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Abstract We consider the first steps towards imple-

menting capture–recapture mixed models (CR2Ms) in

program E-SURGE. The main issue when estimating the

parameters of mixed models is that integrals associated

with the random effects distributions need to be dealt with.

Rather than using a Bayesian approach with Markov chain

Monte Carlo and in line with Gimenez and Choquet

(Ecology 91:951–957, 2010), we show that a frequentist

approach using numerical integration can be tractable when

independent clusters of individuals can be identified. In this

case, the maximum likelihood approach is time-efficient

because the dimension of the integral for the likelihood is

small. This allows us to integrate the likelihood by an

efficient and appropriate quadrature method with a proce-

dure for error control. Building on program E-SURGE

(Choquet et al. in Modeling demographic processes in

marked populations, volume 3 of Springer series: envi-

ronmental and ecological statistics. Springer, Dunedin,

2009b), we extend the GEMACO language (Choquet in

Can J Stat 36:43–57, 2008) to incorporate random effects

in a large set of capture–recapture models, including

multievent models (Pradel in Biometrics 61:442–447,

2005). To illustrate the flexible implementation of CR2Ms

in E-SURGE, we consider two real examples, one with an

individual random effect and one with group random

effects. Future developments and limitations are also

discussed.

Keywords Adaptive method � Cluster of individuals �
Gauss-Hermite quadrature � GLMM � Hidden Markov

chain � Normal random variable � State uncertainty

Introduction

With the improvement of Markov Chain Monte Carlo

(MCMC algorithms), the development of new software

(see Lunn et al. 2000, for WinBUGS) and the availability

of powerful computers, mixed models are becoming more

and more popular in ecological science (Bolker et al.

2009), and particularly in capture–recapture (CR) (Win-

trebert et al. 2005; Link and Barker 2005; Gimenez et al.

2009). A non-exhaustive list of advantages is:

• The possibility to explicitly decompose the response

variance into several components.

• The possibility to model dependence among

parameters.

• That boundary estimates are avoided for small sample

size datasets.

In the CR research area, mixed models remain under

utilized despite their potential. One reason is that practitio-

ners lack sufficient statistical training to code (or pseudocode

in the case of WinBUGS) Bayesian implementations

of mixed effects models. In non-Bayesian applications,

Burnham and Anderson (2002) and Royle and Link (2002)

considered the use of shrinkage estimators for time

random effects. However, the mandatory assumption of

non-boundary time fixed effect estimates are often violated,

making this approach difficult to implement for a general

class of model. Moreover, it is not applicable to the scale of

individual effect as individual fixed effects estimates are not

available. In addition, there are computation challenges in
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non-Bayesian applications, such as numerical integration.

This paper addresses the latter situation.

In this paper, we propose a first step toward imple-

menting CR mixed models (CR2Ms) in E-SURGE. We

will only consider a simple case with independent and

identically distributed random effects. We use the inde-

pendence property to reduce the dimension of the integral

associated with the marginal likelihood. Thus, because

fitting problems become more and more complex, in the

ideal case, we would like to consider an adaptive approach

where the selected algorithm is suited to the model of

interest. Developing adapted algorithms has proven in the

past to be efficient in M-SURGE (Choquet et al. 2004) to

deal with models with complex age structures. The situa-

tion here is even more challenging, and the road will be

quite long before achieving this goal.

In line with Coull and Agresti (1999), McClintock

et al. (2009) and Gimenez and Choquet (2010), we

consider a numerical approximation using Gauss-Hermite

quadrature to calculate the marginal likelihood which has

no analytical solution in presence of random effects.

Gaussian quadrature is known to work efficiently for low

dimension integrals over a large class of problems

(Lemenuel-Diot et al. 2005; Heiss and Winschel 2008;

Arndt et al. 2006). Numerical integration using Gauss-

Hermite quadrature was used in Gimenez and Choquet

(2010) to fit the Cormack-Jolly-Seber (CJS) model with

individual random effects. We implement this approach

for multi-event models (Pradel 2005) which are exten-

sions of multistate CR models to handle state uncer-

tainty. These models are implemented in E-SURGE

(Choquet et al. 2009b). In addition, we have considered

an adaptive Gauss-Hermite quadrature to get efficient

algorithms for group random effects. To get built-in

random effects, we also extend the language in

GEMACO (Choquet 2008) to automatically build

matrices of constraints so that mixed models can be

specified with simple phrases.

We show how E-SURGE makes it is easy to fit CR2Ms

using two applications. The first application illustrates a

model accounting for a potential effect of the observation

process with individual random effects applied to an

European Dipper Cinclus cinclus dataset. The second

application illustrates a model with group random effects

applied to a Bank Vole Myodes glareolus dataset.

Notation

NI is the number of individuals,

G is the number of groups,

H is the dataset of capture histories,

Is is the identity matrix of size s,

Nðl; r2Þ is the normal distribution with mean l and

variance r2,

H is the vector of biological parameters, Hi the vector of

biological parameters for individual i inside which the

different biological parameters (survival, transition, cap-

ture, …) are set in a row; see Choquet et al. (2009b) for

details.

Models under consideration

We consider the background of multievent models

(Pradel 2005) to handle state uncertainty in analyszing

CR data, which are already implemented in E-SURGE.

These models belong to the class of Hidden Markov

Models (HMM) as the number of states is assumed

finite (Cappe et al. 2005), and consequently to the

class of State-Space Models (SSM) (see Murphy

2002, see Gimenez et al. 2007, for an application to CR

data).

