of eco-epidemiological processes made 

from these data. For instance, multi-site cross-sectional data could be integrated with single-site 

longitudinal data (e.g., Picard-Meyer et al. 2011 and Robardet et al. 2017) to overcome the need of 

a priori knowledge on the host kinetics of the immune response, which is likely conserved within 

a species sampled across sites.

Although the benefits of longitudinal setups are increasingly acknowledged in the disease 

ecology community, our study is the first to our knowledge to explore the conditions in which 

these benefits are actually found. Overall, the results highlight that the key elements to determine 

an optimal sampling design are: (1) host species life history, (2) the degree of antibody persistence 

and (3) the degree of a priori knowledge and uncertainty on demographic and epidemiologic 

parameters. This work also stresses the potential benefits of incorporating data from capture-

recapture sampling designs in eco-epidemiological analyses, often largely based on cross-sectional 

field surveys. In practice, this integrated approach would be particularly beneficial in systems in 

which (1) individuals can be recaptured over several years (relatively long lifespan and high site 

faithfulness) and (2) large numbers of unmarked individuals can be sampled without increasing 

too much the cost of the study. This is for instance the case when samples can be collected when 

accidental capture is frequent (e.g., when using non-targeted capture methods such as mist nets, 

harp or Sherman traps: e.g., Robardet et al. 2017, Mariën et al. 2018), or as part of harvesting 

practices (e.g., Rossi et al. 2005), or from the offspring of colonial breeders (e.g., Chambert et al. 

2012b). In such cases, seroprevalence data from unmarked individuals may be collected with 

minimal additional effort in parallel to capture-recapture setups. For instance, particularly efficient A
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cross-sectional sampling designs may not even require the capture of adults if the sampling of 

offspring, or eggs, can be used as a reliable alternative to adult blood sampling (Alekseeev et al. 

2014, Hammouda et al. 2014, Gamble et al. 2019b; discussed in Appendix S1: Section S4). 

Further simulation work could aim at optimazing designs (e.g., sample sizes, sampling 

frequencies, study duration…) for various scenarios, similar to work performed for occupancy 

models (Mackenzie and Royle 2005, Guillera-Arroita and Lahoz-Monfort 2012).

The present study illustrates that setting up a capture-recapture program, potentially in parallel 

to extensive cross-sectional sampling, to estimate epidemiological parameters may be particularly 

rewarding in long-lived host species and when specific antibody level persistence is unknown, 

which is often the case for non-model species (e.g., seabirds, Chambert et al. 2012b; or marine 

mammals, Chambert et al. 2012a). Conversely, in a species expected to be subjected to high yearly 

mortality probabilities (e.g., small passerines, Grosbois et al. 2006; or rodents, Mariën et al. 2018), 

cross-sectional surveys may be the most efficient way to explore inter-annual processes. 

Nevertheless, implementing longitudinal, or integrated, setups can still be valuable in short-lived 

species to study processes occurring at smaller time scales (e.g., monthly; Mariën et al. 2018). In 

case of doubt about annual survival and/or the temporal persistence of antibody levels, it is always 

advisable to implement a capture-recapture program at a time scale adapted to the host species 

phenology. The inter-annual time scale we considered here may be particularly suited to the long-

term monitoring of seasonally breeding species or to investigate the potential impact of diseases 

on long-lived populations (e.g., Lachish et al. 2007, Robardet et al. 2017). In disease systems with 

strong expected within- and between-year dynamics, the approach would need to incorporate some 

temporal hierarchy in considered eco-epidemiological parameters and in the corresponding timing 

of sampling. 

Overall, given the relatively realistic situations we considered and the possibility to tailor the 

approach to more specific cases, the present study could have important implications regarding 

current practices in eco-epidemiology. For instance, the presented approach could be adapted to 

consider the time variations of the force of infection to account for epidemic cases or to 

incorporating parameters to account for a potential disease-induced mortality (discussed in 

Appendix S1: Section S1). Our study continues to expand the currently proposed framework to 

improve inference of the circulation of infectious agents in wild populations using serological data A
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(see Appendix S1: Section S5). The sampling design will of course have to be adapted to the main 

objective of the survey (Yoccoz et al. 2001). For instance, if the main objective of the study is to 

estimate the seroconversion probability in a long-lived host species, putting important efforts on 

recapture (to insure a high δ) as part of a longitudinal setting, and integrating additional cross-

sectional data could greatly improve the precision of the seroconversion estimators (Appendix S1: 

