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Abstract. Studying evolutionary mechanisms in natural populations often requires testing
multifactorial scenarios of causality involving direct and indirect relationships among
individual and environmental variables. It is also essential to account for the imperfect
detection of individuals to provide unbiased demographic parameter estimates. To cope with
these issues, we developed a new approach combining structural equation models with
capture–recapture models (CR–SEM) that allows the investigation of competing hypotheses
about individual and environmental variability observed in demographic parameters. We
employ Markov chain Monte Carlo sampling in a Bayesian framework to (1) estimate model
parameters, (2) implement a model selection procedure to evaluate competing hypotheses
about causal mechanisms, and (3) assess the fit of models to data using posterior predictive
checks. We illustrate the value of our approach using two case studies on wild bird
populations. We first show that CR–SEM can be useful to quantify the action of selection on a
set of phenotypic traits with an analysis of selection gradients on morphological traits in
Common Blackbirds (Turdus merula). In a second case study on Blue Tits (Cyanistes
caeruleus), we illustrate the use of CR–SEM to study evolutionary trade-offs in the wild, while
accounting for varying environmental conditions.

Key words: capture–recapture models; evolutionary ecology; individual heterogeneity; life history trade-
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INTRODUCTION

A key issue in ecology is to disentangle the multiple

interacting factors driving animal demography, e.g.,

environmental forcing, individual variability, or evolu-

tionary trade-offs. Because biological phenomena are

often the result of complex interactions between living

organisms and their environment, the underlying mech-

anisms are multifactorial and usually involve numerous

variables interacting directly or indirectly through other

variables. Understanding such mechanisms and factors

thus requires identifying the relevant variables, describ-

ing the structural links connecting them and quantifying

the shape and the strength of the relationships among

them. To do so, one needs to carry out a series of

experimental manipulations, in which some variables are

fixed to constant values, thus minimizing uncontrolled

variation. Because manipulative experiments are often

difficult or impossible to conduct in natural populations,

studies of mechanisms driving natural population

dynamics rely on observational data. An alternative

and complementary approach for evaluating causal

assumptions based on observational data is to formalize

and confront different scenarios of causality using

structural equation modeling (SEM; Shipley 2002,

Grace 2006). SEM is a multivariate regression frame-

work that allows the evaluation of direct and indirect

relationships among a set of variables, including

variables that cannot be directly observed and mea-

sured, so-called latent variables. Typically, a structural

equation model is built by specifying a set of pathways

describing how variables may affect each other. If the

model is not consistent with the observations, the

corresponding scenario is rejected and an alternative

hypothesis about the underlying mechanism has to be

considered. Shipley (2002) defines SEM as ‘‘models

representing translations of a series of hypothesized

cause–effect relationships between variables into a

composite hypothesis concerning patterns of statistical

dependencies.’’ Rather than being strictly causal, SEM

allows the testing of competing causal assumptions and

refuting of an unlikely hypothesis, based on correla-

tional evidence. Hence, the term ‘‘causal model’’ should

be understood to be a model that conveys causal

assumptions and not necessarily as a model that

produces validated causal conclusions (see Shipley

[2009] and Pearl [2000] for further discussion about

causal inference).
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The flexibility of SEM to represent complex scenarios

involving several observed and latent variables has lead

to an increasing number of applications in ecology and

evolution (Shipley 2002, Pugesek et al. 2003, Grace

2006). In particular, several examples include studies

about natural selection and life–history strategies in

natural and experimental populations (Mitchell 1992,

Pugesek and Tomer 1996, Kirk et al. 2001). To address

important questions linked to natural selection, one

needs to estimate fitness components like demographic

parameters, e.g., survival. However, these traits are

difficult to obtain because of the imperfect detection of

individuals inherent to monitoring in the wild. Besides, if

ignored, the issue of detectability ,1 can lead to flawed

inference about the relationship between survival and

explanatory variables (Gimenez et al. 2008). To deal

with this issue, capture–recapture models (Lebreton et

al. 1992) provide unbiased estimators of demographic

parameters while explicitly coping with the imperfect

detection inherent to wild populations. CR models allow

estimating the effect of temporal and individual

covariates on demographic parameters and testing their

significance in a regression-like framework (Pollock

2002). However, these models can only detect correla-

tions and do not provide information about causal

pathways in the (possibly indirect) relationships between

demographic parameters and the factors possibly

explaining their variability, neither do they allow the

incorporation of latent variables.

