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Summary

1. Capture–recapture mixture models are important tools in evolution and ecology to estimate

demographic parameters and abundance while accounting for individual heterogeneity. A key step

is to select the correct number of mixture components i) to provide unbiased estimates that can be

used as reliable proxies of fitness or ingredients in management strategies and ii) classify individuals

into biologically meaningful classes. However, there is no consensus method in the statistical litera-

ture for selecting the number of components.

2. In ecology, most studies rely on the Akaike Information Criterion (AIC) and the Bayesian Infor-

mation Criterion (BIC) that has recently gained attention in ecology. The Integrated Completed

Likelihood criterion (ICL; IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,

22, 719) was specifically developed to favour well-separated components, but its use has never been

investigated in ecology.

3. We compared the performance of AIC, BIC and ICL for selecting the number of components

with regard to a) bias and accuracy of survival and detection estimates and b) success in selecting

the true number of components using extensive simulations and data on wolf (Canis lupus) that were

used for management through survival and abundance estimation.

4. Bias in survival and detection estimates was <0.02 for both AIC and BIC, and more than 0.09

for ICL, while mean square error was<0.05 for all criteria. As expected, bias increased as heteroge-

neity increased. Success rates of AIC and BIC in selecting the ‘true’ number of components were

better than ICL (68% for AIC, 58% for BIC, and 16% for ICL). As the degree of heterogeneity

increased, AIC (and BIC in a lesser extent) overestimated the number of components, while ICL

often underestimated this number. For the wolf study, the 2-class model was selected by BIC and

ICL, while AIC could not decide between the 2- and 3-class models.

5. We recommend using AIC or BIC when the aim is to estimate parameters. Regarding classifica-

tion, we suggest taking the classification quality into account by using ICL in conjunction with BIC,

pending further work to adapt its penalty term for capture–recapture data.

Key-words: capture–recapture, classification, individual heterogeneity, information criteria,

mixture models, simulation experiment

Introduction

Studying natural populations is of major interest for under-

standing the functioning of biological systems. In particular,

the assessment of demographic parameters is essential for

studying population dynamics and assessing fitness in wild

populations. In practice, however, individuals may or may not

be detected (seen or recaptured) at various occasions during

their lifetime, which raises the issue of detectability <1

(Gimenez et al. 2008). Capture–recapture (CR) models were

developed to estimate demographic parameters while accoun-

ting for the imperfect detection of individuals (Lebreton et al.

1992). While standard CR models consider populations as
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communities of homogeneous individuals sharing the same

traits, this assumption cannot be expected to hold when

working on non-clonal species. Several studies have shown

that ignoring individual heterogeneity (IH) can lead to sub-

stantial bias in demographic rates (Carothers 1973) and

population abundance (Cubaynes et al. 2010). Moreover,

considering all individuals as homogeneous can impede the

study of evolutionary processes, individual variability in

traits being a necessary condition for natural selection.

With evolutionary questions in wild populations being of

growing interest (e.g. Kingsolver et al. 2001), the use and

development of CR models incorporating IH in demo-

graphic parameters are increasing (Tuljapurkar, Steiner &

Orzack 2009; Gimenez & Choquet 2010; Péron et al. 2010;

Pledger, Pollock &Norris 2010).

Several approaches are available to cope with IH in CR

models. First, IH can explicitly be integrated into CR models

using covariates or states (Pollock 2002; Lebreton et al. 2009).

However, individual characteristics cannot always be mea-

sured in wild populations, so some sources of IH may remain

unknown. Second, discrete IH can be incorporated in CR

models using finite-mixture models (Pledger 2000; Pledger,

Pollock & Norris 2003). In these models, a latent variable is

used to assign individuals to one of the mixture components

characterized by specific parameters. CR mixture models

have had several applications in both ecology and evolution

(Dorazio & Royle 2003; Véran et al. 2007; Bunge & Barger

2008; Pledger & Phillpot 2008;Morgan&Ridout 2009; Tyrrell

et al. 2009; Wanger et al. 2009; Cubaynes et al. 2010; Péron

et al. 2010; Pradel et al. 2010; Oliver et al. 2011).

The key steps in fitting a mixture model are (i) to determine

the number of mixture components and (ii) estimate the

parameters characterizing these components, typically using

maximum likelihood (Pledger, Pollock & Norris 2003; Pradel

2005). Step (i) is crucial in model building as, besides affecting

the parameter estimates, components often represent ‘true’

classes of individuals sharing same survival or detection

parameters in the population, for example, ‘good quality’ vs.

‘bad quality’ individuals in a senescence analysis (Péron et al.

2010), or ‘infected’ and ‘healthy’ individuals in disease ecology.

Indeed, biologists often aim at identifying the ‘true’ number of

components, to classify (i.e. assign to a component) individuals

into biologicallymeaningful classes.