Figure S6 b, top panel). In contrast, if the main interest is on the survival probability, putting more 

effort on resighting (independently of recapture) could improve the precision of the estimates 

(Lahoz-Monfort et al. 2014, Lieury et al. 2017), but integrating cross-sectional data will provide 

no added benefit (Appendix S1: Figure S6 a, middle panel). In any case, as already advocated in 

other papers (Albert et al. 2010, Garnett et al. 2011, Restif et al. 2012), but still seldom done 

(Herzog et al. 2017), we recommend a priori modelling based on available knowledge when 

designing eco-epidemiological studies, notably to account for host demography, immune response 

characteristics and sampling costs (Appendix S1: Fig. S9).

In addition to the assumption of independence of the datasets, the approach we used relies on the 

same assumptions as the ones classically made by the chosen capture-recapture and 

compartmented epidemiological models, and thus the same limitations apply. Notably, it is 

important to note that, because we used a simulated dataset, the performances of the three 

presented approaches could have been overestimated. For instance, we did not consider the effect 

of potential heterogeneities between individuals included in the cross-sectional and longitudinal 

datasets (e.g., mean age differences or differences in age variances between the marked and 

unmarked individuals). If they cannot be avoided, these sources of heterogeneities could be 

accounted for in the modelling process. Finally, considering the recent advances made in 

quantitative ecology, this approach could be applied to more complex scenarios than the one we 

considered here, by being combined with methods accounting for state misclassification by 

repeating sampling (McClintock et al. 2010, Lahoz-Monfort et al. 2016), using the information 

contained in quantitative measurements (Choquet et al. 2013), combining assays such as serology 

and direct detection (Viana et al. 2016, Buzdugan et al. 2017) or by integrating individual traits 

more explicitly (Plard et al. 2019). 

ACKNOWLEDGEMENTS

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

We are thankful to Rémi Choquet and Roger Pradel for discussions, to Emmanuelle Robardet, 

Evelyne Picard-Meyer and Florence Cliquet for the serotine bat data, and to three anonymous 

reviewer’s for their suggestions. This work used computational and storage services associated 

with the shared clusters provided by CEFE-CNRS and UCLA Institute for Digital Research and 

Education’s Research Technology Group (Hoffman2). This paper is a contribution to the French 

Polar Institute IPEV programs ECOPATH 1151 and PARASITO-ARCTIQUE 333 and to the 

ECOPOP observation service of the OREME scientific observatory. AG was supported by a PhD 

fellowship from French Ministry of Research and the DARPA, project PREEMPT # 

D18AC00031. The content of the article does not necessarily reflect the position or the policy of 

the U.S. government, and no official endorsement should be inferred. TC was supported by a 

CeMEB LabEx post-doctoral fellowship and OG by the ANR, project DEMOCOM # 16-CE02-

0007. 

LITERATURE CITED

Abadi, F., O. Gimenez, R. Arlettaz, and M. Schaub. 2010. An assessment of integrated population 

models: bias, accuracy, and violation of the assumption of independence. Ecology 91:7–14.

Albert, C. H., N. G. Yoccoz, T. C. Edwards, C. H. Graham, N. E. Zimmermann, and W. Thuiller. 

2010. Sampling in ecology and evolution - bridging the gap between theory and practice. 

Ecography 33:1028–1037.

Alekseeev, A. Y., K. A. Sharshov, V. Y. Marchenko, Z. Li, J. Cao, F. Yang, A. M. Shestopalov, 

V. A. Shkurupy, and L. Li. 2014. Antibodies to Newcastle Disease Virus in egg yolks of great 

cormorant (Phalacrocorax carbo) at Qinghai Lake. Advances in Infectious Diseases 04:194–197.

Besbeas, P., S. N. Freeman, B. J. T. Morgan, and E. A. Catchpole. 2002. Integrating Mark-

Recapture-Recovery and Census Data to Estimate Animal Abundance and Demographic 

Parameters. Biometrics 58:540–547.

Borremans, B., N. Hens, P. Beutels, H. Leirs, and J. Reijniers. 2016. Estimating time of infection 

using prior serological and individual information can greatly improve incidence estimation of 

human and wildlife infections. PLOS Computational Biology 12:e1004882.

Boulinier, T., S. Kada, A. Ponchon, M. Dupraz, M. Dietrich, A. Gamble, V. Bourret, O. Duriez, R. 