Here, we develop a method to test competing

hypotheses about individual and environmental vari-

ability observed in demographic parameters using CR

data in a SEM framework. We show how to combine

structural equation and capture–recapture models (CR–

SEM hereafter) using a hierarchical approach. To

illustrate our method, we consider two case studies in

evolutionary ecology on wild bird populations with an

analysis of selection gradients on morphological traits in

Common Blackbirds (Turdus merula) and a study of

trade-offs between survival and reproduction in Blue

Tits (Cyanistes caeruleus). Adopting a Bayesian ap-

proach, we estimate parameters using Markov chain

Monte Carlo methods, implement a model selection

procedure to evaluate competing hypotheses about

causal mechanisms and assess the fit of the CR–SEM.

Structural equation modeling of CR data

In this section, we introduce the general procedure for

processing CR–SEM. We used a hierarchical approach

in which we first modeled CR data to obtain survival

(level 1), then we used an SEM involving survival and

other variables, measured or unmeasured, linked with

direct or indirect relationships to explain variations in

survival (level 2). We estimated model parameters using

a Bayesian approach implemented with a Markov chain

Monte Carlo (MCMC) sampling procedure, which

provides powerful computer-intensive methods for

handling complex models and are becoming increasingly

popular in SEM (Congdon 2006, Lee 2007, Palomo et al.

2007). We compared competing models using Bayesian

model selection. We calculated posterior model proba-

bilities using the method developed by Kuo and Mallick

(1998) (see Royle [2008] for an example of implemen-

tation in the CR framework). For each parameter for

which we wanted to test the relevance, we introduced an

indicator variable w having a Bernoulli(0.5) prior

distribution, and premultiplied the parameter by w.

We computed the posterior model probability for a

particular model from the MCMC histories, using the

ratio between the number of iterations using this model

over the total number of iterations. We also reported the

relative importance of a particular factor by calculating

the number of iterations using a model containing the

corresponding parameter over the total number of

iterations (Appendix A). In addition, we calculated

posterior predictive checks to evaluate the fit of the

model to the data (Appendix B). The simulations were

performed using JAGS, a program in R (Ihaka and

Gentleman 1996), using the package rjags (Plummer

2003; JAGS program available online).5

Level 1: modeling survival using CR data

To account for the issue of detectability ,1, we used

CR data collected under the form of 1’s and 0’s

corresponding to a detection or not of I individuals

over T sampling occasions. CR models can be formu-

lated as state-space models (SSM, or hierarchical

models) (Gimenez et al. 2007, Royle 2008, Schofield

and Barker 2008) to distinguish the underlying demo-

graphic process from the observation process, which

provides much flexibility in the modeling of demograph-

ic parameters.

Here, we focused on survival and the reasoning was

conditional on first capture of individuals. The model

had two main components. The state model specified the

dynamic process. Let X be a binary random variable

representing the demographic process, with Xi, t ¼ 1 if

individual i was alive and available for detection at time

t and 0 if it was dead. The state process in the SSM

formulation stipulates that if individual i was alive at

time t � 1, it survived until time t with survival

probability /i, t or died with a probability 1 � /i, t; in

other words, Xi, t is distributed as a Bernoulli random

variable with parameter /i, t given Xi, t�1 ¼ 1. The

observation model connects the demographic process to

its observation through the detection of individuals. Let

Yi, t be a binary random variable taking values 1 if

individual i was encountered at time t and 0 otherwise. If

individual i was alive at time t, then it had a probability

pi, t of being encountered and a probability 1 � pi, t
otherwise; in other words, the link between survival and

the detection of individuals is made through the

observation equation, which states that Yi, t is distrib-

5 http://mcmc-jags.sourceforge.net/
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uted as a Bernoulli random variable with parameter pi, t
given Xi, t ¼ 1. In the following, we assumed homoge-

neous detection among individuals, so that the index i
was dropped in pi,t. Temporal variation (index t) was

assessed specifically for each case study.