Generalized linear mixed model

The class of mixed effects models that E-SURGE may

consider can be expressed in the form of generalized linear

mixed models (GLMM). We consider, for both fixed and

random effects, two general sets of effect:

• Set of effect 1: time, age, cohort and group effects.

• Set of effect 2: individual effect.

The general form of GLMM f ðHÞ ¼ Xbþ Zb, with b

the vector of fixed effects and b the vector of random

effects, is computationally demanding because of the

dimension of the problem with so many potential effects.

Thus, we have implemented the following restricted

form of GLMM by constraining separately categories 1

and 2.

f ðHiÞ ¼ X0b0 þ Xib1 þ
XL

l¼1

Zlbl þ
XLþP

l¼Lþ1

Zl;ibl;i i

¼ 1; . . .;NI ð1Þ

where bl 2 R
sl and bl;i 2 R are random effects given by

bl�Nð0; r2
l � Isl

Þ; l ¼ 1; . . .; L;
bl;i�Nð0; r2

l Þ; l ¼ Lþ 1; . . .; Lþ P:

�
ð2Þ

bl; l ¼ 1; . . .; L are random effects associated with the

set of effects 1, sl is the number of levels of the random

effect l (sl = G for a group random effects), bl;i; l ¼
Lþ 1; . . .; Lþ P are individual random effects assuming

that individuals are independent. Matrices Xi are individ-

ual-specific matrices of individual covariates. They are

never stored in the computer because of the memory size
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needed but rather they are computed each time (see

Appendix 1). In the same way, matrices Zl;i contain either

0, 1 or values of individual covariates and are never stored.

Because we assume that individuals are independent, then

covariance matrices for each random effect are diagonal.

We use this property to implement efficient algorithms.

General expression of the marginal likelihood

Assuming that individuals are independent, the likelihood

for fixed effects for the entire set of capture histories is

obtained as the product of the probability PðhijbÞ of the

likelihood for each history hi
Y

hi2H

PrðhijbÞ;

see Pradel (2005) for details on multievent models and

Choquet et al. (2009b) for the implementation.

For a GLMM like Eq. 1, we get the marginal likelihood:

Lðb; rÞ ¼
Z Y

hi2H

PrðhijbÞxðr; xÞdx: ð3Þ

where r is the vector of variances associated to the random

effects and xðr; xÞ is a product of normal densities asso-

ciated to random effects bl or bl,i.

One might think that the dimension of the integral in Eq.

3 is equal to the size of the random effects and in most

cases the evaluation of Lðb; rÞ is numerically intractable.

However, we illustrate below two situations for which the

computation of Eq. 3 in E-SURGE can be made by

reducing the dimension of the integral.

Independent and identically distributed random

effect for individual

E-SURGE can now handle mixed models with individual

random effects only (L = 0):

f ðHiÞ ¼ X0b0 þ Xib1 þ
XP

l¼1

Zl;ibl;i ð4Þ

with bl,i in the form of Eq. 2. There is no limit for the

number of random effects that we can build. However for

P [ 2 the fitting step may be time consuming.

As in Gimenez and Choquet (2010), the marginal like-

lihood (3) is the product of the probabilities of all indi-

vidual encounter histories. So Eq. 3 can be rewritten:

Lðb; rÞ ¼
Y

h2H

Z

R
P

Prðhjb; xÞxðr; xÞdx: ð5Þ

Example 1 Survival varying with individual covariates

and random effect. The following model has been used in

Gimenez et al. (2006) with a constant survival across time

but dependent on an individual covariate (body weight

denoted by m) and from an individual random effect (bi).

logitð/iÞ ¼ b0 þ b1mi þ bi; i ¼ 1; . . .; I ð6Þ

where each bi�Nð0; r2
bÞ is independent and identically

distributed (i.i.d). In Eq. 6, P = 1, the computation of the

marginal likelihood according to Eq. 5 leads to the evalu-

ation of several integrals with a single dimension instead of

a potentially large dimension according to Eq. 3.

Independent and identically distributed

random effect for group

E-SURGE can also handle mixed models with group ran-

dom effects only (P = 0) like:

f ðHiÞ ¼ X0b0 þ Xib1 þ
XL

l¼1

Zlbl ð7Þ

with bl in the form of Eq. 2. There is no limit for the

number of random effects that we can build. However, for

L [ 2, the fitting step may be time consuming.

As in ‘‘Independent and identically distributed random

effect for individual’’, the marginal likelihood (3) is the

product of the marginal probability for each group. We

denote Hg, the set of encounter histories inside a group

g considered together. So Eq. 3 can be rewritten:

Lðb; rÞ ¼
YG

g¼1

Z

R
L

Y

h2Hg

Prðhjb; xÞ

0
@

1
Axðr; xÞdx: ð8Þ

Example 2 We consider a basic model where recapture

rates vary with a group random effect.

logitðpgÞ ¼ b0 þ bg; g ¼ 1; . . .;G ð9Þ

where bg�Nð0; r2
bÞ, (i.i.d). In this situation L = 1 so for

evaluating the marginal likelihood (8) we have only G one

dimensional integrals to evaluate.