Bazire, J. Tornos, T. Tveraa, T. Chambert, R. Garnier, and K. D. McCoy. 2016. Migration, 

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

prospecting, dispersal? What host movement matters for infectious agent circulation? Integrative 

and Comparative Biology 56:330–342.

Buzdugan, S. N., T. Vergne, V. Grosbois, R. J. Delahay, and J. A. Drewe. 2017. Inference of the 

infection status of individuals using longitudinal testing data from cryptic populations: towards a 

probabilistic approach to diagnosis. Scientific Reports 7:1111.

Chambert, T., J. J. Rotella, and R. A. Garrott. 2012a. Environmental extremes versus ecological 

extremes: impact of a massive iceberg on the population dynamics of a high-level Antarctic 

marine predator. Proceedings of the Royal Society B: Biological Sciences 279:4532–4541.

Chambert, T., V. Staszewski, E. Lobato, R. Choquet, C. Carrie, K. D. McCoy, T. Tveraa, and T. 

Boulinier. 2012b. Exposure of black-legged kittiwakes to Lyme disease spirochetes: dynamics of 

the immune status of adult hosts and effects on their survival. Journal of Animal Ecology 

81:986–995.

Choquet, R., C. Carrié, T. Chambert, and T. Boulinier. 2013. Estimating transitions between states 

using measurements with imperfect detection: application to serological data. Ecology 94:2160–

2165.

Conn, P. B., and E. G. Cooch. 2009. Multistate capture-recapture analysis under imperfect state 

observation: an application to disease models. Journal of Applied Ecology 46:486–492.

Fletcher, R. J., T. J. Hefley, E. P. Robertson, B. Zuckerberg, R. A. McCleery, and R. M. Dorazio. 

(2019). A practical guide for combining data to model species distributions. Ecology e02710, in 

press.

Gamble, A., R. Garnier, A. Jaeger, H. Gantelet, E. Thibault, P. Tortosa, V. Bourret, J.-B. Thiebot, 

K. Delord, H. Weimerskirch, J. Tornos, C. Barbraud, and T. Boulinier. 2019a. Exposure of 

breeding albatrosses to the agent of avian cholera: dynamics of antibody levels and ecological 

implications. Oecologia 189:939–949.

Gamble, A., R. Ramos, Y. Parra-Torres, A. Mercier, L. Galal, J. Pearce-Duvet, I. Villena, T. 

Montalvo, J. González-Solís, A. Hammouda, D. Oro, S. Selmi, and T. Boulinier. 2019b. 

Exposure of yellow-legged gulls to Toxoplasma gondii along the Western Mediterranean coasts: 

Tales from a sentinel. International Journal for Parasitology: Parasites and Wildlife 8:221–228. 

Gandon, S. 2002. Local adaptation and the geometry of host–parasite coevolution. Ecology Letters 

5:246–256.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Garnett, G. P., S. Cousens, T. B. Hallett, R. Steketee, and N. Walker. 2011. Mathematical models 

in the evaluation of health programmes. The Lancet 378:515–525.

Garnier, R., R. Ramos, A. Sanz-Aguilar, M. Poisbleau, H. Weimerskirch, S. Burthe, J. Tornos, and 

T. Boulinier. 2017. Interpreting ELISA analyses from wild animal samples: some recurrent 

issues and solutions. Functional Ecology 31:2255–2262.

Gilbert, A. T., A. R. Fooks, D. T. S. Hayman, D. L. Horton, T. Müller, R. Plowright, A. J. Peel, R. 

Bowen, J. L. N. Wood, J. Mills, A. A. Cunningham, and C. E. Rupprecht. 2013. Deciphering 

serology to understand the ecology of infectious diseases in wildlife. EcoHealth 10:298–313.

Gimenez, O., J.-D. Lebreton, J.-M. Gaillard, R. Choquet, and R. Pradel. 2012. Estimating 

demographic parameters using hidden process dynamic models. Theoretical Population Biology 

82:307–316.

Grosbois, V., P.-Y. Henry, J. Blondel, P. Perret, J.-D. Lebreton, D. W. Thomas, and M. M. 

Lambrechts. 2006. Climate impacts on Mediterranean blue tit survival: an investigation across 

seasons and spatial scales. Global Change Biology 12:2235–2249.

Guillera-Arroita, G., and J. J. Lahoz-Monfort. 2012. Designing studies to detect differences in 

species occupancy: power analysis under imperfect detection. Methods in Ecology and Evolution 

3:860–869.