Level 2: structural equation model (SEM) for survival

SEM is a multivariate regression framework that

allows the evaluation of direct and indirect relationships

among a set of correlated variables, including variables

that cannot be directly observed and measured, so-called
latent variables, while taking measurement errors into

account (more details can be found in Pugesek et al.

2003, Grace 2006, Lee 2007). In the SEM process, causal
assumptions are first translated into models for evalu-

ation. Model specification consists of formulating latent

variables, hypothesizing their interdependencies, and

choosing their indicators by specifying a set of pathways
describing how variables may affect each other, based

on theory or prior knowledge of the process. Observed

variables (e.g., morphological measures or index of food

abundance in examples below) are referred to as
indicators of the latent variables (e.g., individual fitness

or environmental quality in examples below). We made

the distinction between independent latent variables

(exogenous variables) vs. factors that might appear as
dependent variables in the model (endogenous variables).

The SEM is typically composed of a measurement model

which specifies the relationships among the latent and
the observed variables, and a structural model which

specifies the relationships among the latent variables.

For a discussion of the concept of latent variables, see

Grace et al. (2010). We used the LISREL formalism
(e.g., Bollen 1989, Grace et al. 2010) to write down the

SEM. The measurement model was split into two parts,

depending on whether the observed variables were

connected to exogenous or endogenous latent variables:

x¼H nþ d ð1Þ

which related the observed variables x to a vector of
latent exogenous variables n through the matrix H of

regression parameters; we also had

y ¼ Kgþ e ð2Þ

which related the observed variables y to a vector of

latent endogenous variables g through the matrix K of
regression parameters. The measurement errors d and e
were assumed to be normally distributed with mean 0

and variance parameters to be estimated.

In the specific case of SEM-CR models, survival could

appear in the SEM via the first or the second
measurement equation, as it could be connected to

exogenous or endogenous variables. In the first example

on blackbirds (see Applications), survival was used as a
proxy for the latent variable representing individual

fitness. Hence, survival was introduced in Eq. 2 as an

indicator of an endogenous latent variable y. In the

second example on Blue Tits (see Applications), survival

was related to an exogenous latent variable representing

parental investment in reproduction. Hence, survival

was introduced in Eq. 1, as a part of vector x.

The structural model allows the study of relationships

among latent variables, here g (endogenous) and n
(exogenous), via the following relationship:

g ¼ Bgþ Cnþ f ð3Þ

where the matrix B captures the relationships among the

latent endogenous variables, while the matrix C captures

the effect of n on g. The f stands for the unexplained

variability in g, and was assumed to be normally

distributed with mean 0 and variance parameters to be

estimated.

We assumed that errors terms were all independent of

each other, and that, conditional on the latent variables

being known, the observed variables were independent.

The later means that we considered that there was no

unmodeled common cause influencing simultaneously

several variables in the model, i.e., no unobserved

‘‘confounder’’ effect.

APPLICATIONS

Selection gradient analysis in Common Blackbirds

Assessing the relationship linking (components of )

fitness (e.g., survival) to a suite of phenotypic traits (e.g.,

various morphological traits) is an important step in

describing selection pressure on phenotypic traits. To do

so, the standard second-order polynomial regression

method is usually used (Lande and Arnold 1983), and

has recently been integrated in CR models (Gimenez et

al. 2009a). However, this approach was not designed to

understand how selection acts on combinations of traits

through direct or indirect relationships, nor was it

developed to deal with latent variables.

Here, the aim was to investigate the action of selection

on a set of morphologic traits in a natural population of

Blackbirds. We used a data set on the relationship

between morphological traits (i.e., tarsus, phalanx, wing

and tail length) and survival of adult Blackbirds in an

urban park in Dijon, France. From 1998 to 2002, 84

female birds were banded, measured for morphological

traits, and released. These morphological traits have

been demonstrated to have a significant heritable

component in birds and are therefore potentially subject

to natural selection. We considered a model in which the

morphological variables were connected to fitness via a

latent variable that we called ‘‘overall size’’ (Fig. 1A).

Morphological traits were different ways of measuring

body size that served as indicators for this latent

variable. Fitness, in turn, was assumed to be perfectly

related to survival, which was estimated from CR data.