Numerical integration

Integrals in (5) and (8) have no analytical expression so

require numerical approximations. After reparameteriza-

tion, those integrals have the form:

KðyÞ ¼
Z

R
d

kðy; xÞ exp�xtx dx ð10Þ

where the dimension d depends on the number of random

effects. For Eq. 5, d = P; see also Gimenez and Choquet

(2010) for the reparameterization in the case of the CJS

model with an individual random effect. We will not

consider in this paper models with dependence among
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individuals or groups, some of them are formally described

in Cam (2009). Dependences can be accommodated by

normal random effects with non-diagonal covariance

matrices. The marginal likelihood associated to such

models can also be expressed as Eq. 10 after reparame-

terization; see for example Heiss and Winschel (2008). In

the particular case of dependence of individuals and

groups, the dimension d of the integral will depend of the

structure of the dependence.

Order and accuracy

Let XN be a set of N quadrature nodes of R
d; XN ¼

fxð1Þ; . . .; xðNÞg with xðnÞ 2 R
d for n ¼ 1; . . .;N. Let XN be

the set of quadrature weights associated with the nodes

XN ; XN ¼ fx1; . . .;xNg with xn 2 R for n ¼ 1; . . .;N. The

integrals KðyÞ can be approximated by IIN defined by

IIN ¼
XN

n¼1

xn � kðy; xðnÞÞ ð11Þ

IIN is called a quadrature formula and KðyÞ � IIN the error

functional corresponding to KðyÞ. For relevant sets XN and

XN , the error functional decreases as N increases. Roughly,

two methods of integration exist with different choices for

XN and XN. The first method is based on the random gen-

eration of X (see Rosenberg 1967; Genz and Monahan 1999

with or without equidistant properties; Zaremba 1968;

Gonzalez et al. 2006). Under weak conditions, the simu-

lated value is unbiased and
ffiffiffiffi
N
p

-consistent by a law of large

numbers and independent of the problem. The major

drawback of this method relies on the difficulty in deter-

mining an appropriate value for N in order to control the

error of integration KðyÞ � IIN . The second method is based

on the use of quadrature; see Arndt et al. (2006). The

Laplace (Liu and Pierce 1994) method is not considered

precise enough for complex CR likelihoods. Consequently,

higher orders of Gauss-Hermite quadrature will be consid-

ered to obtain better precision. In this case, N increases with

d and the order of the quadrature r; thus, in some cases, we

can replace the index N by the two indices d and r.

For d = 1, we directly use the Gauss-Hermite quadra-

ture because it adapts easily to the normal density. The

nodes of the quadrature X are related to the zeros of the r-th

Hermite polynomial with N = 2 9 r - 1. The Gauss-

Hermite quadrature with r nodes is exact for polynomials

of order N. Here, as stated in Gimenez and Choquet (2010),

kðy; xÞ is not a polynomial but rather a composite function

of a polynomial following an inverse logit function, which

can be approximated as closely as long as N is large

enough.

Moreover, under mild condition (if jKðyÞ � IId;rþ1j\jj
KðyÞ � IId;rj; j\1), we can obtain the error estimate

associated with a polynomial of order r by considering two

successive orders as:

jKðyÞ � IId;rj\
1

1� j
jIId;rþ1 � IId;rj:

One severe limitation of Gauss-Hermite quadrature is the

effort growing with the dimension of the integral.

Multivariate integration formulas are often constructed as

a tensor product of quadrature formulas. Let II1,r be a

sequence of quadrature rules on R then

IId;r ¼
X

xð1Þ2X

. . .
X

xðdÞ2X

kðy; xð1Þ; . . .; xðdÞÞ
Yd

dd¼1

xddðxðddÞÞ

For dimension d and order r, a regular grid involves

M = (2 9 r - 1)d nodes. The calculation of Eq. 10 very

soon becomes intractable. Thus, we try to reduce the order

as much as possible with an appropriate scaling.

Centering and scaling

If the integrand in a numerical integration is not well behaved,

algorithms can perform poorly. For a single dimension, the

order of integration can be set higher to overcome this

problem. But it is sometimes still not enough, and the error of

integration can decrease very slowly. The problem in multi-

ple dimensions is even worse because the number of nodes

increases exponentially. Thus, for Eq. 8, we use centering

and scaling in a similar way as Lemenuel-Diot et al. (2005) to

improve the integration.

In order to base the approximation of the integral (Eq.

10) on an appropriate range of values of x, two transfor-

mations are made: centering and scaling. If we assume that

kðy; xÞ is close to a normal distribution of mean x� and

variance S; kðy; xÞ � exp ðx� x�ÞtSðx� x�Þ
� �

will be close

to a constant and the approximation of the integral exact.

Thus, we take x� as the mode of kðy; xÞ and S as half of the

inverse of the hessian matrix of the same function.

With the overall transformation x ¼ U�1zþ x� with

S ¼ UtU then Eq. 10 becomes

KðyÞ ¼ 1

det U

Z

R
d

kðy;U�1zþ x�Þ exp�ðU
�1zþx�ÞtðU�1zþx�Þ dz

¼ 1

det U

Z

R
d

k1ðy; zÞ exp�zt�z dz ð12Þ

with k1ðy; zÞ ¼ kðy;U�1zþ x�Þ exp�ðU
�1zþx�ÞtðU�1zþx�Þþztz

and detðUÞ is the determinant of the matrix U:

We compute U as in Lemenuel-Diot et al. (2005). To

get the inverse of U and when necessary (i.e., when d [ 1),

we use an algorithm proposed by Xu and Qiao (2008) for a

singular value decomposition of the symmetric matrix S

(the Takagy Factorization).
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Avoiding underflow and overflow

The approximation IIN is not straightforward to implement

in the case of Eq. 8. In fact, the function kðy; xÞ is a

polynomial of high degree, with parameters belonging

to [0,1]. Thus, very soon, values of the function k will be

not representable in finite numerical precision, i.e.

kðy; xÞ\2�128. This limitation is called underflow. Thus,

we reformulate Eq. 10 to avoid underflow.

