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Studies of wild vertebrates have provided evidence of substantial differences in lifetime reproduction among individuals 
and the sequences of life history ‘states’ during life (breeding, nonbreeding, etc.). Such differences may reflect ‘fixed’ 
differences in fitness components among individuals determined before, or at the onset of reproductive life. Many 
retrospective life history studies have translated this idea by assuming a ‘latent’ unobserved heterogeneity resulting in 
a fixed hierarchy among individuals in fitness components. Alternatively, fixed differences among individuals are not 
necessarily needed to account for observed levels of individual heterogeneity in life histories. Individuals with identical 
fitness traits may stochastically experience different outcomes for breeding and survival through life that lead to a diver-
sity of ‘state’ sequences with some individuals living longer and being more productive than others, by chance alone. 
The question is whether individuals differ in their underlying fitness components in ways that cannot be explained by 
observable ‘states’ such as age, previous breeding success, etc. Here, we compare statistical models that represent these 
opposing hypotheses, and mixtures of them, using data from kittiwakes. We constructed models that accounted for 
observed covariates, individual random effects (unobserved heterogeneity), first-order Markovian transitions between 
observed states, or combinations of these features. We show that individual sequences of states are better accounted for 
by models incorporating unobserved heterogeneity than by models including first-order Markov processes alone, or a 
combination of both. If we had not considered individual heterogeneity, models including Markovian transitions would 
have been the best performing ones. We also show that inference about age-related changes in fitness components is 
sensitive to incorporation of underlying individual heterogeneity in models. Our approach provides insight into the 
sources of individual heterogeneity in life histories, and can be applied to other data sets to examine the ubiquity of our 
results across the tree of life.
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When focusing on natural selection at the level of individ-
ual organisms, fitness in its most general sense is success in 
contributing descendants to the next generation (Fairbain  
and Reeve 2001). Under some assumptions (Brommer  
et al. 2002), realized lifetime fitness can be assessed using 
lifetime reproduction (i.e. total number of offspring, or of 
recruited offspring, produced during life, Grafen 1988). 
Reviews of lifetime reproduction in wild vertebrates have 
provided evidence of substantial differences among indi-
viduals, with a small proportion of individuals producing  
many offspring, and a large proportion of individuals rais-
ing only a few or none (Clutton-Brock 1988, Newton  

1989). This pattern is apparently consistent with the hypo-
thesis of heterogeneity among individuals in their ‘underly-
ing’ ability to produce a large number of offspring. Under 
this hypothesis, differences in total reproductive output 
among individuals result from differences in individual  
fitness components: a hierarchy that is determined before, 
or at the onset of reproductive life, that doesn’t change 
afterwards, and that translates into a higher proportion 
of unsuccessful breeding events during the life of some 
individuals than others, or into reproductive lifespans of 
unequal length. Historically, the authors who first invoked 
this hypothesis did not necessarily attempt to explain such  
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differences (Curio 1983). Echoing this, subsequent efforts 
to estimate individual fitness components have relied on the 
hypothesis of ‘underlying’ or ‘latent’ unmeasured individ-
ual features (Link et al. 2002a). Recently, the relevance of 
underlying individual differences to variation among indi-
vidual life histories and skewness in lifetime reproduction 
has been questioned (Tuljapurkar et al. 2009, Steiner et al. 
2010, Orzack et al. 2011, Steiner and Tuljapurkar 2012).

The debate focuses on the sources of variation in fit-
ness components (‘vital rates’) that are sufficient to gener-
ate observed distributions of life histories in wild animal 
populations (Caswell 2011), i.e. the observed diversity of 
sequences of life history states (e.g. unsuccessful breeding 
in the first breeding attempt, nonbreeding in the follow-
ing year, successful breeding two years later,…, death).  
In vertebrates, lifetime reproduction is classically viewed 
as depending on the age-specific probabilities that an  
individual survives, that survivors attempt to breed, that 
breeders raise offspring to independence (probability of 
breeding successfully), and that successful breeders raise a 
given number of offspring. Tuljapurkar et al. (2009) and 
Steiner et al. (2010) suggested that only some sources of 
variation in vital rates are responsible for the diversity of 
life histories and the observed skewness of lifetime repro-
duction across individuals. They suggested defining strata  
in the population within which individuals are assumed to  
be homogeneous with respect to fitness components. Strata 
can correspond to fixed individual features or groups (e.g. 
sex, Steiner et al. 2010, Orzack et al. 2011), features that 
change deterministically throughout life (e.g. with age),  
or stochastically such as life history states (Cam et al. 1998). 
The crux of the matter is to take Markovian transitions 
among life history states into account (Tuljapurkar et al. 
2009, Steiner et al. 2010), a common approach in longi-
tudinal studies of wild vertebrates (Lebreton et al. 2009).  
Biologically, first-order Markov models represent the 
hypothesis that the probability of an individual being in 
state s (e.g. alive or dead, breeding or not in survivors) at 
time t 1 1 depends only on state r at time t (e.g. whether 
the individual bred in the previous year, or not, Cam et al. 
1998), not on genetic or ontogenetic differences that indi-
viduals carry with them over life. Even if individuals within 
each stratum are homogeneous with respect to the vital  
rates (e.g. all the females of age x in year t that bred suc-
cessfully in the previous year will survive with probability 
0.90), life history variation will result from stochastic sam-
pling associated with the demographic process itself (this 
female will survive, but not that one, and the actual num-
ber of survivors within a stratum will follow the binomial 
distribution). Stochasticity thus generates heterogeneity, 
or differences among life paths and lifetime reproduction, 
such that some individuals are simply lucky enough to have 
substantially longer and more productive lives than others. 
The diversity of life paths consistent with first-order Markov 
processes has been called ‘dynamic heterogeneity’, which 
could be used as a ‘neutral model’ for generating variation 
in the absence of fixed underlying differences in fitness com-
ponents (Tuljapurkar et al. 2009, Steiner et al. 2010, Steiner 
and Tuljapurkar 2012).

These ideas contrast with the hypothesis that individu-
als differ in their underlying fitness components in ways 

that go beyond direct observation of current or previous 
life history state, cumulative breeding success, age, year and 
group membership such as sex (Cam et al. 2002, Link and 
Barker 2009, Bergeron et al. 2010, Hawkes 2010, Aubry 
et al. 2011). In fact, the current debate has two aspects.  
1) Absence of individual variation with dynamic states  
during an individual’s life contrasts with the hypothesis 
of ‘fixed’ differences among individuals (Cam et al. 2002, 
Link and Barker 2009, Bergeron et al. 2010, Hawkes 2010, 
Aubry et al. 2011). However, the debate is more subtle than 
just ‘fixed’ versus ‘dynamic’ heterogeneity. Indeed, Steiner 
et al. (2010) and Orzack et al. (2011) acknowledged the 
relevance of some fixed differences among individuals, like 
sex-specific differences in survival for example, or differences 
according to age of first breeding. 2) The debate also involves 
observable vs unobservable sources of variation in life  
history traits among individuals. The dynamics of ‘observ-
able states’ contrasts with the ‘underlying’, ‘latent’ nature of  
differences among individuals invoked in several papers 
(Cam et al. 2002, Link et al. 2002a, Hawkes 2010, Aubry 
et al. 2011). That is, the debate focuses on the relative  
contribution of observable state dynamics and ‘fixed latent’ 
biological heterogeneity among individuals to the diversity 
of observed life histories.