Although survival is known to be highly related to

fitness, we acknowledge that assuming survival is

perfectly related to fitness was a strong assumption. If

survival is not a good proxy for fitness, e.g., better-

surviving individuals have low reproductive values, this
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could lead to misleading conclusions about the relation-

ship between size and fitness. Using data on individual

reproductive output as a second indicator for latent

variable fitness would allow to relax this assumption and

to specify a more biologically plausible model (Shipley

2002).

Using the formulation provided above, we then wrote

down the measurement and structural equations of the

model.

Concerning the first measurement equation relating

the observed variables to the exogenous latent variable,

Eq. 1, the SEM involved a unique exogenous latent

variable n representing overall size, with four indicators

x ¼ (x1, x2, x3, x4)
0, namely, tarsus length, phalanx

length, wing length, and rectrice length. Hence, we had

H¼ (h1, h2, h3, h4)0 the regression parameters relating the

morphological variables to overall size and d ¼ (d1, d2,
d3, d4)0 the associated measurement errors. We assumed

d1, d2 ; N (0, r2
1) as x1 and x2 were measured with the

same tool, and d3, d4 ; N (0, r2
2) for the same reason.

Then, the SEM involved a unique endogenous latent

variable g¼g representing individual fitness, assumed to

be perfectly related to its unique indicator y ¼ /,
namely, survival. Consequently, the measurement equa-

tion relating the observed variable to the endogenous

latent variable, Eq. 2, involved only scalars with the

regression coefficient K ¼ 1 and the error associated

with survival estimated from the CR model e¼ e. In the

structural model, we specified a linear relationship

between the latent variables size, n, influencing fitness,

g: g¼ cnþ f with n ; N (0, r2
3), where c is a regression

parameter capturing the effect of the exogenous

variables on the endogenous variables. For identifiabil-

ity issues, we specified f ; N (0, 1) and h1 ¼ 1.

These constraints were arbitrary values used to

achieve identifiability, but were not intended to have

any impact on model interpretation. By setting h1 to 1,

we stipulated that x1 was our reference for interpreting

f; by doing so, it defined the scale of f, meaning that f
had to be interpreted in the same unity as x1 (tarsus

length measured in centimeter). In other words, this

value was used to identify the scale of the latent

variables. Scale identification was needed because latent

variables were unmeasured and could have arbitrary

scales of measurement. Besides directional selection, we

were also interested in stabilizing selection that could be

an alternative. We therefore considered nonlinear effects

by writing g ¼ c1n þ c2n
2 þ f in the structural model.

Model selection was performed on the h’s and the c’s. A
similar model was considered by Pugesek and Tomer

(1996; see also Shipley 2002) in a situation where

detectability was assumed ¼ 1. Here, a preliminary

analysis using program E–SURGE (Choquet et al. 2009)

suggested that detectability , 1, and that the recapture

probability could be considered constant over time.

In order to completely specify the Bayesian model, we

provided prior distributions for all parameters. Specif-

ically, we chose uniform distributions for the detection

probabilities, U(0, 1), and normal distributions with

large variance for the regression parameters, N (0, 1000).

We assigned uniform distributions to the standard

deviation of the random effects, U(0, 100) (Gelman

2006). Convergence was assessed using the Gelman and

Rubin statistic which compares the within to the

between variability of chains started at different and

dispersed initial values (Gelman 1996). The quality of

mixing was assessed by visually inspecting the chains.

We used two MCMC chains of 15 000 iterations, a burn-

in of 5000 iterations that resulted in acceptable mixing

FIG. 1. Path diagram for (A) the Blackbird and (B) the Blue
Tit case studies. Rectangles are for latent variables, while
ellipses are for observed variables and arrows indicate causality.
The d’s are measurement errors associated with observed
variables connected to exogenous variables, and e’s are
measurement errors associated with endogenous variables).
The h’s are regression parameters relating observed variables to
exogenous variables, and the k’s are regression parameters
relating observed variables to endogenous variables. The
parameter c is a regression parameter capturing the effect of
the exogenous variables on the endogenous variables, while b is
a regression parameter capturing the relationships among the
latent endogenous variables.
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and convergence. Model code is provided in the

Supplement. All the morphological variables considered

were positively related to the latent fitness variable

(Table 1) and were selected very often in the model

(relative importance for h2 is 1, for h3 is 0.73 and for h4 is
0.99), showing a clear size effect. The correlation of

tarsus and phalanx length with fitness was stronger,

suggesting a higher selection pressure on these traits.