The number of mixture components is usually accomplished

through model selection by comparing several candidate

models with different numbers of components. In the statistical

literature, however, there is no consensus regarding the choice

of method (McLachlan & Basford 1988; Wedel, Kamakura &

Bockenholt 2000; Andrews & Currim 2003; Brame, Nagin &

Wasserman 2006). In ecology and evolution, model selection

generally relies on the Akaike Information Criterion (AIC;

Akaike 1974; Johnson & Omland 2004), the selection of mix-

tures in CRmodels being no exception (Burnham&Anderson

2002; Pledger, Pollock & Norris 2003). AIC has been proven

to be efficient in the sense that ‘it behaves ‘‘almost as well,’’ in

terms of mean square error […] as the theoretically best model’

(Claeskens & Hjort 2008) but, by construction, it tends to

select too complex model (Kass & Raftery 1995), so that it

may overestimate the ‘true’ number of mixture components

(McLachlan&Peel 2000). TheBayesian InformationCriterion

(BIC; Schwarz 1978) is another commonly used criterion that

has recently gained attention in ecology (Link & Barker 2006).

There is strong support for BIC in mixture modelling (Roeder

& Wasserman 1997; Fraley & Raftery 1998) as BIC has been

shown to be consistent (Keribin 2000), i.e. to select the actual

model if it is in the set of candidate models. However, when

dealing with real data, for which there is no true model, BIC

may also overestimate the number of components, as it does

not account for the separation of the mixture components

(Biernacki, Celeux & Govaert 2000). The Integrated Com-

pleted Likelihood criterion (ICL; Biernacki, Celeux &Govaert

2000) was recently developed to overcome these limitations,

and its use has been recommended in mixture modelling

(McLachlan & Peel 2000) but its potential has never been

investigated in ecological studies. ICL was derived from BIC

by including an extra term called entropy, which quantifies the

degree of separation of the mixture components, hence favour-

ing well-separated components. By accounting for the quality

of the classification, ICL should avoid overestimating the

number of components, but may underestimate this number if

the components are poorly separated (Biernacki, Celeux &

Govaert 2000; McLachlan & Peel 2000). Although the effects

of overestimating or underestimating the number of compo-

nents on the estimation of survival and detection parameters

are not clear a priori, identification of biologically meaningful

classes is obviously affected.

Given the lack of consensus in the literature, there is a need

to evaluate the performance of model selection criteria with

respect to i) bias in demographic parameters and (ii) classifica-

tion of individuals. There have been several earlier attempts to

do this in the literature (Fraley & Raftery 1998; Andrews &

Currim 2003; Brame, Nagin & Wasserman 2006; Fonseca &

Cardoso 2007; Lukociene & Vermunt 2010), but nothing to

our knowledge for CR data. In addition, there are aspects of

CR data that might affect the performance of the criteria.

Encounter histories are right-censored, which makes it hard-

to-classify an individual that is captured for the first time close

to the end of the study. Besides, because of the limited size of

CR data sets, models with more than three classes are not

worth fitting, as confidence intervals become too wide to be

useful in an applied context, for example, to produce reliable

abundance estimates (Pledger 2000).

We performed an extensive simulation study to evaluate

the performance of AIC, BIC and ICL in selecting the

number of components in CR studies. We paid particular

attention to distinguish the aims of bias reduction and clas-

sification, where the aim is to identify the ‘true’ number of

components, and correctly assign individuals into the differ-

ent components or classes. We considered a set of 240 sce-

narios generated from a 2-class distribution, covering a

wide range of biological situations. In addition, we com-

pared the three model selection criteria using real CR data

on wolves (Canis lupus) that were used to estimate survival

and abundance in a management setting.
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Material and methods

SIMULATIONS

We conducted a simulation study to evaluate the performance of

AIC, BIC and ICL at selecting the number of mixture components in

CR models. First, we generated CR data from a 2-class model with

heterogeneous survival or detection probability for a wide range of

scenarios. Second, each generated data set was analysed using 1-, 2-

and 3-class mixture models. Third, we performed model selection

using AIC, BIC and ICL. Fourth, we determined the criterion that

led to (i) minimizing the bias and maximizing the precision for both

survival and detection parameters, and (ii) selecting the ‘true’ number

of components used to generate the data. We then investigated the

effect of different factors including skewness of the mixture distribu-

tion, degree of heterogeneity, value of the heterogeneity parameter,

number of sampling occasions and individuals, on the performance

of the criteria. We used 500 iterations, and all simulations were

performed inMATLAB (Supporting Information).

Simulation of CR histories

For each situation, we simulated n = 150 individual CR histories

over t = 15 sampling occasions, with 10 individuals released at each

sampling occasion. At each sampling occasion, the probability that a

given individual i is alive was determined by a Bernoulli distribution

with probability of survival set to a specific value (scenarios 1 and 2)

or determined by a mixture of beta distributions (scenarios 3 and 4).

Among individuals alive at a given occasion, the event being detected

was governed by a Bernoulli distributionwith probability of detection

set to a specific value (scenarios 3 and 4) or determined by a mixture

of beta distributions (scenarios 1 and 2).

Fitting finite-mixture models to CR data

Capture–recapture mixture models allow for heterogeneity in the sur-

vival or detection process by considering the study population to be a

mixture of a finite number of latent classes of individuals (Pledger

2000; Pledger, Pollock &Norris 2003; Pradel 2005, 2009). Considering

a 2-class model with heterogeneous detection, an animal may be in

one of the three states: alive in class 1, alive in class 2 or dead, and the

following observations may be made: 1 if detected and 0 otherwise.