In reality, both ‘fixed’ underlying differences among  
individual fitness components and the stochastic outcome  
of state-specific probabilities governing state transition, 
survival and reproductive success are expected to generate 
a diversity of life histories in populations, but the underly-
ing processes are clearly different, and the degree to which  
they contribute to life history diversity may differ as  
well (Tuljapurkar et al. 2009, Caswell 2011, Steiner and  
Tuljapurkar 2012). Life history states such as breeding  
activity and success can be directly observed by investigators, 
and the way vital rates vary according to state or covariates 
(e.g. sex) can be estimated without assuming unobservable 
differences among individuals, but ‘latent variation’ must 
necessarily be inferred using a statistical model (Link et al. 
2002a, Link and Barker 2009). In some situations inves-
tigators temporarily fail to contact animals during sam-
pling sessions, and true state cannot be directly observed.  
This observation error generates missing data and can be 
handled via capture–mark–recapture models incorporat-
ing the probability of detecting individuals (Lebreton  
et al. 2009), but must be distinguished from ‘underlying’ 
unobserved variation among individuals in vital rates (Aalen 
et al. 2008a).

The hypothesis of underlying differences among indi-
viduals is relevant to situations where all sources of varia-
tion in vital rates have not been identified. Although not 
a given, this assumption is commonly made in life history 
research using long-term data (Royle 2008, van de Pol  
and Wright 2009, Hawkes 2010, Gimenez and Choquet 
2010, Jones et al. 2010). Permanent underlying differ-
ences among individuals may arise from genetic differences,  
phenotypic plasticity across gradients of ontogenetic devel-
opmental conditions that have long-lasting effects on sur-
vival or reproduction as adults, or both (Cam et al. 2003). 
Moreover, consistent differences among habitats selected  
by individuals over life may also contribute to individual 
variation in demographic performance (Kendall et al. 2011). 
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In fields that commonly use time-to-event or failure-time 
models (human demography, epidemiology), unobserved 
variation across individuals is addressed by estimating a 
‘frailty’ term (Kannisto 1991, Banerjee et al. 2003, Jones 
et al. 2010). In ecology, mixed models with ‘random effects’ 
are used to estimate distributions of individual heteroge-
neity in fitness components not attributable to observable  
traits (van de Pol and Wright 2009). In longitudinal stud-
ies, the simplest models of this class are random inter-
cept models, where each individual is attributed a latent  
‘baseline’ values for vital rates (Lewis et al. 2006, Royle 
2008, Aubry et al. 2011, Gimenez and Choquet 2010, 
Marzolin et al. 2011), the other covariates (sex, age, etc.) 
adding their effects to the baseline individual values. This 
corresponds to the concept of ‘fixed heterogeneity’ (Link 
and Barker 2009, Bergeron et al. 2010). In practice,  
random effects (latent variables) in the statistical sense  
are used to account for unobserved fixed biological attri-
butes of individuals (Link and Barker 2009). This contrasts 
with fixed effects in the statistical sense, which are used to 
define the observable states behind dynamic heterogeneity 
(sensu Tuljapurkar et al. 2009).

Observed variation across individuals can be modeled  
using covariates and factors, their time-varying analogues, 
or with dynamic state models (e.g. Markov models). 
Unobserved variation can be modeled with random effects 
(Gelman and Hill 2007); and combinations of the different 
approaches are used as well (Cam et al. 2002, Aubry et al. 
2011, Orzack et al. 2011). The appropriate way to model 
variation in fitness components has been vigorously debated 
among those studying humans and captive animals (Service 
et al. 1998, Service 2000a, b, 2004, Drapeau et al. 2000),  
but the topic has received much less attention in ecology 
(but see Hawkes 2010, Steiner et al. 2010, Knape et al.  
2011, Orzack et al. 2011). Although the distinction  
between approaches designed for inference on fitness at the 
individual level seems to be innocuous and largely techni-
cal, there are major consequences in terms of 1) conceptual  
views of fitness (Link and Barker 2009; see Discussion),  
2) inference about population dynamics (Kendall et al. 
2011, Stover et al. 2012), 3) bias in marginal estimates 
depicting phenotypic patterns of variation in vital rates over 
life, especially senescence (Vaupel et al. 1979, Vaupel and 
Yashin 1985, Zens and Peart 2003), and interpretation of 
such patterns.

Here, we address whether the diversity of life history 
sequences across individuals in a kittiwake Rissa tridactyla 
population is better accounted for by 1) statistical models 
including observable covariates exclusively: age, year, age  
of first breeding, 2) their analogs including breeding  
state in the previous year (Markovian ‘trait dynamics’;  
Cam et al. 1998, where heterogeneity reflects stochastic  
outcomes of Markovian state transitions sensu Tuljapurkar 
et al. 2009, Steiner et al. 2010, Steiner and Tuljapurkar  
2012), or 3) the same models as in 1) and 2) but that  
also incorporate unobserved individual heterogeneity via 
random effects. Under the hypothesis of fixed differences 
in baseline vital rates among individuals, we expect mod-
els with individual random effects to perform better than 
models without them (Link et al. 2002b). We also address 
whether the probability of being in state s at time t 1 1 

depends on state r at time t (either because of tradeoffs 
between fitness components, or short-term positive corre-
lations between reproductive states). Under the hypothesis 
that the sequence of life history states in the data can be 
accounted for by a first-order Markov process (as opposed 
to the absence of a Markov process), we expected models 
including previous breeding state to perform better than 
models without it (Steiner et al. 2010). Our hypotheses  
are not mutually exclusive: models accounting for both  
features may perform better than either single-feature  
model. Depending on results concerning the individual  
random effects, our third objective is to elucidate the influ-
ence of unobserved fixed heterogeneity on conclusions 
about age-related changes in fitness components by com-
paring parameter estimates (especially the slopes for age 
effects) between models with and without individual ran-
dom effects (Aalen et al. 2008a).