Hammouda, A., J. Pearce-Duvet, T. Boulinier, and S. Selmi. 2014. Egg sampling as a possible 

alternative to blood sampling when monitoring the exposure of yellow-legged gulls (Larus 

michahellis) to avian influenza viruses. Avian Pathology 43:547–551.

Hénaux, V., M. D. Samuel, and C. M. Bunck. 2010. Model-based evaluation of highly and low 

pathogenic avian influenza dynamics in wild birds. PLOS ONE 5:e10997.

Hens, N., Z. Shkedy, M. Aerts, C. Faes, P. Van Damme, and P. Beutels. 2012. Modeling 

infectious disease parameters based on serological and social contact data: a modern statistical 

perspective. Springer Science & Business Media, New York.

Herzog, S. A., S. Blaizot, and N. Hens. 2017. Mathematical models used to inform study design or 

surveillance systems in infectious diseases: a systematic review. BMC Infectious Diseases 17.

Jennelle, C. S., E. G. Cooch, M. J. Conroy, and J. C. Senar. 2007. State-specific detection 

probabilities and disease prevalence. Ecological Applications 17:154–167.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Jones, K. E., N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, and P. Daszak. 

2008. Global trends in emerging infectious diseases. Nature 451:990–993.

Lachish, S., M. Jones, and H. McCallum. 2007. The impact of disease on the survival and 

population growth rate of the Tasmanian devil. Journal of Animal Ecology 76:926–936. 

Lahoz-Monfort, J. J., G. Guillera-Arroita, and R. Tingley. 2016. Statistical approaches to account 

for false-positive errors in environmental DNA samples. Molecular Ecology Resources 16:673–

685.

Lahoz-Monfort, J. J., M. P. Harris, B. J. T. Morgan, S. N. Freeman, and S. Wanless. 2014. 

Exploring the consequences of reducing survey effort for detecting individual and temporal 

variability in survival. Journal of Applied Ecology 51:534–543.

Lebreton, J.-D., K. P. Burnham, J. Clobert, and D. R. Anderson. 1992. Modeling survival and 

testing biological hypotheses using marked animals: a unified approach with case studies. 

Ecological monographs 62:67–118.

Lieury, N., S. Devillard, A. Besnard, O. Gimenez, O. Hameau, C. Ponchon, and A. Millon. 2017. 

Designing cost-effective capture-recapture surveys for improving the monitoring of survival in 

bird populations. Biological Conservation 214:233–241. 

Mackenzie, D. I., and J. A. Royle. 2005. Designing occupancy studies: general advice and 

allocating survey effort. Journal of Applied Ecology 42:1105–1114.

Marescot, L., S. Benhaiem, O. Gimenez, H. Hofer, J.-D. Lebreton, X. A. Olarte‐Castillo, S. 

Kramer‐Schadt, and M. L. East. 2018. Social status mediates the fitness costs of infection with 

canine distemper virus in Serengeti spotted hyenas. Functional Ecology 32:1237–1250.

Mariën, J., V. Sluydts, B. Borremans, S. Gryseels, B. Vanden Broecke, C. A. Sabuni, A. A. S. 

Katakweba, L. S. Mulungu, S. Günther, J. G. de Bellocq, A. W. Massawe, and H. Leirs. 2018. 

Arenavirus infection correlates with lower survival of its natural rodent host in a long-term 

capture-mark-recapture study. Parasites & Vectors 11:90.

McClintock, B. T., J. D. Nichols, L. L. Bailey, D. I. MacKenzie, W. L. Kendall, and A. B. 

Franklin. 2010. Seeking a second opinion: uncertainty in disease ecology. Ecology Letters 

13:659–674.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

McDonald, J. L., T. Bailey, R. J. Delahay, R. A. McDonald, G. C. Smith, and D. J. Hodgson. 

2016. Demographic buffering and compensatory recruitment promotes the persistence of disease 

in a wildlife population. Ecology Letters 19:443–449.

Metcalf, C. J. E., J. Farrar, F. T. Cutts, N. E. Basta, A. L. Graham, J. Lessler, N. M. Ferguson, D. 

S. Burke, and B. T. Grenfell. 2016. Use of serological surveys to generate key insights into the 

changing global landscape of infectious disease. The Lancet 388:728–730.