We define parameters p (respectively 1 ) p) for the proportion of

newlymarked individuals in class 1, (resp. class 2),/ the survival prob-

ability and p1 and p2 the detection probabilities for individuals alive in

classes 1 and 2, respectively. Starting from a 2-class model, assuming

all individuals have equal detection probabilities (i.e. p1 = p2) gives

the 1-class model, while considering an extra mixture leads to a 3-class

model. Amodel with heterogeneous survival can easily be obtained by

setting / to be class-specific and p homogeneous. Under the assump-

tion of independence among individuals, the likelihood is the product

of the probability of all encounter histories (Lebreton et al. 1992). As

an example of calculation of an individual contribution to the likeli-

hood, let us consider a CR history 101 of an individual encountered

on the first and third sampling occasions but missed on the second.

The probability of this particular CR history, under a C-class model

with heterogeneous detection, is
Pc

i¼1 pi � / � 1� pið Þ � / � pi. We fit-

ted all models usingmaximum likelihood.

Generating distributions

We generated CR data from a 2-class mixture model with parameters

constant through time. The proportion of individuals in component 1

and the non-heterogeneous parameter (survival or detection) were set

to a specific value and the heterogeneous parameter (survival or

detection) was determined by a mixture of two beta distributions.

We, hence, avoided cases where the truemodel was in the set of candi-

date models, which would have favoured BIC.We adjusted li and ri,

the mean and standard deviation of component i, to obtain various

levels of heterogeneity. To cover a wide range of situations, we deter-

mined parameters x1 and x2 of b(x1;x2) for each mixture from 60 gen-

erating distributions, by forming all possible combinations with (i)

p = 0.2, 0.5 or 0.8, (ii) l1 = 0.1, 0.3 or 0.7 and l2 = 0.3, 0.5 or 0.9,

(iii) r1 = 0.0001 or 0.05 and r2 = 0.0001 or 0.05. To characterize

each distribution, we calculated the mean value of the heterogeneity

parameter l = pl1 + (1 – p)l2, the heterogeneity coefficient

g ¼ r2

lð1�lÞ, the variance between components r2 = p(l1 ) l)2 +
(1 – p)(l2 )l)2, and the skewness coefficient c ¼ E ðhi�lÞ3½ �

r3 (Dorazio &

Royle 2003). We further considered four biological scenarios as

follows:

Detection heterogeneity in a short-lived species, with survival

fixed at 0.6;

Detection heterogeneity in a long-lived species, with survival fixed

at 0.95;

Survival heterogeneity with relatively low detectability, with

detection fixed at 0.7;

Survival heterogeneitywith high detectability, with detection fixed

at 0.9.

In total, this design led to 240 different situations.

We performed additional simulations to assess the effects of the

number of sampling occasions (t = 15 or 30) and the number of indi-

viduals (n = 150 or 300) on model selection. We tested these effects

in one situation with heterogeneous detection (scenario 2) and one sit-

uation with heterogeneous survival (scenario 4). Both situations pre-

sented a high degree of heterogeneity (g > 0.74), no skewness

(c = 0) and a medium mean value of the heterogeneity parameter

(l = 0.5). Data were simulated with p = 0.5, l1 = 0.1 and

l2 = 0.9.

Model selection

Akaike Information Criterion, BIC and ICL are criteria based on a

penalized likelihood of the general form:

ICM ¼ �2log Lþ pM

where pM > 0 is the penalty applied to the likelihood L of model M.

The three criteria aim to find the best balance between the fit of the

model to the data and its complexity. This balance is achieved for the

model withminimal ICM. The difference between the three criteria lies

in the value of the penalty.

One of the most commonly used information criteria in ecology

(Johnson&Omland 2004) is AIC (Akaike 1974) that provides an esti-

mate of the ‘distance’ between an approximate model and the truth,

and for which pM = 2k, where k is the number of parameters in

modelM. Another widely used information criterion is BIC (Schwarz

1978) that was designed to find the most probable model given the

data, as an estimate of the Bayes factor for two competing models

(Schwarz 1978; Kass & Raftery 1995). For BIC, pM = k ln(n) where

n is the sample size; for CR data, this is the number of individuals

sampled at least once. ICL (Biernacki, Celeux & Govaert 2000) was

designed to select the model leading to the greatest evidence for clus-

tering the data, by maximizing the integrated likelihood. We used the

BIC like approximation of ICL (Biernacki, Celeux & Govaert 2000),

which is derived from the BIC, but involves an extra penalty for poor
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classification quality. For ICL, pM = k ln (n) – 2 ENT where the so-

called entropy term, ENT ¼
Pn

i¼1
Ps

s¼1 pis ln pis,quantifies the ability

of a mixture model to provide well-separated classes, with pis being

the estimated posterior probability that individual i belongs to com-

ponent s of model M. Classification was achieved by assigning indi-

viduals to a component a posteriori, i.e. individual i is assigned to

component s of themodel if pis > 0.5. If the components are well sep-

arated, ENT � 0 and the classification is almost perfect; if not, ENT

is large and positive and the rate of error of classification of individu-

als increases.