Methods

Data from kittiwakes Rissa tridactyla were collected in  
Brittany (France) from 1987 to 2008. Birds were marked as 
chicks with unique combinations of colored plastic bands, 
plus a metal leg band. We excluded the very first years of  
the study (1979–1986) for two reasons: 1) the criteria to 
assign breeding state to individuals were progressively  
developed at the beginning, 2) and we wanted to include 
first-time breeders of different ages in most of the years 
retained for analysis, which was impossible for the earliest 
years. Data from the pre-breeding period were excluded. 
Recapture probability is virtually equal to one once birds 
recruit to the breeding population (Cam et al. 1998, 2005), 
which allows identification of the first breeding event  
and determination of age at first breeding (‘afr’). This also 
allows identification of the year of death (or of perma-
nent emigration out of the study area; Cam et al. 2005).  
Breeding states were defined as follows. Breeding activ-
ity (breeding/nonbreeding) was recorded every year; non-
breeders are individuals known to be alive in year t, to have  
bred in the past, but not breeding in year t. Individuals 
bred successfully if they raised at least one chick to inde-
pendence; breeding success was defined for birds that 
attempted to breed (i.e. nonbreeding was not considered as  
breeding failure). We considered the states ‘success’ and 
‘failure’ in breeders, but not separate states for the ‘num-
ber of chicks fledged’ in successful breeders. ‘Fixed’ differ-
ences among individuals imply ‘consistency’ in breeding 
state throughout life (e.g. a successful individual has a 
higher probability of breeding successfully in the follow-
ing year(s) than an unsuccessful bird, and these respective 
probabilities are always higher for some birds than others,  
year after year). Assessing the hypothesis of fixed differ-
ences in the number of chicks fledged due to intrinsic  
individual features will require additional work, and prob-
ably the selection of a subset of data because of the large 
number of stochastic external drivers of failure from laying 
to fledging (up to 70 days, Cam et al. 2003). Last, to avoid 
issues with small sample size when stratifying the data set 
according to observable covariates, we defined five classes of 
age at first breeding (‘afr’): 2 and 3 years old, 4, 5 or 6 years 
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random effects on survival, breeding and success probabil-
ity, respectively. ρ stands for the correlation between two  
random effects specified as subscripts. That is, we consid-
ered correlated individual random effects (e.g. individu-
als with a high underlying survival probability might also  
have a high probability of breeding, and if they do breed, 
a high probability of producing viable offspring). We  
only considered random-intercept models (i.e. fixed hier-
archy among individuals); random intercept and slope  
models (Gelman and Hill 2007, van de Pol and Wright 
2009) are beyond the scope of this paper.

2) Males and females
We addressed our two main hypotheses (individual ran-
dom effects and effects of previous breeding state) using  
data from males and females separately. Birds were sexed 
through behavior and sex wasn’t necessarily known before 
recruitment. Extra-pair paternity has been shown to be  
low in the study population (Helfenstein et al. 2004). Data 
from occasions where sex was unknown were excluded.  
Sex was not assigned retrospectively to avoid overestimat-
ing survival of one sex over the other if survival is sex- 
specific before age at sexing. We retained data from all 
location-years. In this population, we have no reason to 
assume that there is a relationship between mortality causes 
in members of a pair (e.g. a particularly high degree of  
age similarity in members of pairs, or pairs reunited dur-
ing winter migration, etc.). In addition, nonbreeding is 
usually associated with divorce and the previous mate often  
breeds in the year following divorce. Conversely, both  
members of the pair necessarily share identical breeding  
success as long as they form a pair and breed. This lack of 
independence of observations for one of the random vari-
ables may lead to overestimation of the corresponding indi-
vidual effect because consistency in success (if any) would 
appear to concern two individuals when only one observa-
tion unit (the pair) is concerned. Data from 885 females 
(3592 alive/dead events, 2950 breeding/nonbreeding 
events, 2492 success/failure events) and 1041 males (4206 
alive/dead events, 3422 breeding/nonbreeding events, and 
3011 success/failure events) were used. Note that for males 
the full model raised estimation issues that led us to start 
with a model without the interaction between age and age 
of first breeding for breeding probability (i.e. without age   
afr in Eq. 1).

3) Subset of data from ‘favorable’ local environmental 
conditions
We expected breeding state to depend on environmental 
conditions. Specifically, some colonies repeatedly expe-
rienced massive predation on eggs by corvids (Corvus  
corax, Corvus corone), inevitably leading to breeding fail-
ure. Massive dispersal to other colonies within the study  
area was observed in subsequent years (Cam et al. 2004).  

old, and 7 and older (Cam et al. 2005). Two-year old first  
time breeders were too few to form a separate group, as  
well as first time breeders older than 7 years old. Similarly,  
we pooled together individuals aged 18 years old or more. 
We acknowledge that such pooling may have conse-
quences for results, but our priority was to test a set of a  
priori hypotheses, not to account for all possible variations 
in late-life fitness components.

Approach to modeling

1) Complete data set
We modeled survival (ϕ), breeding (b) and reproductive  
success (g) probabilities as functions of age (linear or  
quadratic effects), age at first reproduction (‘afr’, a 5-level 
factor), year (random effect), and the interaction of ‘afr’  
and age. We included breeding state in the previous year 
(‘pbs’, a 3-level factor: nonbreeder, failed breeder, successful 
breeder) and correlated individual random effects (a terms 
in Eq. 1) in the most general model. Incorporation of  
previous breeding state in the model necessarily implied that 
only observations from breeding occasion 2 and onward 
for the individual are considered as outcomes of random 
variables. Previous breeding activity on occasion 1 for  
each individual was necessarily ‘breeder’, with modalities 
‘success’ or ‘failure’. We compared models where the prob-
ability of being in state s at time t 1 1 depends on previ-
ous state r at time t with models where it does not (without 
Markovian state dependence). Year (22 levels) was treated  
as a random effect, because we had no a priori reason to 
expect any specific pattern or trend in demographic para-
meters over time, but wanted to control for the temporal  
variability in each vital rate driven by environmental condi-
tions. Data from 1971 individuals were used (7893 alive/
dead events, 6425 breeding/nonbreeding events, and 5541 
success/failure events).
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Here, fϕ(.), fb(.) and fg(.) are functions of age (linear or  
quadratic), gϕ(.), gb(.) and gg(.) are functions of the ‘afr’ 
(factor), hϕ(.), hb(.) and hg(.) are functions of the previous 
breeding state, hϕ(.), hb(.) and hg(.) stand for the interaction 
between ‘afr’ and age, kϕ(.), kb(.) and kg(.) are year effects 
(independent normal random effects), and aϕ(.), ab(.) and 
ag(.) are individual random effects. We used a trivariate 
normal distribution with mean 0 and a variance-covariance 
matrix Σ for individual random effects,
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Rubin 1992). We used the R (R Development Core Team) 
package CODA (Plummer et al. 2006) to analyze results.

Model selection was performed using the deviance infor-
mation criterion ‘DIC’ (Spiegelhalter et al. 2002, Barnett 
et al. 2010). Smaller DIC values indicate that a model  
better approximates the biological processes that gener-
ated the data relative to other models. We also provided 
DIC weights (Stauffer 2008) to facilitate assessment of the 
importance of DIC differences among models in the set 
considered. Weights always range between 0 and 1; models 
with smaller DIC values have larger DIC weights. Weights 
provide an index of ‘relative plausibility’ of the models in 
the set considered (Cooch and White 2012). However, 
information criteria may tend to favor complex mod-
els with random effects (Plummer 2008). Consequently,  
we also used an alternative approach, based on ‘inclusion 
variables’ (O’Hara and Sillanpää 2009), to estimate the  
posterior probability of including individual random  
effects (see Supplementary material Appendix A1 for addi-
tional information). Inclusion variables are indicator vari-
ables that have a specified prior probability (p throughout 
this paper) and are associated with random effects. A prior 
probability of 0.50 corresponds to a situation where inves-
tigators do not favor any hypotheses a priori: an individual 
random effect may, or may not be relevant for the data  
set considered, with equal probability. Given prior prob-
abilities, posterior probabilities of inclusion variables are  
interpreted in terms of degree of support for the hypothesis 
that the random effect is relevant to describe the variation 
in the data. Technical details for the analysis of correlated 
random effects using the inclusion variable approach are 
presented in Supplementary material Appendix A1.