A solution to deal with underflow in Eq. 10 is to con-

sider log kðy; xÞ so that the sum of individual contributions

is involved rather than the product.

KðyÞ ¼
Z

R
d

kðy; xÞ exp�xtx dx

¼
Z

R
d

expðlog kðy; xÞÞ exp�xtx dx

ð13Þ

However, overflow also occurs with expðlog kðy; xÞÞ: A

way to deal with this new problem is to scale the quantity

log kðy; xÞ by an appropriate value called dev*.

KðyÞ¼ expð0:5�dev�Þ�
Z

R
d
expðlogkðy;xÞþ0:5�dev�Þ

�exp�xtx dx¼ expð0:5�dev�Þ�
Z

R
d
k2ðy;xÞexp�xtx dx

ð14Þ

where k2ðy; xÞ ¼ expðlog kðy; xÞ þ 0:5� dev�Þ:

Implementation in program E-SURGE

Details of the global algorithm

To get the MLE, we consider a Quasi-Newton algorithm

with a first order difference scheme to approximate the

gradient and a relative tolerance of 10-6. The error made

by using a first or second degree finite difference scheme

does not influence the result in most cases (Appendix 2). In

this paper, the results are obtained with a second order

finite difference scheme although the use of the first order

scheme led to the same results in both applications. For a

group random effect, we consider the adaptive scaling

described previously. To ensure precision of the quadrature

scheme, we update the matrix S every 15 iterations of the

quasi-Newton algorithm.

Description of the random effects

We extend the model definition language of the tool GE-

MACO used in M-SURGE and E-SURGE. We refer to

Choquet (2008) for the description of the language used for

fixed effects.

Although individual covariates are permitted for a fixed

effect, individual fixed effects are not allowed in

E-SURGE. Therefore, we introduce a new built-in keyword

factor denoted IND for individual random effects, and

implement random effects for groups with the keyword

RANDOM, which translate fixed effects into random

effects. These additions fit naturally into E-SURGE’s

model specification syntax. However contrary to traditional

effect like TIME, AGE, GROUP, direct addressing of levels of

IND (one level corresponding to one individual) is not

currently allowed. We extend also the operator ? to con-

catenate fixed effect and random effect to generate mixed

models of the form (4,7). Examples include:

The phrase ‘‘I?XIND(1)?IND’’ models Eq. 6.

The phrase ‘‘I?RANDOM(GROUP)’’ models Eq. 9.

More generally, two general forms of phrase are cur-

rently allowed:

‘‘phrase1?phrase2.IND’’ for Eq. 4 and

‘‘phrase1?RANDOM(phrase2)’’ for Eq. 7,

where phrase1 and phrase2 are any general phrases for

fixed effects.

Applications

Application 1

We consider the European Dipper data used in Lebreton

et al. (1992). Although affecting only the two last occa-

sions, we found a trap-dependence effect using program

U-CARE (Choquet et al. 2009a). This local effect on time

may be a consequence of the fidelity of birds to the nesting

site: an individual seen one year on a nesting site has a

greater probability to be detected the next year on the same

nesting site. This effect may be not detected the first years

because of the flood years: their livelihood is closely

dependant on stream as their nests are close to the water.

Therefore, we considered a modified version of the stan-

dard Cormack-Jolly-Seber model incorporating a trap-

dependence effect to account for this lack of fit. More

precisely, we considered two detection probabilities at time

t p*t and pt depending on whether an individual was pre-

viously captured or not at the previous occasion t - 1.

As in Royle (2008), we tested for individual effects in

both survival (/) and capture (p*, p). Similar to Lebreton

et al. (1992), the fixed effect for survival is the flood effect

(t = 1, 4, 5, 6 vs t = 2, 3). With E-SURGE, the sentence

for the survival TIME(1 4 5 6,2,3)?IND builds a model where
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logitð/t¼ð1;4;5;6Þ;iÞ ¼ b1 þ b1;i;

logitð/t¼ð2;3Þ;iÞ ¼ b2 þ b1;i:
ð15Þ

where b1;i�Nð0; r2
1Þ:

Using the formulation for trap-dependence described in

Gimenez et al. (2003), the set of states used in E-SURGE is

{’Alive and captured previously’, ’Alive and not captured

previously’, ’Dead’}. The sentence for capture

TIME(1:4)?FROM.TIME(5 6)?IND builds a model where

logitðp�t¼ð1;...;4Þ;iÞ ¼ b3 þ b2;i;

logitðpt¼ð1;...;4Þ;iÞ ¼ b3 þ b2;i;

logitðp�t¼ð5 6Þ;iÞ ¼ b4 þ b2;i;

logitðpt¼ð5 6Þ;iÞ ¼ b5 þ b2;i:

ð16Þ

where b2;i�Nð0; r2
2Þ.