Pepin, K. M., S. L. Kay, B. D. Golas, S. S. Shriner, A. T. Gilbert, R. S. Miller, A. L. Graham, S. 

Riley, P. C. Cross, M. D. Samuel, M. B. Hooten, J. A. Hoeting, J. O. Lloyd-Smith, C. T. Webb, 

and M. G. Buhnerkempe. 2017. Inferring infection hazard in wildlife populations by linking data 

across individual and population scales. Ecology Letters 20:275–292.

Plard, F., D. Turek, M. U. Grüebler, and M. Schaub. (2019). IPM2: Towards better understanding 

and forecasting of population dynamics. Ecological Monographs 89:e01364.

Plowright, R. K., D. J. Becker, H. McCallum, and K. R. Manlove. 2019. Sampling to elucidate the 

dynamics of infections in reservoir hosts. Philosophical Transactions of the Royal Society B: 

Biological Sciences 374:20180336. 

Pradel, R. 2005. Multievent: an extension of multistate capture-recapture models to uncertain 

states. Biometrics 61:442–447.

Ramos, R., R. Garnier, J. González-Solís, and T. Boulinier. 2014. Long antibody persistence and 

transgenerational transfer of immunity in a long-lived vertebrate. The American Naturalist 

184:764–776.

Restif, O., D. T. S. Hayman, J. R. C. Pulliam, R. K. Plowright, D. B. George, A. D. Luis, A. A. 

Cunningham, R. A. Bowen, A. R. Fooks, T. J. O’Shea, J. L. N. Wood, and C. T. Webb. 2012. 

Model-guided fieldwork: practical guidelines for multidisciplinary research on wildlife 

ecological and epidemiological dynamics. Ecology Letters 15:1083–1094. 

Riecke, T. V., P. J. Williams, T. L. Behnke, D. Gibson, A. G. Leach, B. S. Sedinger, P. A. Street, 

and J. S. Sedinger. 2019. Integrated population models: model assumptions and inference. 

Methods in Ecology and Evolution 10: 1072–1082.

Robardet, E., C. Borel, M. Moinet, D. Jouan, M. Wasniewski, J. Barrat, F. Boué, E. Montchâtre-

Leroy, A. Servat, O. Gimenez, F. Cliquet, and E. Picard-Meyer. 2017. Longitudinal survey of 

two serotine bat (Eptesicus serotinus) maternity colonies exposed to EBLV-1 (European Bat A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Lyssavirus type 1): Assessment of survival and serological status variations using capture-

recapture models. PLOS Neglected Tropical Diseases 11:e0006048.

Rossi, S., M. Artois, D. Pontier, C. Crucière, J. Hars, J. Barrat, X. Pacholek, and E. Fromont. 

2005. Long-term monitoring of classical swine fever in wild boar (Sus scrofa sp.) using 

serological data. Veterinary Research 36:27–42.

Samuel, M. D., J. S. Hall, J. D. Brown, D. R. Goldberg, H. Ip, and V. V. Baranyuk. 2015. The 

dynamics of avian influenza in lesser snow geese: implications for annual and migratory 

infection patterns. Ecological Applications 25:1851–1859.

Samuel, M. D., D. J. Shadduck, D. R. Goldberg, and W. P. Johnson. 2003. Comparison of 

methods to detect Pasteurella multocida in carrier waterfowl. Journal of Wildlife Diseases 

39:125–135.

Schaub, M., O. Gimenez, A. Sierro, and R. Arlettaz. 2007. Use of Integrated Modeling to Enhance 

Estimates of Population Dynamics Obtained from Limited Data. Conservation Biology 21:945–

955.

Staszewski, V., K. D. McCoy, T. Tveraa, and T. Boulinier. 2007. Interannual dynamics of 

antibody levels in naturally infected long-lived colonial birds. Ecology 88:3183–3191.

Smith, K. F., D. F. Sax, and K. D. Lafferty. 2006. Evidence for the role of infectious disease in 

species extinction and endangerment. Conservation Biology 20:1349–1357.

Viana, M., G. M. Shirima, K. S. John, J. Fitzpatrick, R. R. Kazwala, J. J. Buza, S. Cleaveland, D. 

T. Haydon, and J. E. B. Halliday. 2016. Integrating serological and genetic data to quantify 

cross-species transmission: brucellosis as a case study. Parasitology 143:821–834.