Estimating model parameters in the way specified above 
(number of samples and chains, etc.) was time-consuming: 
from 2 to 8 days per model on average (sometimes more)  
on a PC running Windows, 3.06 GHz, 4 GB Ram using 
OpenBUGS. Because of the very large number of possible 
models and the time needed to estimate the parameters 
of each model, it was unrealistic to build all possible sim-
plifications of the most general model. Consequently, we  
performed model selection in a sequential manner. Our 
main interest was in hypotheses concerning the role of  
previous breeding activity and success, individual random 
effects and the correlations among them. We first built  
models to address these hypotheses, and selected the model 
with the lowest DIC from that step and proceeded while 
keeping its structure. We also addressed hypotheses about 
covariates such as age and age of first breeding. We worked 
using the same covariates for the 3 random variables simul-
taneously, except in a few cases that were treated as post hoc 
hypotheses (i.e. not considered for DIC weights). More 
specifically, we addressed whether the functions of age  
were the same as in Link et al. (2002b); the current  
data set contains an additional six years compared to those 
used in the previous analysis. In addition, we considered 
models with and without individual random effects at  
different steps of the selection process: at the beginning  
and also using simpler models selected using DIC. The need 
for these random effects was assessed using DIC and inclu-
sion variables.

This may create consistency in failure during the individu-
al’s life, e.g. repeated predation at the egg stage in the same 
location, then a dispersal event and the associated costs 
of dispersal. Because of identified causes of breeding fail-
ure and temporal autocorrelation in some of these causes 
(Danchin et al. 1998), individual consistency in the prob-
ability of breeding successfully may reflect environmental 
factors. Concerning breeding probability, some nonbreed-
ers establish in a specific location but many do not (Cam  
et al. 2004). Consequently, they are not subjected to  
local environmental factors specific to breeding locations 
(feeding areas are likely the same for individuals from all 
the colonies considered here; Danchin et al. 1998), and 
differences in the level of consistency in breeding prob-
ability during their life are unlikely to reflect consistency in  
external conditions experienced by individuals. Local con-
ditions (e.g. repeated predation on eggs) are more likely  
to create consistency in reproductive success than in the 
probability of deciding to breed during the individual’s life. 
We therefore performed an analysis using data collected 
under ‘favorable’ local conditions excluding cases of obvious 
external cause of breeding failure between 1987 and 2008. 
Models with individual random effects may be selected 
using the complete data set, but not using the smaller one  
if individual random effects exclusively reflect external  
influences on reproduction and survival (as opposed to 
latent individual potential). Because of difficulties in  
quantifying massive predation events at the egg stage 
accurately in this retrospective study, results of this subset  
of analyses are reported in the Supplementary material 
Appendix A6.

Missing data

Data were assumed to be missing at random (Lu and Copas 
2004) when breeding success was unknown in a given  
occasion for an individual. The ‘missing at random’ assump-
tion means that gaps in longitudinal data are positioned  
at random with regards to age for example (e.g. data selec-
tion did not create left- or right-censoring with a higher 
probability than other patterns). In the same vein, in ana-
lyses excluding obvious cases of massive predation at the  
egg stage (Supplementary material Appendix A6), observa-
tions used for analyses did not correspond to consecutive 
years in some individual histories. High predation at the  
egg stage in the location led to exclusion of some location-
years. We assumed that the data selection process did not 
create any specific exclusion pattern.

Estimation and model selection

We used a Bayesian approach to estimate model param-
eters. Analyses were conducted using Markov chain Monte  
Carlo (MCMC) simulations in the software program  
OpenBUGS (Lunn et al. 2009; see Supplementary  
material Appendix A1 for more details about the Methods; 
BUGS codes can be found in the Supplementary material 
Appendix A7). We ran three chains with different sets of 
initial values. Convergence was checked using the Brooks– 
Gelman–Rubin diagnostic R^ for each model (Gelman and 
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the model without the quadratic effect of age was larger 
(0.67) than the weight of the model including this  
effect (0.33). Our data did not allow definitive conclusions 
concerning the form of the relationship between fitness  
components and age. We chose the simplest model because 
the support for the quadratic effects of age was not large.

We used inclusion variables with the model with the  
largest DIC weight (Model 9, Table 1) to re-address the 
hypothesis of differences in fitness components among indi-
viduals (Supplementary material Appendix A2). Posterior 
probabilities of including individual random effects were 
large and results were insensitive to prior probability of 
including individual effects.

We also addressed some post hoc hypotheses about the 
quadratic effect of age on each fitness component separately. 
Model without age2 on survival probability: DIC  18814.1 
(effective number of parameters  1477.8); model without 
age2 on breeding probability: DIC  18853.7 (effective  
number of parameters  1388.7); model without age2 on 
success probability: DIC  18841.1 (effective number of 
parameters  1378.0). These DIC values were compared 
to 18830.6 (Model 9, Table 1; ΔDIC  DIC9 2 DICi): 
ΔDIC  16.5, 223.1, and 210.5, respectively. These 
results provided evidence that the quadratic effect of age 
wasn’t necessary to account for variation in survival in our 
data, but that it was for breeding and success probabil-
ity. We used the model with DIC  18814.1 and assessed  
the year effect again; model without year effect: DIC   
19326.0 (effective number of parameters  1297.9; ΔDIC: 
18814.1 2 19326.0  2511.9). We thus retained ‘year’ in 
subsequent analyses.

Concerning sensitivity analyses, results for survival  
probability were sensitive to the parameters of the prior 
distribution placed on the variance–covariance matrix of 
individual random effects, but sensitivities were small for 
breeding and success probability (Supplementary material 
Appendix A3).

Estimates from the model that received the largest 
support

Estimates made under the model without the quadratic 
effect of age on survival are reported in Table 2; they  
were obtained by performing the analyses a second time 
while discarding 9 samples out of 10 to reduce autocorre-
lation in the Markov chains. Survival probability decreased 
with age in all groups after recruitment (initial survival dif-
fered according to recruitment age), whereas probabilities  
of breeding and reproductive success increased with age  
(Fig. 1, Supplementary material Appendix A4). The rate 
of increase in breeding probability was initially substantial  
but slowed down with age. Estimates of fitness components 
and 95% credible intervals of the coefficients correspond-
ing to the different ages of first breeding suggested that the  
5 classes are not necessarily different (Table 2): post hoc  
contrasts would be needed to precisely assess such differ-
ences. In addition, the estimated covariance between sur-
vival and individual breeding probability on the one hand,  
and between breeding and success probability at the  
individual level on the other hand, were positive (their  
95% credible interval excluded 0; Table 2). The covariance 

Sensitivity analyses

The Bayesian approach is characterized by the use of 
‘prior’ distributions for parameters, which summarize what  
investigators know about parameters before data are col-
lected, or what they believe. For example, for the slope 
of the age effect on survival, one may consider a normal  
prior distribution centered on 0, with a very large variance. 
Such a prior distribution reflects the fact that investigators 
do not favor positive or negative values for the linear and 
quadratic slopes, and consider that extreme values are less 
likely than values closer to 0. Because inference about fixed 
underlying heterogeneity among individuals is central to 
our study, we conducted sensitivity analyses to prior distri-
butions for the individual random effects (Supplementary 
material Appendix A1, A3). These analyses were performed 
using the lowest-DIC models.