We fit this model /(flood ? ind), p(partial(m) ? ind)

using r = 15 for the quadrature without centering and scal-

ing. In this example, centering and scaling failed to improve

the precision of the Gauss-Hermite quadrature because the

distribution of h(x) is not close enough to a gaussian. Table 1

shows that no individual effect is detected. For any of the

two models /(flood ? ind), p(partial(m) ? ind) and /
(flood ? ind), p(m ? ind) for the full trap-dependence, the

deviance does not even change compared to /(flood),

p(partial(m)) and /(flood), p(m). In each case, r1 and r2 are

estimated close to zero (resp. 5.10-5 and 2.10-5; see Fig. 8).

Thus, the individual effect detected in Royle (2008) can be

explained by unmodeled trap-dependence. This is also sup-

ported by simulation where data with trap-dependent effect

were generated and then analyzed with an individual effect,

the model with individual effect was far better than the con-

stant model (unpublished results). A step-by-step procedure

for the implementation of the model in E-SURGE is given in

Appendix 3.

Application 2

Hantaviruses are the ethiological agents of several more or

less severe diseases in humans. In northern, western and

central Europe, Puumala hantavirus causes Nephropathia

epidemica, a mild form of haemorrhagic fever with renal

syndrome (Klein and Calisherz 2007). However, for the

virus, humans act only as dead-ends and its reservoir host is

a small mammal, the Bank Vole, Myodes glareolus. To

better understand the epidemics in humans, it is crucial to

understand the dynamics of Puumala virus within the res-

ervoir host populations. The data were collected to inves-

tigate the impact of Puumala virus on the demography of

Bank Voles. Nine sites, typical for the optimal bank vole

habitat, were monitored in the endemic zone where most

human cases have occurred in recent years in Belgium. In

each site, six trapping sessions were carried out from 2004

to 2006 with 100 live traps in a 1-ha grid Tersago (shed).

Sites are coded as nine groups which are in fact geographic

sites without movement among sites. Because the purpose

here is not a full epidemiological study, we consider only

two states (‘Alive’, ‘Dead’) and we construct a simple

survival model with coupled random group effects on

capture. The sentence for capture (decomposed in E-

SURGE as first capture=FIRSTE and recapture=NEXTE) FIR-

STE?NEXTE?RANDOM(NEXTE.GROUP) builds a model where

logitðpage¼2;gÞ ¼ b2 þ bg:

where bg�Nð0; r2Þ and the first mathematical parame-

ter(FIRSTE) is fixed to 1 in the biological scale (page=1 = 1).

Note that this approach is equivalent to conditioning at first

capture.

We fit the model using r = 15 with centering and

scaling. A step-by-step procedure for the implementation

of the model in E-SURGE is given in Appendix 4. Results

are represented in Table 2. The asymptotic LRT distribu-

tion for the test of H0:r = 0 against H1:r[ 0 is a 50:50

mixture of v2(0) and v2(1). Using the mixture of distribu-

tions corresponds to halving the p-value from naively using

the v2(1) distribution (Pinheiro and Bates 2000). So the

model /(i), p(i) was rejected (p value = 0.033) and r was

estimated to 0.58 (see Fig. 16).

Discussion

We have implemented effective algorithms in E-SURGE to

fit models and get maximum likelihood estimates with

random effects in cases where independence of individuals

Table 1 European Dipper example revisited

Model Np Deviance

/(flood ? ind), p(partial(m) ? ind) 7 650.910

/(flood), p(partial(m) ? ind) 6 650.910

/(flood ? ind), p(partial(m)) 6 650.910

/(flood), p(partial(m)) 5 650.910

/(flood ? ind), p(m ? ind) 6 656.225

/(flood), p(m) 4 656.225

/(flood), p 3 660.102

Np Number of mathematical parameters of the model

Table 2 Bank Vole example with a random effect on group

Model Np Deviance

/(i), p(i ? r(g)) 3 944.013

/(i), p(i) 2 947.381

i is for the intercept, r(g) is for a group random effect. Np Number of

mathematical parameters of the model
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or groups is assumed. Instead of a MCMC approach, we

consider a Gauss-Hermite scheme to cope with high-

dimensional integrals. This approach has several advanta-

ges over Monte Carlo approaches. For example, we obtain

a cheap measure of the error by the estimate of two mar-

ginal likelihoods. A better measure could be achieved for

both methods by computing the discrepancy (Frank and

Heinrich 1996), but this option comes at a price of a

considerable effort of programming. Furthermore, the

language inside GEMACO has been extended to allow

built-in mixed models incorporating individual and group

random effects with i.i.d. assumptions. Thus, practitioners

without experience in MCMC modeling can access these

modeling tools within the scope of a familiar, user-friendly

software package.

However several challenges remain:

– First, built-in time, age and cohort random effects still

need to be implemented in E-SURGE. Dimensions of

the associated integrals are very high and additional

algorithms must be implemented to fit these models in a

reasonable amount of time. Much progress have been

done the past few years with MCMC methods or EM-

type algorithms (Chaubert-Pereira 2008). Our ultimate

goal is to implement the most appropriate algorithm for

each model.

– Second, in the present version of E-SURGE, the

independence of groups needs to be specified in a

menu of E-SURGE. Description or automatic detection

of independence between groups remains to be

implemented.

– Third, models with non-diagonal variance–covariance

matrices as in Pinheiro and Bates (1996) have to be

implemented. The description of dependence between

individuals (which would allow fitting animal models

like in Meyer 2001) or groups is the first step of this

implementation.

– Fourth, besides fitting models, model selection using

AIC is not trivial in presence of random effects. The

main issue lies in counting the number of parameters:

should it be the number of parameters plus the number

of variance components or plus the number of random

effects? There has been a recent attempt to cope with

this issue (Vaida and Blanchard 2005) that still needs to

be investigated in the context of capture–recapture

mixed models.