One explanation for this difference could originate in the

period when both traits are grown. Contrary to feather

structures (i.e., wing and tail) which are renewed each

year during molt, tarsus and phalanx end their growth

before chicks leave their nest. These traits are thus

strongly associated with early life stages and condition.

This period has long term consequences (Lindström,

1999), in agreement with the stronger link observed

between survival and tarsus and phalanx length.

The posterior model probability of the quadratic

model was 0.32 for both coefficients nonzero vs. 0.54 for

quadratic term only nonzero. These results revealed a

quadratic effect of the factor size on survival, which

suggested a disruptive selection, favoring the smallest

and largest individuals rather than medium-sized indi-

viduals (the posterior distribution of the quadratic

coefficient is centered on positive values, so that the

curve is concave). A previous study on this population

showed that female investment in reproduction in terms

of breeding attempts per season was positively associ-

ated with female size (Faivre et al. 2001). Bigger females

might be considered better females, investing in both

reproduction and survival. In contrast, smaller females

with high survival would invest less in reproduction,

which might reflect a trade-off between survival and

reproduction. Detection probability was relatively high.

Posterior distributions are displayed in Appendix C.

The posterior distributions of the replicated survival

looked similar to the posterior distributions of the

estimated survival, and the replicated morphological

measures simulated from the posterior distributions

were centered on the observed values, which suggested

an adequate fit of the model (Appendix B).

Evolutionary trade-offs in Blue Tits

Life history theory predicts the existence of evolu-

tionary trade-offs among traits closely related to fitness

(Stearns 1992). As these traits are all dependent on the

same limited resources (e.g., time, energy), investment in

one trait should have consequences on investment on

another traits within a same season or over life.

Although trade-offs between e.g., reproduction and

survival have been demonstrated in experimental stud-

ies, evidence of such costs in natural conditions remains

scarce possibly due to unaccounted environmental

conditions affecting individual strategies of resources

acquisition and allocation (van Noordwijk and de Jong

1986), and the imperfect detection of individuals which

makes the detection of trade-offs difficult (e.g., Buoro et

al. 2010).

Here, we used CR–SEM to explore a cost of

reproduction on survival in blue tits while accounting

for complex interactions among environmental condi-

tions and individual life histories and detectability less

than 1.

We used data on 755 breeding individuals that were

banded, released, and recaptured in spring during the

breeding seasons between 1984 and 2000, in Pirio, on the

island of Corsica (France). We examined the influence of

parental investment in reproduction (investment and

breeding success) on adult annual survival (survival),

while accounting for an effect of environmental condi-

tions (environment). The SEM was constructed based

on the assumption that (1) environmental conditions

affect parental investment in reproduction which in turn

influences breeding success, and (2) adult investment in

reproduction may influence their survival (Fig. 1B). The

SEM involved the three following latent variables.

Investment in reproduction was assessed via adult mass

that was recorded 15 days after hatching for all

individuals that were captured and averaged over the

year. Second, breeding success was assessed via clutch

size, chick mass at 15 days, and chick survival at the nest

until day 15, which were recorded in all nest boxes

(Blondel et al. 2006) and averaged over the year. Third,

as Blue Tit reproduction is mainly dependent on

TABLE 1. Parameter estimates for the structural equation
model applied to the Blackbird and Blue Tit capture–
recapture data.

Parameter Median CI

Blackbird
c1 �0.54 [�1.49, 0.31]
c2 0.56 [�0.09, 1.59]
h2 1.03 [0.80, 1.32]
h3 0.37 [0.07, 0.75]
h4 0.63 [0.34, 0.99]
r1 0.58 [0.49, 0.71]
r2 0.91 [0.79, 1.03]
r3 0.80 [0.62, 1.02]
P 0.70 [0.55, 0.85]