Results

1) Complete data set

Based on DIC, models containing individual random  
effects were selected (Model 1 vs 2 and 1 vs 4, Table 1). The 
model with correlated individual random effects (Model 1) 
received larger support than the one with independent ran-
dom effects (Model 5). In addition, when using a prior prob-
ability of inclusion of all the random effects simultaneously  
(and correlations) in the general model (Model 1) of 0.50, 
our results supported inclusion of individual random effects 
and their correlations (Supplementary material Appendix 
A2). For survival and success probability, results were  
sensitive to prior probabilities of inclusion of the individ-
ual effect in the general model (Supplementary material 
Appendix A2). Mean posterior probabilities for the variables 
including the individual random effect on survival or repro-
ductive success probability decreased only when strongly 
penalizing these variables a priori (p  0.125 or 0.008).  
We are not aware of universally accepted rules concerning 
posterior probability thresholds above which the effects 
associated with inclusion variables would be systemati-
cally retained in models. Since all the mean posterior prob-
ability estimates of inclusion variables ranged between 0.79  
and 1.00 when using a prior inclusion probability of 0.50 
for the complete variance–covariance matrix Σ of individual 
random effects, we considered that this provided support  
for inclusion of the individual random effects in models.

The model with the lowest DIC (and largest DIC weight: 
0.67) included age, age of first breeding (‘afr’) and the  
interaction between them (Model 9, Table 1). We did not 
find evidence that the covariate ‘pbs’ (breeding state in the 
previous year) was needed in the model to account for the 
process that gave rise to our data (Model 3 vs 1). Based on 
DIC, the year random effect was selected (Model 11 vs 3). 
The model without a quadratic effect of age had a smaller 
DIC than the model including it (Model 9 vs 3, Table 1), 
but DIC values were close (18830.60 vs 18832.00). Here 
again, there is no universally accepted rule concerning what 
constitutes a noteworthy difference in information crite-
ria (Plummer 2008, Arnold 2010), but the DIC weight of  
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accounting for the variance among individuals (Table 3). 
Differences in intercepts between the models with and with-
out random effects were associated with differences in some 
estimates of changes in survival probability with age (e.g.  
a higher initial survival probability was associated with 
a lower rate of change in survival with age). Importantly,  
the linear component of the relationship between age and  
survival was negative when individual variation was 
accounted for (with random effects, Table 2), whereas it  
was positive when such variation was ignored (Table 3).

2) Males

Based on DIC, results from males concerning our main 
hypotheses (Markovian structure of the model and indi-
vidual random effects) were consistent with those obtained 
using the entire data set (Table 4). Concerning inclusion 
variables, with a prior probability of inclusion of corre-
lated random effects of 0.50, results provided evidence of  
individual random effects on breeding probability, but  
provided smaller support for the random effect on the  

between survival and the probability of breeding successfully  
was the smallest, and its credible interval included 0.  
The variance of the individual random effect on survival 
probability was the most difficult parameter to estimate. 
The autocorrelation in the chains (Supplementary mate-
rial Appendix A5), was larger than for all other parameters,  
but the estimate of the Brooks–Gelman–Rubin diagnostic  
R^ stabilized around 1.

Estimates from a model without individual random 
effects

We compared estimates of fixed effects from the model 
accounting for individual heterogeneity (Table 2) with  
those from a model without heterogeneity (all other things 
being equal; Table 3). There were notable differences 
between estimates of intercepts and effects of age on sur-
vival made under the two models. In the random-intercept 
model (Table 2), the mean individual had lower survival and 
breeding probabilities and a higher probability of breeding 
successfully than the population mean obtained without 

Table 1. Model selection for survival, breeding, and success probability: inference about age, age of first breeding, year, previous breeding 
activity and success, and random individual effects. Complete data set.

Model Trait Age Age2 Afr Afr  Age Pbs Year RE Ind RE Corr DIC ENP w

1* ϕ yes yes yes yes yes yes yes yes 18871.0 937.20 0.00
b yes yes yes yes yes yes yes yes
g yes yes yes yes yes yes yes yes

2 ϕ yes yes yes yes yes yes no NA 19017.4 95.00 0.00
b yes yes yes yes yes yes no NA
g yes yes yes yes yes yes no NA

3 ϕ yes yes yes yes no yes yes yes 18832.0 1362.8 0.33
b yes yes yes yes no yes yes yes
g yes yes yes yes no yes yes yes

4 ϕ yes yes yes yes no yes no NA 19673.1 89.0 0.00
b yes yes yes yes no yes no NA
g yes yes yes yes no yes no NA

5 ϕ yes yes yes yes yes yes yes no 18920.2 720.6 0.00
b yes yes yes yes yes yes yes no
g yes yes yes yes yes yes yes no

6 ϕ yes yes yes no no yes yes yes 18850.0 1313.0 0.00
b yes yes yes no no yes yes yes
g yes yes yes no no yes yes yes

7 ϕ yes yes no no no yes yes yes 18852.0 1267.0 0.00
b yes yes no no no yes yes yes
g yes yes no no no yes yes yes

8 ϕ yes yes yes yes no yes yes no 18960.5 1273.5 0.00
b yes yes yes yes no yes yes no
g yes yes yes yes no yes yes no

9* ϕ yes no yes yes no yes yes yes 18830.6 1520.8 0.67
b yes no yes yes no yes yes yes
g yes no yes yes no yes yes yes

10 ϕ yes no yes no no yes yes yes 18882.9 1428.1 0.00
b yes no yes no no yes yes yes
g yes no yes no no yes yes yes

11 ϕ yes yes yes no no no yes yes 19329.9 1290.2 0.00
b yes yes yes no no no yes yes
g yes yes yes no no no yes yes

RE: random effect. Ind RE: individual random effect. Corr: correlation between individual random effects. DIC: deviance information  
criterion. ENP: effective number of parameters. w: deviance information criterion weight. ϕ  survival probability. b  breeding probability. 
g  probability of raising at least one chick to independence given that the individual attempted to breed. Age2  quadratic effect of age  
on survival, breeding, and success probability. Afr  age of first breeding. Pbs  previous breeding activity and success. In bold: lowest- 
DIC models. *Models used with inclusion variables (Chen and Dunson 2003).
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probability of breeding successfully and survival (Supple-
mentary material Appendix A2).

Females

The DIC values of models with individual random effects 
were lower than those of models without heterogene-
ity (Table 4), which is consistent with the results obtained  
using the full data set. As for males, inclusion variables 
(prior probability of 0.50 for the entire variance–covariance  
matrix of random effects) provided evidence of the need  
for individual random effects on breeding probability  
(Supplementary material Appendix A2). Based on mean 
posterior probability of indicator variables, there was greater 

Table 2. Estimates of coefficients and variance-covariance matrix of individual random effects of the best performing model (complete  
data set).