– Fifth, the acute computation of the rank of CR2Ms

remains to be done to investigate if redundant param-

eters are present in the models. In the current version of

E-SURGE, the rank is set equal to the rank of the

hessian of the likelihood.

– Last but not least, goodness-of-fit procedures are

missing for CR2Ms. We hope that further progress

will be made with GOF as an inappropriate random

effect can be selected even with marginal overdisper-

sion. This is the case in application 1.

Supplementary materials

The program E-SURGE is available from http://www.cefe.

cnrs.fr/BIOM/logiciels.htm
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Appendix 1: Implementation of the structure

of Xi and Zl;i

Xi ¼ A� Bi where Bi is set of square matrices dependent

on individuals. This structure allows us to consider model

like: I?T.XIND. In this case, A is a time dependent matrix and

the matrix Bi is a (K - 1) 9 (K - 1) diagonal matrix

which entries are the value of the covariates for individual i.

Zl;i ¼ Cl � Dl;i where D1;i is a square matrix depending

of the individual and of the effect. This structure allows us

to consider model like: I?XIND?RAND(XIND). In this case

L ¼ 0;P ¼ 1; C1 is a constant vector of 1 and D1;i is the

value of the covariates for individual i.

Appendix 2: Influence of the finite difference scheme

We check that the tolerance (Tol = 10-6) used for the

quasi-Newton algorithm on the gradient and the error (Err)

made by the approximation of the gradient using a finite

difference scheme and a numerical integration are consis-

tant, i.e. of the same order. Let e be the computer precision,

we will demonstrate that the global error Err defined by:

Err ¼ K 0ðy0Þ �
XN

n¼1

xn �
kðy0 þ

ffiffi
e
p
; xðnÞÞ � kðy0; x

ðnÞÞffiffi
e
p

can be decomposed as a sum of two sources of error; the

error of the finite difference scheme applied to the gradient

of k and the error made by the quadrature formulae applied

to the gradient of k. By the Fubini theorem,

K 0ðy0Þ ¼
Z

R
d

okðy; xÞ
oy

jy0
exp�xtx dx
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The error made by approximating a derivatives by a first

order finite-difference scheme is Oð
ffiffi
e
p
Þ (see Dennis and

Schnabel 1983) so

Err ¼ K 0ðy0Þ �
XN

n¼1

xn �
okðy; xðnÞÞ

oy
jy0
þ Oð

ffiffi
e
p
Þ

� �

Err ¼
Z

R
d

okðy; xÞ
oy

jy0
exp�xtx dx

�
XN

n¼1

xn �
okðy; xðnÞÞ

oy
jy0
þ Oð

ffiffi
e
p
Þ

For Matlab on a 32-bit Windows system, e = 2.2204 9

10-16 so as soon as the error made by the quadrature

formulae is lower than Tol, the global error is lower than

Tol. For a lower tolerance (Tol = 10-6) used for the quasi-

Newton algorithm on the gradient then a second-order

finite-difference scheme should be used.

Appendix 3: Application 1 with E-SURGE

E-SURGE can accept capture–recapture data either in

MARK or BIOMECO format. The two types of data file

are not very different: each row corresponds to a particular

capture history followed by the number of individuals with

that history. In MARK format, this count is followed by a

semi-colon and in BIOMECO format the data are preceded

by the number of different capture histories and the num-

ber. In this study, there is only one site. We will fit here the

model / (flood) p(partial(m) ? ind) described in Appli-

cation 1.

Starting E-SURGE

From E-SURGE, start a new session named ’result.mod’.

Read in the data file and tell E-SURGE that there are no

individuals covariates. Check that the numbers of capture

occasions, groups and events are correct (in this case, 7

capture occasions, 1 group and 2 events): E-SURGE makes

assumptions about the number of states, but these need to

be modified depending on the problem you have to treat. In

this case, we change the number of states to three. We will

also have to set the number of age classes to one as for the

present, we will not consider any age effect.

Fitting the model

Press the Modify button, and change the settings to specify

that there a single age class, a single group and 3 states (see

Fig. 1).

The main menu should show the changes. Fitting the

models in E-SURGE involves four steps:

1. The Gepat step: specifying which ones of all the

potential parameters have to be estimated, which ones

will be calculated as the complement to 1 (there is one

such parameter per multinomial) and which ones

correspond to impossible events or transitions and are

fixed to zero;

2. The Gemaco step: specifying the effects (time, age…)

acting on the active parameters;

3. The IVFV step: specifying initial values for the

optimization procedure and/or fixed values for the

active parameters;

4. The RUN step: launching the optimization procedure.

Specifying the pattern matrices using the GEPAT interface

There are three types of parameters used in the definition of

a multi-event model (Pradel 2005):

1. the initial state probabilities;

2. the transition probabilities;

3. the event probabilities.

Each type of parameter is gathered into a row–stochastic

matrix, i.e. each row corresponds to a multinomial. (Each

matrix can be further decomposed into a product of several

stochastic matrices allowing for example to estimate sep-

arately survival and transition parameters. However, for the

current model, only 1 step is required for each type of

matrix.)

To enter the GEPAT interface, click the GEPAT button

at the bottom of the main window. The GEPAT interface

screen for the initial state pattern matrix appears.