STATIST ICAL ANALYSES

AIC, BIC and ICL performance with respect to

parameter estimates

We assessed bias and precision with the 1-, 2- and 3-class models. Let

ĥi be the estimate of parameter h (h = / or h = p) for simulation i.

Bias was calculated as B ¼ 1
J

PJ
i¼1 ĥi � h
� �

, J being the number of

simulations. To assess precision, we calculated mean square error

(MSE) as MSE ¼ 1
J �
PJ

i¼1 ĥi � h
� �2

. A low MSE means a good

trade-off between low bias and low variance. We calculated the bias

and MSE on survival and detection estimates obtained with the

model selected by AIC, BIC and ICL for each scenario. Hereafter, we

refer to as, for example, ‘the bias of AIC’, the value of bias on param-

eter estimates obtained with themodel selected byAIC. Then, we per-

formed linear regressions to test the effect of l, g and c on bias or

MSE for AIC, BIC and ICL.

AIC, BIC and ICL performance at selecting the ‘true’

number of components

We calculatedAIC, BIC and ICL percentage of success, underestima-

tion and overestimation of the ‘true’ number of mixture components.

A success occurred when the 2-class model was selected, an underesti-

mation when the 1-class model was selected and an overestimation

when the 3-class model was selected. We performed multinomial

regressions to test the effect of l, g and c on model choice for AIC,

BIC and ICL using the R package mlogit. The effect of scenario was

also included as a factor, and the 2-class model served as a reference.

The regression coefficients b are the log of the ratio of the two proba-

bilities of choosing the 1-class or 3-class model over choosing the ref-

erence model. For example, if bl represents the effect of l on the

probability of choosing the 1-class model over the 2-class model, we

expect that for a unit change in l, the log of the ratio of the probabil-

ity of underestimating the actual number of components increases by

bl and the relative risk of choosing the 1-class over 2-class model to

increase by exp(bl).

CASE STUDY

As a case study, we analysed a CR data set obtained from the

non-invasive monitoring of wolves in the French Alps based on

DNA genotyping. The data set included the capture history of

160 different individuals that were monitored over 35 3-month

sessions from 1995 to 2003. A previous analysis revealed the exis-

tence of detection heterogeneity most likely related to social status

(Cubaynes et al. 2010). The objectives were to (i) estimate survival,

(ii) estimate detection probabilities to derive population size and

(iii) identify individuals belonging to the ‘high detection’ class (we

expected them to be dominant individuals) vs. ‘low detection’ class

(subordinates and young). This data set corresponds to scenario 2

in the simulations, i.e. detection heterogeneity in a long-lived

species.

Results

AIC , B IC AND ICL PERFORMANCE WITH RESPECT TO

PARAMETER ESTIMATES

On average, AIC and BIC both performed well in minimizing

bias and MSE on detection and survival estimates, while ICL

did worse (Table 1). Bias was generally <0.02 for AIC and

BIC, while up to >0.09 for ICL and MSE < 0.05 for all

criteria.

INFLUENCE OF THE DATA SET CHARACTERISTICS ON

AIC, B IC AND ICL PERFORMANCE WITH RESPECT TO

PARAMETER ESTIMATES

We assessed the effect of the mean value of the heterogeneity

parameter l, heterogeneity g and skewness c on bias in detec-

tion (scenarios 1 and 2; Appendix S1) and survival (scenarios 3

and 4; Appendix S1). In all scenarios, bias in detection (scenar-

ios 1 and 2) or survival (scenarios 3 and 4) was mainly affected

by both g and l (in interaction) for the 3 criteria. For all crite-

ria, bias increased as the degree of heterogeneity increased,

even more for low values of the heterogeneity parameter. This

was particularly important in scenarios with heterogeneous

detection, rather than survival (Appendix S2).

In the presence of heterogeneous detection in a short-

lived species (scenario 1), BIC performed better at mini-

mizing bias than AIC when mean detection was relatively

low (Fig. 1).

Akaike Information Criterion selected models with a larger

bias in detection than BIC did, which was even worse for high

values of g. When mean values of detection were more than

0.5, BIC andAIC performed equally well, even better for lower

values of g, and both criteria performed even better in the case

of a long-lived species (scenario 2; Appendix S2).

In the presence of survival heterogeneity with relatively low

detection (scenario 3), BIC performed better thanAIC atmini-

mizing bias in survival, especially for short-lived species

(Appendix 2). BIC and AIC performed equally well and

provided almost unbiased estimates when detection was high

(scenario 4).

As expected, ICL performed less well than AIC and BIC in

all scenarios, in particular for high values of g. MSE was

relatively low whatever the model was selected, although a bit

higher with the 3-classmodel (results not shown).

AIC , B IC AND ICL PERFORMANCE AT SELECTING THE

‘TRUE’ NUMBER OF COMPONENTS

Overall, AIC performed better than BIC and ICL in selecting

the ‘true’ number of components, except with long-lived spe-

cies with heterogeneous detection, for which BIC did better

(Table 2).Mean success rate varied between 53% and 81% for

AIC, between 28% and 72% for BIC and was always lower
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than 33% for ICL.While bothAIC andBIC performedwell in

presence of survival heterogeneity, they tended to underesti-

mate the number of components in the case of detection heter-

ogeneity for a short-lived species – by about 45% for AIC and

72% for BIC – and to overestimate it in the case of a long-lived

species – by about 42% for AIC and 23% for BIC. In contrast,

ICL tended to underestimate the number of components by a

factor ranging from 81%up to 100%.