Blue Tit
c 1.32 [0.74, 2.10]
b 2.37 [1.11, 5.25]
h1 11.73 [7.62, 14.60]
h2 11.40 [7.27, 14.26]
rd1 4.50 [0.23, 13.09]
rd2 5.46 [1.16, 13.46]
k1 1.10 [0.48, 2.16]
k2 0.03 [0.01, 0.06]
k3 0.15 [0.06, 0.30]
k4 4.08 [2.70, 6.02]
k5 0.20 [�0.03, 0.48]
re1 1.08 [0.10, 2.24]
re2 0.13 [0.09, 0.20]
re3 0.29 [0.17, 0.48]
re4 0.84 [0.06, 2.62]
re5 5.46 [1.16, 13.46]
p 0.66 [0.45, 0.83]

Notes: Values are posterior medians and 95% credible
intervals (CI). See Fig. 1 for notation. Parameter p is the
detection probability, and the r’s are standard deviations of the
error terms distributions.
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caterpillar abundance, environment was assessed via

annual intensity (peak mode) and length (peak width) of

the peak of caterpillar abundance (see Zandt [1994] for

details about the method). Years of strong environmen-

tal constraints, with lower food availability, correspond-

ed to low values of this latent variable.

Using the formulation above, we wrote down the

measurement and structural equations of the model. The

first measurement equation, Eq. 1, related the observed

indicators of food abundance x¼ (x1, x2)
0, namely, peak

width and peak mode, to the exogenous latent variable n
representing environmental breeding conditions. Hence,

we had H ¼ (h1, h2)0 the regression parameters relating

the two indicators to the latent variable environment

and d¼ (d1, d2)0 the associated measurement errors. We

assumed dj ; N (0, r2
dj), j ¼ 1, 2.

Then, the SEM involved two endogenous latent

variables. Breeding success, g1, had three previously

listed indicators y1, y2, and y3, while parental invest-

ment, g2, had one indicator, y4, namely, adult mass, and

was also related to survival /. This way, survival was

introduced as an indicator of an endogenous latent

variable and parameter k5, connecting parental invest-

ment and survival, captured the cost of reproduction on

survival. Hence, the measurement equation relating the

observed variable to the endogenous latent variable, Eq.

2, involved y ¼ (y1, y2, y3, y4, /)0, g ¼ (g1, g2)
0, with

regression coefficients

K ¼ k1 k2 k3 0 0

0 0 0 k4 k5

� �

and associated measurement errors e¼ (e1, e2, e3, e4, e5)0.
We assumed dj ; N (0, r2

dj), j¼1, 2 and ek ; N (0, r2
ej), k

¼ 1, . . . , 5. In addition, for identifiability issues we

specified n ; N (0, 1). Third, the structural equation

specified the relationship among the three latent

variables, i.e., the hypothesized assumption that envi-

ronmental conditions influenced parental investment

which in turn influenced breeding success. We specified

the matrix of coefficients of the exogenous latent

variables in the structural relationships as follows:

B ¼ 0

0

b
0

� �

with the parameter b representing the influence of

parental investment on breeding success. Then, we

specified the matrix of coefficients of the endogenous

latent variables in the structural relationship C ¼ ð0; cÞ 0;
with parameter C linking the latent variables environ-

ment and investment representing the impact of

environmental breeding conditions on parental invest-

ment in reproduction. Finally, the two components of

the equation errors (random disturbances) in the

structural relationship between the latent variables f
were assumed N (0, 1).

Model selection was performed on the h’s, the k’s, c,
and b. Regarding the detection process, a preliminary

analysis using program E–SURGE (Choquet et al. 2009)

suggested that the recapture probability was time-

varying.

The same priors were used as in the previous example.

We used two MCMC chains of 300 000 iterations, a

burn-in of 50 000 iterations that resulted in acceptable

mixing and convergence. Model code is provided in the

Supplement. The three variables clutch size, chick mass,

and chick survival were all positively related to the latent

variable breeding success (Table 1; relative importance

of k1 is 1, 0.68 for k2, and 1 for k3). The two observed

variables width and intensity of the peak of caterpillar

were also very often selected in the model (relative

importance 1 for both h1 and h2) and both positively

related to the latent variable environment. The posterior

distribution of k5, which captures the relationship

between survival and investment, was centered on

positive values, but not selected by the model selection

procedure (relative importance 0.08), indicating no cost

of reproduction on survival. The coefficient c of the

regression between environment and investment was

also positive (relative importance 1), showing a positive

effect of food abundance during the rearing period on

parental investment in reproduction, and thus indirectly

on the three indicators of breeding success as this latent

variable was positively related via b to investment

(relative importance 1). The effect was higher for clutch

size than chick mass and nest survival, suggesting that

variation of parental investment in reproduction affect-

ed mainly clutch size rather than chick mass and

survival.