Fig. 1 E-SURGE: the number of states is set to 3 and the number of

age classes is set to one
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By default, E-SURGE lets all live states be available as

initial steps. The state dead, last in the list, is impossible

and does not even appear. The last live step is taken by

default to be the one whose probability will be calculated

indirectly, as the complement of those of the other live

states. This is specified in the above window using the

following general conventions for Gepat:

• a minus sign (-) indicates that a potential parameter is

unavailable in the current model (impossible transition,

for instance). This is equivalent to fixing it to zero but

more explicit;

• any Greek letter (strike a Latin letter and E-SURGE

will show its Greek counterpart) indicates a free

parameter, one to be estimated directly. Note that the

particular Greek letter entered is totally irrelevant to

E-SURGE. In particular, the same Greek letter is used

repeatedly by default within a pattern matrix (by default

for initial states); this does NOT mean that the

parameters are being forced to be equal;

• the asterisk (*) indicates the parameter that is calcu-

lated indirectly, as the complement to 1 of all the other

parameters on the same row. There MUST always be

one and only one asterisk per row because each row

corresponds to a multinomial.

Note that the order of the states is chosen by the user

except for the dead state that is always positioned last.

Here, the default pattern is not correct for transition and

event. We need to change them.

For initial states, we implement the pattern given in

Fig. 2. For transitions, we need two steps, one for survival

and one for capture. So we set the number of steps to 2.

For survival, we implement the pattern given in Fig. 3. For

capture, we implement the pattern given in Fig. 4. For

event, we implement the pattern given in Fig. 5. Press the

‘‘EXIT’’ button to return to the main window.

Specifying the model using the GEMACO interface

The GEMACO interface uses keywords to create a mod-

eling sentence that indicates how parameters vary by time,

over groups, over age classes, etc. At the end of the

GEMACO procedure, a design matrix is created for each

type of parameters. Each row of the design matrix will

correspond to a parameter of the full model (all potential

variability: time, age, group…) and each column corre-

sponds to a parameter of the actual model.

The GEMACO syntax is fairly intuitive but the ‘‘sen-

tences’’ you enter in the GEMACO interface must respect

some priority rules that we will not develop here. WeFig. 2 E-SURGE: pattern for the initial states vector

Fig. 3 E-SURGE: pattern for the survival matrix

Fig. 4 E-SURGE: pattern for the capture matrix for the trap-

dependent model
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encourage the user to read the E-SURGE user manual and

Choquet (2008) in which the GEMACO syntax is fully

explained.

In this example, we only want to show how to use

E-SURGE to fit our model.

For the trap-dependent model, the set of initial state

probabilities and the set of event probabilites are empty.

Click on the top ‘‘Initial State’’ button to go to the

‘‘Transition’’ screen.

To specify the model on survival, we use the phrase T(1 4 5

6,2 3) for the flood effect, and the new keyword IND for the

individual random effect. As we combine all, the GEMACO

sentence becomes T(1 4 5 6,2 3)?IND. Select the next step for

transitions which corresponds to the modeling of trap

dependence. We use the phrase T(1:4)?T(5 6).F?IND.

At this stage, to create the design matrices, we click on

the Gemaco item in the top menu and select the ‘‘call

GEMACO (all phrases)’’ submenu. At this stage, all the

model structures are specified and the design matrices

appear in the left window of each screen of the GEMACO

interface; press the ‘‘EXIT’’ button to return to the main

window.

Specifying the initial and fixed values using

the IVFV interface

In E-SURGE, the user can choose the way to generate the

initial values of the optimization procedure. They can be

either ‘‘constant’’, ‘‘randomly generated’’ or ‘‘equal to the

estimates of a previously fitted model’’. Once the type of

initial values is chosen, the user can also fix the values for

some parameters using the IVFV interface. Press the IVFV

button to enter the interface (Fig. 6). As there is no need to

specify either fixed values or initial values, click on the

‘‘EXIT’’ button to return to the main window.

Running the model

Before running the model, we have to specify the method

of integration; here, we choose the classical Gauss-Hermite

method (set by default) described in the paper with 29

quadrature nodes (r = 15, set by default). We also tick the

‘‘compute C-I(Hessian)’’ option to get confidence intervals.

The model is now ready to be fitted to the data. Press the

RUN button. We observe in Fig. 7 that at the end of the fit,

the estimate error made by the GH scheme to get the

likelihood is lower than 10-6 as �15:64� � 6.

In Fig. 8, we get the estimates for the model /
(flood ? ind) p(partial(m) ? ind) in the mathematical

scale.

Appendix 4: Application 2 with E-SURGE

We will fit here the model / (flood) p(partial(m) ? ind)

described in part 2 with E-SURGE.

Starting E-SURGE

From E-SURGE, start a new session and load the dataset.

For this application, we only need to change the number of

Fig. 5 E-SURGE: pattern for the event matrix

Fig. 6 E-SURGE: the initial values fixed values interface. The two

last parameters are those associated to the two random effects
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age classes to one as, for the present, we will not consider

any age effect.

Fitting the model

Press the Modify button, and change the settings to specify that

there is a single age class, nine groups and 2 states (see Fig. 9).

The main menu should show the changes. Fitting the

models in E-SURGE involves four steps:

Specifying the pattern matrices using the GEPAT interface

Note that the order of the states is chosen by the user except for

the dead state always positioned last. Here, the default pattern

is one of the CJS model. We do not need to change them.

Specifying the model using the GEMACO interface

In this example, we only want to show how to use

E-SURGE to fit our model.