INFLUENCE OF THE DATA SET CHARACTERISTICS ON

AIC, B IC AND ICL PERFORMANCE AT SELECTING THE

‘TRUE’ NUMBER OF COMPONENTS

The risk of overestimating the number of components was

mainly affected by an interaction of mean value of the hetero-

geneity parameter (l) and heterogeneity coefficient (g) for

AIC, and by an effect of g for BIC (Appendix S3). The risk

increased as the degree of heterogeneity increased, and even

more for high values of the heterogeneity parameter for AIC.

For both criteria, this effect was stronger in the presence of

detection heterogeneity in a long-lived species (scenario 2).

Regarding ICL, the risk of underestimating the number of

components was mainly and negatively affected by l, indepen-
dently of the scenario considered, and it reached 100% almost

for low heterogeneous survival, i.e. short-lived species with het-

erogeneous survival (Appendix S4).

In scenarios with heterogeneous survival, AIC and BIC

both performed generally well (>80% of success) for

g > 0.4, and AIC performed slightly better than BIC for

lower values of g. ICL performed generally poorly, but its

success rate increased for g > 0.6 and even more for skew-

ness c < 0, i.e. when a large proportion of the population

has a higher survival (Appendix 4). The same pattern was

observed in the scenario with heterogeneous detection in a

short-lived species (scenario 1), but the criterion’s perfor-

mance was reduced.

On the contrary, in the case of heterogeneous detection in a

long-lived species (scenario 2), BIC did almost always better

Table 1. Mean absolute bias (B) and MSE for estimates of survival

(/̂) and detection (p̂) probabilities calculated for AIC, BIC and ICL

in the four scenarios

B (/̂) MSE (/̂) B (p̂) MSE ðp̂Þ

Detection heterogeneity in a short-lived species (scenario 1)

AIC )0.007 0.001 )0.006 0.046

BIC )0.02 0.001 0.030 0.009

ICL )0.046 0.002 0.071 0.005

Detection heterogeneity in a long-lived species (scenario 2)

AIC )0.001 < 0.001 )0.012 0.036

BIC )0.003 < 0.001 )0.007 0.035

ICL )0.013 < 0.001 0.027 0.008

Survival heterogeneity with relatively low detection (scenario 3)

AIC )0.016 0.044 0 < 0.001

BIC )0.002 0.038 )0.002 < 0.001

ICL 0.096 0.015 )0.019 0.001

Survival heterogeneity with high detection (scenario 4)

AIC 0.016 0.041 0.001 < 0.001

BIC )0.006 0.037 0 < 0.001

ICL 0.076 0.012 )0.005 < 0.001

Values of bias and MSE for the heterogeneous parameter are in

bold font.

AIC, Akaike Information Criterion; BIC, Bayesian Information

Criterion; ICL, Integrated Completed Likelihood; MSE, mean

square error.
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Fig. 1. Predicted bias as a function of the heterogeneity coefficient (g)
for AIC (blue), BIC (red) and ICL (green).We assumed heterogeneity

in a relatively low detection (l = 0Æ3) in a short-lived species (sce-

nario 1). The relationships are displayed for a skewness coefficient of

c = 1Æ5 (solid line), c = 0 (dashed line) and c = )1Æ5 (dotted line).

The horizontal line stands for no bias.

Table 2. Mean percentage of success, underestimation and

overestimation of the number of mixture components for AIC, BIC

and ICL in the presence of detection heterogeneity in a short-lived or

long-lived species (respectively, scenarios 1 and 2) and survival

heterogeneity with relatively low or high detection (respectively,

scenarios 3 and 4). A success was reported when the 2-class model

was selected, an underestimation when the 1-class model was selected

and an overestimation when the 3-class model was selected

Scenario 1

/(0.60) p(het)

Scenario 2

/(0.95) p(het)

Scenario 3

/(het) p(0.7)

Scenario 4

/(het) p(0.9)

Success

AIC 54.0 54.3 79.2 80.7

BIC 28.7 66.7 66.2 71.3

ICL 0.0 32.2 13.1 18.4

Underestimating

AIC 44.5 4.3 19.4 16.6

BIC 71.3 11.0 33.8 28.7

ICL 100 66.6 86.9 81.6

Overestimating

AIC 1.6 41.4 1.4 2.8

BIC 0.1 22.2 0.0 0.0

ICL 0.0 1.2 0.0 0.0

AIC, Akaike Information Criterion; BIC, Bayesian Information

Criterion; ICL, Integrated Completed Likelihood.
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than AIC especially when skewness c was highly negative,

while ICL did better than BIC for high values of g, for

which BIC and AIC tended to overestimate the number of

components. These discrepancies between the criteria were

even bigger when c and l increased (Fig. 2).