Hence, we did not find any evidence for a cost of

reproduction on adult survival at the population level.

These results favored the hypothesis that individuals

tend to optimize their clutch size (Pettifor 1993), and

that clutch size is driven by the amount of food as

predicted by Lack (1954). This optimization could

explain the absence of a link between adult survival

and reproduction. Individual heterogeneity in strategies

of resources acquisition and allocation may also mask

the trade-off at the populational level (van Noordwijk

and de Jong 1986). We envisage exploring the incidence

of individual heterogeneity in a future study conducted

at the individual level. Detection probability was

relatively high. Posterior distributions are displayed in

Appendix C. The posterior distributions of the replicat-

ed survival looked similar to the posterior distributions

of the estimated survival. Besides, whatever the year

considered, the replicated food peak width or mode,

clutch size, chick mass, or chick survival, and adult mass

were coherent with observations. Both facts suggested

an adequate fit of the model (Appendix B).

DISCUSSION

By combining SEM and CR models, we used

observational data to test complex scenarios involving

demographic parameters that were estimated in presence

of imperfect detection of individuals.
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We emphasize that CR–SEM is a relevant option

when manipulative experiments cannot be conducted,

but does not provide evidence of causality. For a given

data set, there could be several competing models that
are not falsified. So, adequate fit of a model consistent

with a causal hypothesis does not rule out an equally

good fit by another model consistent with a different

causal assumption. Thus, if a model is corroborated by
the data, this does not mean that it has been proven true.

For example, omitting variables involved in causal

processes may lead to flawed inference via biased

parameter estimates and inaccurate estimation of
variability around these estimates (Pearl 2000). Rather

than being strictly causal, CR–SEM allows testing

hypotheses of causality within a multivariate system

based on correlational evidence. CR–SEM allows

modeling quantities of interest that were not measured
directly via their expression under the form of latent

variables and to analyze the relationships among these

latent variables (Blue Tit example). The possibility of

explicitly estimating latent variables has also interesting
potential (Austin 2005). Another advantage of SEM lies

in the possibilities to consider indirect effects that may

help to account for complex interactions between

environment and life histories (Blue Tit example), in

contrast with standard multiple-regression methods.
Two particular cases are worth discussing. First, when

a single latent variable is involved (Blackbird example),

the approach is similar to a principal component

analysis which is often used in the analysis of selection
gradients (Gimenez et al. 2009a). Here the added value

of using the CR–SEM approach is to account for

uncertainty in parameter estimation and the possibility

to test for nonlinearities. Second, when the model does

not involve unmeasured (latent) variables, CR–SEM
reduces to confirmatory path analysis (Shipley 2002),

which is currently extended to deal with CR data

(Gimenez et al. 2011). Finally, we acknowledge that

several constraints have to be considered to ensure
model identifiability. Necessary conditions exist on the

number of paths and latent variables one can consider

given the number of observed variables (Kaplan 2000),

which are however not sufficient. Here, we used a

Bayesian approach to compare prior to posterior
distributions and visually evaluate whether the informa-

tion contained in the data led to considerable updating

of the prior distributions (e.g., Gimenez et al. 2009b).

In conclusion, we provide an integrated framework

(CR–SEM) to evaluate causal assumptions about
mechanisms underlying individual and/or environmen-

tal variability observed in demographic parameters in

natural populations. We hope that this approach will

help in studying ecological and evolutionary processes
occurring in wild populations.
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SUPPLEMENTAL MATERIAL

Appendix A

Model selection (Ecological Archives E093-024-A1).

Appendix B

Posterior predictive checks (Ecological Archives E093-024-A2).

Appendix C

Posterior distributions of the CR-SEM parameters (conditional on the covariates being in the model) (Ecological Archives E093-
024-A3).

Supplement

BUGS code to implement the CR-SEM approach (Ecological Archives E093-024-S1).
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