The initial states modeling

For the CJS model, the set of initial state probabilities is

empty. Click on the top ‘‘Initial State’’ button to go to the

‘‘Transition’’ screen.

To specify the model on survival, we use the phrase I

(see Fig. 10).

Click on the top ‘‘Transition’’ button to go to the

‘‘Event’’ screen.

Because the model conditions on the first capture

occasion of each individual, the only event to model at the

time of the first encounter is the site of capture. It is only

later on that the event ’not encountered’ becomes possible.

Thus, the event probabilities at the time of the first

encounter must be treated separately. This is achieved

through the use of the keywords ‘‘firste’’, which stands for

’first encounter’, and ‘‘nexte’’, which stands for ’next

encounters’, respectively.

Fig. 7 E-SURGE: the Output

during the RUN step shows that

20 iterations are needed for

convergence and that the error

due to numerical integration is

small (lower than 10-6)

Fig. 8 E-SURGE: estimates

and standard errors for the

model /(flood ? ind)

p(partial(m) ? ind)
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The output of Gepat is shown in the ’transitions pattern’

subwindow at the bottom left. For each state (in row), there

is only one active event which is the capture on the relevant

site (where the stands), and the other possible event taken

as the complement is ’not encountered’ (first column). For

instance, for state 11, the first row, the individual can be

encountered on site 1 (second column, probability to be

estimated) or ’not encountered’ (first column, probability

calculated as 1 - the other probability). The active

parameters are thus just the capture probabilities. At the

time of the first encounter, the capture is certain and the

capture probabilities will all be 1. At this stage, we cannot

specify a fixed value, but we can specify that we need just

one parameter common to all states by keeping ‘‘firste’’ by

itself. Later, capture probability will be constant. Thus, the

complete sentence is ‘‘firste?nexte?random(nexte.g)’’.

At this stage, to create the design matrices, we click on

the Gemaco item in the top menu and select the ‘‘call

GEMACO (all phrases)’’ submenu (see Fig. 11). All the

model structures are now specified and the design matrices

for fixed effect appear in the left window of each screen of

the GEMACO interface; press the ‘‘EXIT’’ button to return

to the main window.

Specifying the initial and fixed values

using the IVFV interface

In E-SURGE, the user can choose the way to generate the

initial values of the optimization procedure. They can be

either ‘‘constant’’, ‘‘randomly generated’’ or ‘‘equal to the

estimates of a previously fitted model’’. Once the type of

initial values is chosen, the user can also fix the values for

some parameters using the IVFV interface. Press the IVFV

button to enter the interface.

The initial states probabilities In this case, there is no

need to specify neither fixed values nor initial values. Click

on the top ‘‘Initial State’’ button to arrive at the ‘‘Transi-

tion’’ screen.

The survival-transitions probabilities There is no need

to fix values for the transition probabilities so this screen

Fig. 9 E-SURGE: the number of age classes is set to one

Fig. 10 E-SURGE: the sentence ’i’ builds the model / (.)

Fig. 11 E-SURGE: the sentence ’firste?nexte?r(nexte.g)’ builds the

model / (i ? r(g))
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can be left in its default state. Click on the top ‘‘Transition’’

button to arrive at the ‘‘Event’’ screen.

The event probabilities We can see here the different

capture rate appearing in the definition of the model. The

series of number indicate successively:

• the line in the event matrix (corresponding to the state),

• the column in the event matrix (corresponding to the

event),

• the capture occasion,

• the age class,

• the group,

• the step in the matrix decomposition of the event matrix

(here 1).

Thus, the first parameter corresponds to the capture rate

at the first capture occasion for the first age class, i.e. time

of first encounter (A=1). This is the only parameter with

A=1 because we have gathered all the capture rates relative

to the first encounter into a single parameter. This param-

eter needs to be fixed to 1. We do this by entering the value

1 as ‘‘Initial Value’’ and ticking the box nearby (see

Fig. 12).The other parameter corresponds to the following

capture rates (A=2); there is no need to fix these

parameters.

After all the fixed values have been specified, press the

EXIT button.

Running the model

Before running the model, we have to specify the method

of integration. Click on the button ’Advanced Numerical

Options[Modify’ in the main window of E-SURGE. Here

we choose the Adaptive Gauss-Hermite method described

in the paper (the fourth value is set to 1) with 29 quadrature

nodes (the fifth value is set to 15) (see Fig. 13).

We also tick the submenu ’Random Effects for Inde-

pendent Group Only’ in the menu ’Models’ (Fig. 14).

We also tick the ’compute C-I(Hessian)’ option to get

confidence intervals and an estimated of the model rank.

The model is now ready to be fitted to the data. Press the

RUN button. We observe in Fig. 15 that at the end of the

fit, the estimate error made by the GH scheme to get the

likelihood is lower than 10-6 as �6:45� � 6.

In Fig. 16, we get the estimates for the model /(.)

p(i ? r(g)) in the mathematical scale.

Fig. 12 E-SURGE: the first mathematical parameter corresponding

to ’firste’ is fixed to 1 by ticking the box nearby. The third

mathematical parameter is the starting value for the square root of the

standard error; it must be strictly positive

Fig. 13 E-SURGE: we choose the Adaptive Gauss-Hermite method

(the fourth value is set to 1) with 15 quadrature nodes (the fifth value

is set to 15)

Fig. 14 E-SURGE: to speed-up calculations and improve the

precision of the integration, we set that the random group effect is i.i.d
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