Life history trait Standard deviation

Quantiles

Covariate Mean Median 0.025 0.975

Intercept ϕ 1.3700 0.1507 1.3810 1.0400 1.6349
b 2.8350 0.2268 2.832 2.3940 3.2870
g 0.1873 0.1409 0.1876 20.0900 0.4643

Age ϕ 20.06600 0.0488 20.0558 20.1842 0.0012
b 0.3286 0.0400 0.3281 0.2518 0.4084
g 0.1068 0.0227 0.1068 0.0624 0.1516

Age2 b 20.0257 0.0045 20.0257 20.0346 20.0167
g 20.0257 0.0045 20.0103 20.0157 20.0049

Age of first 
breeding

4 ϕ 0.0427 0.1017 0.0376 20.1423 0.2593
5 ϕ 0.0241 0.1349 0.0134 20.2116 0.3233
6 ϕ 0.0793 0.2047 0.06242 0.2759 0.5368

  6 ϕ 0.5858 0.4214 0.5587 20.1657 1.4950
4 b 0.0119 0.1724 0.0126 20.3282 0.3466
5 b 20.0736 0.2039 20.0747 20.4709 0.3267
6 b 20.6190 0.2786 20.6197 21.1640 20.0688

  6 b 20.8558 0.5433 20.8637 21.898 0.2312
4 g 20.1033 0.1029 20.1033 20.3046 0.0991
5 g 20.1987 0.1231 20.1988 20.4403 0.0432
6 g 0.0067 0.1837 0.0054 20.3506 0.0432

  6 g 20.6584 0.3571 20.6570 21.3620 0.3683
Interaction 4 ϕ 20.0266 0.0267 0.0263 20.0800 0.0247

5 ϕ 20.0419 0.0354 20.0415 20.1138 0.0257
6 ϕ 0.0051 0.0509 0.0051 20.0949 0.1053

  6 ϕ 20.0529 0.0816 20.0534 20.2127 0.1077
4 b 20.1166 0.04943 0.1160 20.2154 0.0019
5 b 20.2180 0.0616 20.2175 20.3401 20.0986
6 b 20.2109 0.0786 20.2107 20.3658 20.0588

  6 b 20.0528 0.1277 20.0532 20.3022 0.1997
4 g 20.0372 0.0268 20.0372 20.0899 0.0152
5 g 20.0843 0.0359 20.0844 20.1548 20.0141
6 g 0.0220 0.0555 0.0219 20.0869 0.1315

  6 g 0.1254 0.0851 0.1249 20.0398 0.2947
SD ϕ 0.7121 0.2639 0.6456 0.3666 1.3570
SD b 1.4700 0.0927 1.4690 1.2930 1.6570
SD g 0.8997 0.0597 0.8989 0.7858 1.019
Cov (ϕ,b) 0.3994 0.1356 0.3891 0.1607 0.6955
Cov (ϕ,g) 0.1376 0.08435 0.1336 20.0166 0.3149
Cov (b,g) 0.8752 0.1224 0.8719 0.6439 1.1240

Year effects SD ϕ 0.42894 0.0814 0.4191 0.2985 0.6162
SD b 0.6692 0.1215 0.6549 0.4737 0.6162
SD g 0.4448 0.0829 0.4350 0.3110 0.6354

ϕ  survival probability. b  breeding probability. g  probability of raising at least one chick to independence given that the individual 
attempted to breed. Age2  quadratic effect of age on breeding and success probability. SD  standard deviation. Cov (X, Y)  covariance 
between variables X and Y. Burn-in  5000, 1 every 6 samples retained for inferences, total number of samples  50 000.

support for inclusion of the individual random effects  
on reproductive success and survival probabilities than in 
males. The results were nevertheless slightly different in 
females for the fixed effects corresponding to one of our main 
hypotheses (Table 4). The models with and without previous 
breeding state had very similar DIC values (8633.3 versus 
8634.0) suggesting that our data did not allow definitive 
conclusions concerning Markovian processes in this sex.

3) Subset of data from ‘favorable’ local 
environmental conditions

Results differed when data from massive predation periods 
were excluded (Supplementary material Appendix A6).  
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Figure 1. (a) Relationship between age, age of first breeding  
and survival probability. Line without symbol: age of first breeding  
 3. Stars: age of first breeding  4. Dashed line: age of first  
breeding  5. Circles: age of first breeding  6. Squares: age of  
first breeding  7. (b) Relationship between age, age of first  
breeding and breeding probability. Line without symbol: age of  
first breeding  3. Stars: age of first breeding  4. Dashed line: age 
of first breeding  5. Circles: age of first breeding  6. Squares: age 
of first breeding  7. (c) Relationship between age, age of first 
breeding and probability of reproductive success. Line without 
symbol: age of first breeding  3. Stars: age of first breeding   
4. Dashed line: age of first breeding  5. Circles: age of first  
breeding  6. Squares: age of first breeding  7.

Even with prior values of 0.50 for inclusion variables, pos-
terior probabilities indicated that the hypothesis of het-
erogeneity in individual success probability received small  
support. Based on DIC, the correlations between individual 
random effects were not selected in this case.

Discussion

Which model best accounts for observed variation  
in individual life histories?

Individual random effects
Our results provided evidence that there are differences in 
baseline survival, breeding and success probability among 
individuals in this population when using the complete  
data set (model selection based on deviance information 
criterion; Spiegelhalter et al. 2002). There was a positive  
estimated covariance between survival and breeding prob-
ability at the individual level (the higher the breeding  
probability, the higher the survival probability), as well as 
between breeding and reproductive success probability.  
With indicator variables to assess posterior probabilities 
that individual random effects help describe variation in  
the data, we obtained consistent results when considering 
a prior probability of inclusion of the variance–covariance 
matrix of individual random effect of 0.50 (i.e. when the 
hypotheses of homogeneity and heterogeneity had equal 
prior probabilities). Previous longitudinal studies of vital 
rates in wild vertebrates have usually considered prior prob-
abilities of inclusion of 0.50 (Royle 2008). Results dif-
fered when data from massive predation on eggs periods  
were excluded. The hypothesis of heterogeneity in success 
probability among individuals received small support, and 
correlations between individual random effects were not 
selected. This suggests that part of the heterogeneity in the 
probability of breeding successfully among individuals in 
the complete data set results from contrasted environmen-
tal conditions experienced by individuals and differences  
in behavioral responses according to the conditions (e.g.  
dispersal and divorce Cam et al. 2004, Supplementary  
material Appendix A6).