INFLUENCE OF THE NUMBER OF SAMPLING

OCCASIONS (T ) AND NUMBER OF INDIV IDUALS (N ) ON

AIC , B IC AND ICL PERFORMANCE AT SELECTING THE

‘TRUE’ NUMBER OF COMPONENTS

There was no clear effect of the number of sampling occasions

t and the number of individuals n onAIC andBICmodel selec-

tion. In contrast, ICL selected more complex models as t

increased and to a lesser extent as n increased (Table 3).

With heterogeneous detection, AIC and BIC overesti-

mated the number of components, and ICL showed the

same trend as t increased. In contrast, with heterogeneous

survival, AIC and BIC were successful, whereas ICL gener-

ally underestimated the number of components, except

when t increased.

STUDY CASE: CLASSIFYING INDIV IDUALS AND

ESTIMATING PARAMETERS IN A LONG-L IVED SPECIES

IN PRESENCE OF DETECTION HETEROGENEITY

Wefitted the 1-class, 2-class and 3-classmodels to the wolf data

and calculatedAIC, BIC and ICL for eachmodel (Table 4).

While AIC could not distinguish between the 2-class and 3-

class models (DAIC = 1.3), BIC (DBIC = 7.5) and ICL

(DICL = 114) both clearly selected the 2-class model. When

considering only winter sampling sessions (eight occasions),

ICL selected the 1-class model, while AIC and BIC were not

affected (results not shown).

Discussion

SIMULATION STUDY

Parameter bias and precision

Overall, AIC and BIC were both appropriate means of select-

ing the number of components that minimized bias with a rea-

sonable precision, whereas ICL was clearly not. Bias was

generally<0.02 for AIC and BIC, while up to>0.09 for ICL.

In heterogeneous detection scenarios, BIC performed as well
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Fig. 2. Probability of selecting the correct number of mixtures as a

function of the heterogeneity coefficient (g) for AIC (blue), BIC (red)

and ICL (green). We assumed detection heterogeneity in a relatively

high detection (l = 0Æ7) for a long-lived species (scenario 2). The

relationships are displayed for a skewness coefficient of c = 1Æ5 (solid
line), c = 0 (dashed line) and c = )1Æ5 (dotted line).

Table 3. Effects of the number of individuals (n) and sampling

occasions (t) on mean percentage of success, underestimation and

overestimation of the number of mixture components for AIC, BIC

and ICL in the presence of heterogeneous detection (scenario 2;

g = 0.84; l = 0.5; c = 0) and heterogeneous survival (scenario 4;

g = 0.74; l = 0.5; c = 0)

Heterogeneous

detection

Heterogeneous

survival

AIC BIC ICL AIC BIC ICL

n = 150, t = 15

Success 3.4 7.4 73.4 98.8 100 25.8

Overestimating 96.6 92.6 26.4 1.2 0 0

Underestimating 0 0 0.2 0 0 74.2

n = 150, t = 30

Success 0.4 0.6 11.6 97.0 99.6 89.4

Overestimating 99.6 99.4 88.4 3.0 0.4 0

Underestimating 0 0 0 0 0 10.6

n = 300, t = 15

Success 0.2 0.6 71.6 97.4 99.8 20.2

Overestimating 99.8 99.4 28.0 2.6 0.2 0

Underestimating 0 0 0.4 0 0 79.8

n = 300, t = 30

Success 0 0 1.4 96.4 100 77.0

Overestimating 100 99.6 98.6 3.6 0 0

Underestimating 0 0 0 0 0 23.0

AIC, Akaike Information Criterion; BIC, Bayesian Information

Criterion; ICL, Integrated Completed Likelihood.

Table 4. Values of AIC, BIC and ICL for the 1-class, 2-class and 3-

class model for the wolf data

1-class model 2-class model 3-class model

AIC 1390.1 1268.3 1269.6

BIC 1396.2 1280.6 1288.1

ICL 1396.2 1368.7 1482.7

Smaller values of the criteria are highlighted in bold font.

AIC, Akaike Information Criterion; BIC, Bayesian Information

Criterion; ICL, Integrated Completed Likelihood.

Heterogeneity, mixtures and model selection 569

� 2012 The Authors. Methods in Ecology and Evolution � 2012 British Ecological Society, Methods in Ecology and Evolution, 3, 564–573



as AIC and better for a short-lived species, and both AIC and

BIC provided almost unbiased estimates for heterogeneous

survival (Appendix S4). By contrast, ICL showed a positive

bias in survival and detection estimates, especially when the

degree of heterogeneity was high.

Survival is an important parameter in population demogra-

phy and in evolution as a proxy for individual fitness. On the

other hand, biased estimates of detection probability can lead

to substantial bias in abundance estimates (Pledger 2000; Cu-

baynes et al. 2010). Therefore, these results give strong support

to the use of AIC and BIC in the analysis of CR data when the

focus is on parameter estimation, in line with recent recom-

mendations in ecology (Burnham & Anderson 2002; Link &

Barker 2006).

More generally, our results confirmed that CR mixture

models with two ormore components worked generally well at

minimizing bias on survival and detection and provided a sig-

nificant improvement over the 1-class homogeneous model.