Yoccoz, N. G., J. D. Nichols, and T. Boulinier. 2001. Monitoring of biological diversity in space 

and time. Trends in Ecology & Evolution 16:446–453.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

TABLES

TABLE 1. Eco-epidemiological parameters estimated from a bat colony exposed to a rabies virus 

using the longitudinal or integrated design. The estimates are presented with their 95% confidence 

interval between brackets. Note that the confidence interval of seroconversion probability (in bold) 

is smaller when using the integrated design.

Design

Parameter Longitudinal
Integrated

nCS = 20

Integrated

nCS = 40

Integrated

nCS = 60

Survival ϕ
0.750 

[0.684; 0.807]

0.750 

[0.684; 0.807]

0.750 

[0.684; 0.807]

0.750

[0.684; 0.807]

Seroconversion λ
0.085 

[0.033; 0.201]

0.072 

[0.038; 0.130]

0.085 

[0.046; 0.151]

0.079 

[0.043; 0.139]

Seroreversion ω
0.145 

[0.072; 0.271]

0.152 

[0.080; 0.269]

0.145 

[0.075; 0.261]

0.148 

[0.078; 0.265]

Resighting t = 1 p1
0.793 

[0.733; 0.843]

0.793 

[0.733; 0.843]

0.793 

[0.733; 0.843]

0.793 

[0.733; 0.843]

Resighting t = 2 p2
0.152 

[0.049; 0.383]

0.152 

[0.049; 0.383]

0.152 

[0.049; 0.383]

0.152 

[0.049; 0.383]

Resighting t = 3 p3
0.865 

[0.630; 0.960]

0.865 

[0.630; 0.960]

0.865 

[0.630; 0.960]

0.865 

[0.630; 0.960]

Resighting t = 4 p4
0.138 

[0.062; 0.277]

0.138 

[0.062; 0.277]

0.138 

[0.062; 0.277]

0.138 

[0.062; 0.277]

Resighting t = 5 p5
0.365 

[0.218; 0.542]

0.365 

[0.218; 0.542]

0.365 

[0.218; 0.542]

0.365 

[0.218; 0.542]

Resighting t = 6 p6
0.702 

[0.477; 0.859]

0.702 

[0.477; 0.859]

0.702 

[0.477; 0.859]

0.702 

[0.477; 0.859]

Resighting t = 7 p7
0.646 

[0.421; 0.821]

0.646 

[0.421; 0.821]

0.646 

[0.421; 0.821]

0.646 

[0.421; 0.821]

Recapture δ
0.659 

[0.385; 0.856]

0.659 

[0.385; 0.856]

0.659 

[0.385; 0.856]

0.659 

[0.385; 0.856]A
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FIGURES

FIGURE 1. Methodological framework: eco-epidemiological process used for data simulation (a) 

and modelling framework for the estimation of the eco-epidemiological parameters (b). 

FIGURE 2. The longitudinal design overall leads to no bias but low precision in the estimation of 

the seroconversion probability (λ) while small errors in a priori fixed seroreversion ( ) or survival ω

( ) probabilities can lead to strong biases in cross sectional designs, especially for long-lived host ϕ

species and persisting antibody levels. Estimated values of the seroconversion probability and 

corresponding bias (a, b) or MSE (c, d) in relation to survival (a), seroreversion (b) and 

seroconversion (c, d) probabilities using cross-sectional or longitudinal estimators. For the cross-

sectional design, results are shown for a realistic gradient of error on the a priori fixed value of 

seroreversion ( ) or survival ( ), while the longitudinal design does not require those parameters ω ϕ

to be set a priori (not informed). The true seroconversion probability is represented by a black 

dashed line (a, b) or black diamonds (c, d). Notes: (a): a null seroreversion value corresponds to a 

lifelong persistence of antibody levels. (b): a survival value of ϕ × p corresponds to an 

underestimated survival probability comparable to the raw return rate probability which is 

sometime used in the literature (the < 1 resighting probability being ignored). 

FIGURE 3. The integrated estimator leads to higher precision in the estimation of the 

seroconversion probability (λ) compared to the integrated estimator. Estimated values of the 

seroconversion probability and corresponding MSE for different combinations on datasets 

analyzed with the longitudinal (nCS = 0) or the integrated (nCS > 0) model. Two situations were 

explored: intermediate (a) or long (b) persistence of the antibody levels. The true seroconversion 

probability is represented by a black dashed line. The cross-sectional model is not represented on 

this figure as it requires a priori reliable knowledge on ϕ and ω.
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