Previous breeding state (first-order Markov process)
With the complete data set, we did not find evidence 
that survival probability from time t to t 1 1, or breeding  
and reproductive success probability at time t 1 1 depended 
on breeding activity and success in year t. Results were  
more ambiguous when analyzing data from females sepa-
rately: models with and without previous breeding state 
obtained virtually equal support, which suggested that  
our data do not allow definitive conclusions for Markovian 
processes in females. This may seem at odds with previ-
ous work on this data set using multistate capture–mark– 
recapture models (Lebreton et al. 2009) based on two 
reproductive states (Cam et al. 1998). Specifically, in previ-
ous work, there was unambiguous evidence of an influence  
of previous state on both survival and future breeding  
probability (Cam et al. 1998). The multistate model in  
question also accounted for yearly variation in both survival 
and breeding probability, but differences in baseline vital 
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rates among individuals were not considered. Elsewhere,  
age-related variation in both survival and breeding prob-
ability has been addressed in the kittiwake using random  
effects models (Cam et al. 2002, Link et al. 2002a, b,  
Wintrebert et al. 2005), but the Markovian process was 
not considered. In contrast to Markovian state dynamics,  
these papers considered current breeding state, but not 
state in the previous year, and fitness components were not 
state-specific. Thus, when considering previous results, it is 
important to recognize that none of those papers considered  
all hypotheses simultaneously as was done in the work  
presented here. Importantly, if we had not considered  
individual random effects at all, such as in Cam et al. (1998) 
and Steiner et al. (2010), the model including previous 
breeding state would have been selected with the complete 
data set (DIC  19017.4 vs 19673.1).

Moreover, in the current analyses, incorporation of 
heterogeneity among individuals in a first-order Markov  
model did not result in detection of any negative relation-
ship between current and future reproduction, or between 
previous reproduction and survival. In females, where  

models with and without previous breeding state received 
virtually equal support, nonbreeders had the lowest prob-
ability of breeding in the following year compared to failed 
and successful breeders. Results were similar for success 
probability (results not shown). Conversely, nonbreeders 
and failed breeders had equal survival probability, which  
was lower than that of successful breeders. Assuming that 
there are short-term tradeoffs between fitness compo-
nents within individuals, they remained undetected at the  
phenotypic level in this observational study.

Inference about age effects
As in Cam et al. (2002) and Link et al. (2002b), our  
current results confirmed that inference about variation in 
survival with age differs according to whether the model 
is individual-specific, or not (see also Knape et al. 2011),  
and that the intercept of the mixed model (mean individ-
ual) differs from that of the fixed-effects model (popula-
tion mean). There is a major difference between inference 
based on the individual-specific mixed model and the fixed 
effect model: a decline in survival with age with the former, 

Table 3. Estimates of coefficients of a modified version of the best performing model: without individual random effects (complete data set).

Quantiles

Covariate Life history trait Mean Standard deviation Median 0.025 0.975

Intercept ϕ 1.5250 0.1062 1.5250 1.3160 1.7360
b 2.4930 0.1648 2.4910 2.1720 2.8190
g 0.3342 0.1055 0.3340 0.1277 0.5434

Age ϕ 0.0033 0.0176 0.0031 20.0310 0.0382
b 0.3252 0.0315 0.3245 0.2653 0.3889
g 0.0943 0.0176 0.0943 0.0600 0.1292

Age2 b 20.0218 0.0038 20.0219 20.0293 20.0431
g 20.0105 0.0024 20.0105 20.0152 20.0058

Age of first 
breeding

4 ϕ 20.0223 0.0731 20.0213 20.1409 0.2671
5 ϕ 20.1057 0.0892 20.1057 20.2804 0.0689
6 ϕ 20.1159 0.1392 20.1169 20.3847 0.1597

  6 ϕ 0.2560 0.3237 0.2492 20.3608 0.9121
4 b 20.0551 0.115 20.0537 20.2850 0.1676
5 b 20.2564 0.1341 20.2564 20.5199 0.0068
6 b 20.6726 0.1885 20.6735 21.0400 20.2995

  6 b 20.9553 0.3862 20.9644 21.6860 20.1698
4 g 20.0943 0.0692 20.0944 20.2299 0.04182
5 g 20.2153 0.0856 20.2154 20.3830 20.0471
6 g 20.0606 0.1369 20.0612 20.3291 0.2099

  6 g 20.5568 0.2844 20.5567 21.1140 20.0013
Interaction 4 ϕ 20.0177 0.0228 20.0175 20.0626 0.0268

5 ϕ 20.0245 0.0295 20.0246 20.0821 0.0034
6 ϕ 0.0123 0.0453 0.0119 20.0756 0.1022

  6 ϕ 20.0504 0.0738 20.0511 20.1922 0.0949
4 b 20.0870 0.04947 20.0834 20.1686 20.0093
5 b 20.1621 0.0490 20.1616 20.2597 20.0675
6 b 20.1658 0.0652 20.1658 20.2887 20.0438

  6 b 20.0558 0.0987 20.0569 20.2463 0.1404
4 g 20.0201 0.0214 20.0200 0.0622 0.0217
5 g 20.0601 0.0288 20.0599 20.1167 20.0038
6 g 0.0350 0.0464 0.0348 20.0549 0.1266

  6 g 0.1152 0.0719 0.1146 20.0237 0.2580
Year effects SD ϕ 0.4055 0.0744 0.2851 0.3969 0.5754

SD b 0.5688 0.1029 0.5565 0.4042 0.8043
SD g 0.3872 0.0721 0.3786 0.2705 0.5518

ϕ  survival probability. b  breeding probability. g  probability of raising at least one chick to independence given that the individual  
attempted to breed. Age2  quadratic effect of age on breeding and success probability. SD  standard deviation.
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frailty’ of the statistical, medical and economical literature 
(Yue and Chan 1997, Pennel and Dunson 2005), which 
corresponds to models with individual-specific parameters  
(unobserved heterogeneity) that change over life. 3) Alter-
natively, variation among individual life histories can  
be accounted for by models incorporating unobserved  
heterogeneity among individuals where the baseline indi-
vidual vital rate doesn’t change after birth or recruitment 
(depending on the type of data used): fixed heterogeneity 
(Link and Barker 2009). This approach is analogous to 
classical ‘frailty’ continuous-time mortality models in one 
respect: that the hierarchy in unobserved mortality risk 
among individuals is fixed (Aalen et al. 2008a, b). 4) Last, 
random-intercept and slope models have been considered  
in life history studies (van de Pol and Wright 2009,  
Martin et al. 2011); they incorporate individual-specific 
fixed underlying baseline vital rates and fixed individual-
specific rate of change in vital rates over life. These mod-
els may lead to changes in the hierarchy among individual  
vital rates in survivors when individuals get older, but  
they still imply fixed individual underlying features (slope 
and intercept). In this paper, we considered 1), 3) and a 
combination of the two views.

Contrasted approaches to draw inferences about ‘fixed, 
underlying’ heterogeneity in vital rates
Steiner et al. (2010) hypothesized that fixed underlying het-
erogeneity (i.e. individual random effects) will be detected  

but no such decline with the latter. This is consistent with 
hypotheses considered in human demography (Vaupel et al.  
1979, Aalen et al. 2008a). More complex models may  
better account for the finer details in age-specific patterns  
of variation in fitness components, but we leave this topic 
for future work. 

Where does individual variation in life histories 
come from?