Nevertheless, as pointed out by Pledger (2000, 2005), situations

with low and highly heterogeneous detection constitute a chal-

lenge for CR studies, particularly when a large proportion of

the population has a low detection probability (positive skew-

ness). From our simulations, this issue was more problematic

for short-lived species (scenario 1; Appendix S2). Hence, such

situations should be avoided by increasing sampling effort for

hard-to-detect individuals.

Finally, MSE were generally small regardless of the model

considered, suggesting an acceptable loss of accuracy associ-

ated with the use of heterogeneous models, at least for the sce-

narios considered in our simulations.

Selection of the ‘true’ number of components

Finite-mixture models are a powerful modelling technique in

the analysis of clustered data (McLachlan & Basford 1988;

Fraley & Raftery 1998) and CR mixture models hold promis-

ing applications in evolution and ecology. Examples are the

identification of ‘high’ and ‘low’ quality individuals, which

needs to be accounted for in senescence analyses (Péron et al.

2010), and the incorporation of social structure (Cubaynes

et al. 2010) – e.g. dominant vs. subordinate (hidden) status –

via the exploitation of behavioural information, which is still

rarely seen in demographic studies. By construction, ICL is a

good candidate model selection criterion to determine the

number of components, as its penalty accounts for the

classification quality. In our simulations, ICL almost never

overestimated the number of components, but was rarely suc-

cessful, except in heterogeneous detection in a long-lived spe-

cies (Appendix S4). Although its success rate increased with

the degree of heterogeneity, especially for negative skewness,

ICL generally underestimated the number of components,

even when the components were well separated (g > 0.5)

(Table 2 and Appendix S4). While ICL appeared to work well

for Gaussian mixtures (Biernacki, Celeux & Govaert 2000),

results similar to ours have been observed for Poissonmixtures

(McLachlan & Peel 2000; Brame, Nagin & Wasserman 2006),

confirming the importance of evaluating data-specific perfor-

mance of the criteria. Hence, the ICL penalty term seems to

not be suitable for CR data. Thismight be due to some individ-

uals that are ‘hard-to-classify’, entering the data set towards

the end of the study, thus increasing the entropy term.

Akaike Information Criterion and BIC generally had a

higher success rate than ICL (Table 2). In contrast with ICL,

AIC almost never underestimated the number of components,

but it tended to overestimate this number as g increased, espe-

cially in heterogeneous detection in a long-lived species

(Appendix S4). The same pattern was observed for BIC, but to

a lesser extent, as BICwasmore conservative than AIC in add-

ing components.

Overall, AIC outperformed BIC and ICL in short-lived

species, while BIC outperformed AIC and ICL for g < 0.5,

and ICL outperformed AIC and BIC for g > 0.5 in a

long-lived species, even more when skewness was negative

(Appendix S4). As none of the criteria could perfectly identify

the true number of components, additional research is needed

to develop an optimal criterion. In particular, further work is

needed to assess the benefits of modifying ICL penalty to give

lessweight to individuals that are ‘hard-to-classify’.

Interpretation of the relative performance of the criteria

The discrepancies observed in the relative performance of the

criteria to select the ‘true’ number of components (Appendix 4)

were because of differences in the construction of the criteria as

well as to specificities of CR data. The quantity of information

required to distinguishCRhistories arising fromdifferent com-

ponents is proportional to the number of individuals (n) and to

the number of 1¢s in each CR history, which in turns depends

on the number of possible detection events over the individual

lifetime. The number of possible detection events increases

with the survival probability (longer CR histories), even more

with the detection probability (more 1’s than 0’s in CR histo-

ries) and the number of sampling occasions (more chances to

sample more individuals and longer CR histories). It also

increases as skewness decreases (i.e. the proportion of longer

CR histories increases). Consequently, scenario 2 (in which all

individuals survive well, and detection is heterogeneous) was

the most informative. Scenario 4 (in which detection is rela-

tively high, and survival is heterogeneous) and scenario 3 (in

which detection is relatively low and survival is heterogeneous)

were less informative. Scenario 1 (in which all individuals have

a reduced survival, and detection is heterogeneous) was the

least informative. For each of these scenarios, situations with a

negative skewness (i.e. a large proportion of the population

has a high detection probability) were the most informative.

To illustrate these differences among scenarios, we calculated

the percentage of errors of classification (the number of indi-

viduals assigned to the wrong component, over the total num-

ber of individuals) using the estimated posterior probabilities

that each individual belong to each component of the model

involved in the calculation of the entropy (see Material and

methods section). In a situation with g = 0.84, c = 0 and

l = 0.5, the error rate was 12.9% in scenario 2, 14.6% in sce-

nario 3, 14.3% in scenario 4 and 23.9% in scenario 1. As
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expected, in all scenarios, the error rate increased with c, and
decreased withg and l (results not shown).

All three criteria tended to select more complex models as

the amount of information increased, but to a different level

depending on their penalty. AIC has the least severe penalty

(2k), so it rarely selected the 1-class model, selected the 2-class

model when the amount of information was reduced (scenario

1, and scenario 3 and 4 with g < 0.5), and selected the 3-class

model when the amount of information increased (scenario 2,

and to a lesser extent scenarios 3 and 4 with g > 0.5). The

BIC penalty term is larger [k ln(n)], so it wasmore conservative

than AIC, but performed less well than AIC when the amount

of information was reduced as it selected the 1-class model

more often (scenario 1), and better thanAICwhen the amount

of information increased as it selected the 2-class model more

often (scenario 3 and 4 with g > 0.5, and scenario 2 with

g < 0.5). As n increases, we expect BIC (and ICL), which

involves a penalty based on sample size, to do better than AIC

which would select too numerous components, although

results showed that for realistic changes in n, none of the crite-

ria was strongly affected (Table 4). ICL has the largest penalty

[k ln(n) – 2ENT)] where the entropy quantifies the quality of

the classification. Because of this additional penalty, ICL was

more sensitive than AIC and BIC to the amount of informa-

tion contained in the data, especially the number of sampling

occasions (Table 4) and the skewness of the distribution that

strongly affects the length of CR histories. When skewness was

positive, a large proportion of the population had short and

relatively uninformative CR histories, inflating the entropy

term so that ICL underestimated the number of components.

Hence, the ICL penalty was high for the less informative

scenarios so that it was much more conservative than BIC and

AIC and often selected the 1-class model in scenarios 1, 2 and

3. This is why ICL, in contrast with AIC and BIC, provided

more biased parameter estimates. On the contrary, ICL

worked well and outperformed AIC and BIC that tended to

select the 3-class model in scenario 2 with g > 0.5, and even

more when skewness was negative (Fig. 2). Hence, we expect

the benefits of using ICL to increase with number of sampling

occasions, species longevity, detection probability and even

more when the skewness is negative.

CASE STUDY

These data were analysed to provide reliable estimates of sur-

vival and detection parameters, to derive reliable estimates of

population size (Cubaynes et al. 2010). Moreover, because IH

was suspected and likely to be related to social structure (domi-

nants are supposed to be more prone to detection than others),

we also aimed at identifying the ‘true’ number of components

to allow the identification of meaningful classes of individuals

sharing the same social status. In agreement with simulations

mimicking this situation (scenario 2), bothBIC and ICL selected

the 2-class model, while AIC could not distinguish between the

2-class and the 3-class models. As it was selected by ICL, the

2-class model was expected to perform well at assigning individ-

uals to components with high probability. This was partly con-

firmed, as those individuals known as being dominant fromfield

observationswere all assigned to the ‘high detectability’ class.

Limitations of the study

To deal with IH, we have focused on finite-mixture models, as

they have been available for a decade, hence numerous appli-

cations and a relatively easy implementation in standard CR

pieces of software. As an alternative, one could use a model

with individual random effects (Royle 2008; Gimenez & Cho-

quet 2010). This type of model assumes a continuous source of

heterogeneity and leads to the concept of a mean value for the

trait in the population, with some variation around this mean.

However, populations often consist of finite classes of individ-

uals (e.g. juveniles vs. adults, dominant vs. subordinate individ-

uals, males vs. females, breeders vs. non-breeders, healthy vs.

sick individuals). In such situations, heterogeneity among indi-

viduals can be explicitly dealt with in finite-mixture models.

Whether individual random effects CRmodels performwell in

this context needs to be investigated. Besides, performing

model selection with random effects models is not an easy task

as it involves parameters on the boundary and so renders clas-

sical inference questionable (Bolker et al. 2009), CR models

being no exception (Gimenez & Choquet 2010). An extensive

simulation study similar to ours would be useful to compare

the performance of model selection criteria or hypothesis test-

ing approaches.

There are also limitations inherent in the design of our simu-

lation study. First, we considered data arising from a 2-class

mixture only. Although different results may be expected with

more classes, estimating class-specific parameters and the pro-

portion of individuals in each mixture component is costly in

terms of sampling occasions, which is clearly a constraint in

CR studies, for which the time unit is often the year. Second,

we considered survival and detection parameters were constant

through time, but different results might be obtained with

time-dependent parameters. This requires further investigation.

Finally, our choice of model selection criteria was based on

the popularity of AIC and BIC and the expected better perfor-

mance of ICL in the context of finite-mixture models. We

acknowledge that numerous other criteria are available. In

particular, the mixture regression criterion (Naik, Shi &

Tsai 2007), a variant of AIC involving a penalty for poor

classification quality, was developed for the simultaneous

determination of the number of components and variables in

finite-mixture regression models. Another candidate, the Devi-

ance Information Criterion (Spiegelhalter et al. 2002), often

seen as a Bayesian counterpart of AIC, is easily obtained with

the population WinBUGS computer program (Spiegelhalter

et al. 2003), although its calculation for mixture models

requires amendments (Celeux et al. 2006).

Summary and recommendations

This study confirmed that CR mixture models are powerful

tools for modelling IH. To select the number of components,

we recommend making the objectives of the study explicit. We
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encourage the use of AIC andBICwhen the focus is on estima-

tion and inference about the parameters. When the aim is to

assign individuals to meaningful classes, we warn that none of

the criteria we considered did better than the others and we

suggest taking the classification quality into account by using

ICL in conjunction with BIC, although it appears that further

work is needed to adapt its penalty term for CR data.
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