Different views of heterogeneity
The question of consequences of heterogeneity in wild  
animal populations for life history and population  
dynamics studies is currently receiving much attention 
(Bergeron et al. 2010, Wilson and Nussey 2010, Caswell  
2011, Kendall et al. 2011, Stover et al. 2012), but the  
controversies about the relevance of different models of 
heterogeneity will be fruitful only if the differences among 
views are clearly identified. Four conceptual views of het-
erogeneity can be distinguished. 1) Because survival, breed-
ing, and success events were accounted for by a first-order  
Markov process, Tuljapurkar et al. (2009) and Steiner  
et al. (2010) called the resulting heterogeneity among life  
histories ‘dynamic heterogeneity’: heterogeneity caused  
by the stochastic movement of individuals among homo-
geneous strata in a population stratified according to a small 
number of observable criteria. 2) This observable ‘dynamic 
heterogeneity’ should be distinguished from ‘dynamic 

Table 4. Model selection for survival, breeding, and success probability in males and females. Inferences about previous breeding state and 
individual effects.

Model Trait Age Age2 Afr Afr  Age Pbs Year RE Ind RE Corr DIC ENP w

Males
1* ϕ yes yes yes yes yes yes yes yes 9954.2 608.6 0.00

b yes yes yes yes yes yes yes yes
g yes yes yes yes yes yes yes yes

2 ϕ yes yes yes yes yes yes no NA 10036.5 87.6 0.00
b yes yes yes yes yes yes no NA
g yes yes yes yes yes yes no NA

3 ϕ yes yes yes yes no yes yes yes 9929.3 782.8 1.00
b yes yes yes yes no yes yes yes
g yes yes yes yes no yes yes yes

4 ϕ yes yes yes yes yes yes yes no 9977.7 609.8 0.00
b yes yes yes yes yes yes yes no
g yes yes yes yes yes yes yes no

Females
1* ϕ yes yes yes yes yes yes yes yes 8633.3 543.1 0.59

b yes yes yes yes yes yes yes yes
g yes yes yes yes yes yes yes yes

2 ϕ yes yes yes yes yes yes no NA 8720.5 86.2 0.00
b yes yes yes yes yes yes no NA
g yes yes yes yes yes yes no NA

3 ϕ yes yes yes yes no yes yes yes 8634.0 724.2 0.41
b yes yes yes yes no yes yes yes
g yes yes yes yes no yes yes yes

4 ϕ yes yes yes yes yes yes yes no 8666.0 507.9 0.00
b yes yes yes yes yes yes yes no
g yes yes yes yes yes yes yes no

RE: random effect. Ind RE: individual random effect. Corr: correlation between individual random effects. DIC: deviance information  
criterion. ENP: Effective number of parameters. w: deviance information criterion weight. ϕ  survival probability. b  breeding probability. 
g  probability of raising at least one chick to independence given that the individual attempted to breed. Age2  quadratic effect of age on 
survival, breeding probability, and success probability. Afr  age of first breeding. Pbs  previous breeding activity and success. In bold: 
lowest-DIc models. *Models used with inclusion variables (Chen and Dunson 2003).
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ability of different models to account for the processes that 
gave rise to a particular dataset (Burnham and Anderson 
2002), but all the models considered may be very distant 
from ‘truth’. Here, individual-specific models received larger 
support than others.

Limitations of inferences based on mixed models
The decision to model ‘latent’ (individual) effects is 
strongly influenced by habits and priorities specific to dif-
ferent research areas. It is extremely common in social and 
political sciences, public health, economics, education, 
psychometrics (Gelman and Hill 2007), where unobserved  
risk factors are routinely considered even if their ‘cause’  
or ‘origin’ remains unknown. The motivation for this 
approach is the inability of investigators to measure all the 
relevant variables in empirical studies to assess the ‘propen-
sity’ of individuals to express a given modality of a trait (e.g. 
mortality; Duffie et al. 2009), either for practical reasons 
(e.g. retrospective studies) or because current theoreti-
cal bases are not sufficiently advanced to consider a priori 
some factors as relevant. Surprisingly, ‘latent’ traits models 
are not so common in demographic studies of wild verte-
brates despite the complexity of the traits addressed (e.g. 
the probability of recruiting to the breeding segment of a 
population at a given age). This may be due to the classical 
limitations of data sets from wild vertebrates (we may con-
tact an individual only once or twice before recruitment). 
However, modeling such differences among individuals 
can be technically difficult. In human demography, not  
all classical hazard models accounting for ‘frailty’ can be 
estimated without restrictive assumptions (Yashin et al. 
2001, Aalen et al. 2008a, b). In all research areas using  
models for individual latent rates, there are a priori hypoth-
eses about the distribution of latent values that cannot 
necessarily be assessed because associated statistical theory 
hasn’t been developed yet, or because methods are still 
novel and actively debated. Model selection with random 
effects is currently an active area of research (Burnham  
and White 2002, Spiegelhalter et al. 2002, Celeux et al. 
2006, Plummer 2008, O’Hara and Sillanpää 2009). Several 
studies have shown that inferences about random effects 
based on the deviance information criterion are robust 
(Wilberg and Bence 2008, Barnett et al. 2010), but we  
lack tools to assess whether the conditions under which 
they are robust are met with a particular empirical data set. 
Development of statistical theory and techniques may lead 
us to update our inferences in the future.

Quantification of the degree of heterogeneity in 
simulation studies
Recently, Caswell (2011) developed a new simulation 
approach that quantifies the extent to which variability 
in lifetime reproductive output exceeds the baseline level 
created when a set of identical vital rates is applied to a 
cohort of individuals. This is an important step forward 
because 1) it could be used to help identify inconsistencies  
among conclusions drawn in different studies based on 
the same data (Cam et al. 2002, Link et al. 2002a, b, Link 
and Barker 2009, Steiner et al. 2010, this study), and  
2), it provides a framework for decomposing individual-
level variation in life histories into the selectively neutral 

even in the absence of differences among individuals if 
the Markovian state dynamics are not taken into account  
(Cam et al. 2002, Link et al. 2002b, Wintrebert et al.  
2005, Aubry et al. 2011), i.e. there will be ‘spurious sup-
port for the existence of latent traits’ (Steiner et al. 2010). 
This implies that the information in the data accounted 
for by individual random effects in models is confounded 
with the information accounted for by a first-order fixed-
effect Markov model of life history states. Here we addressed 
the combination of two features: the individual random 
effects and the first-order Markovian structure of transi-
tions between observable states in consecutive years. If dif-
ferences in baseline fitness components among individuals 
play an important part in determining the sequences of 
life history states in our dataset, and if previous breeding 
state does too, our full model with random intercepts and  
first-order Markov processes should have received better  
support. Rather, our results provided evidence that the 
sequences of life history states in individual histories of  
kittiwakes are better accounted for by random-intercept 
models where intercepts are individual-specific compared 
to first-order Markov models or a combination of the two 
features. We moreover did not find strong evidence that 
accounting for the Markovian dynamics is necessary for this 
data set.

Data from the same study population of kittiwakes 
breeding at Cap Sizun, France, have now been used in two 
very different ways to draw inferences about the hypothesis 
of unobserved heterogeneity among individuals. As in their 
other work (Tuljapurkar et al. 2009, Orzack et al. 2011, 
Steiner and Tuljapurkar 2012), Steiner et al. (2010) devel-
oped support for the ideas of dynamic heterogeneity and 
neutral generation of life history variation using numeri-
cal simulations. In contrast, we chose to estimate and com-
pare models accounting for different biological hypotheses 
using an inferential statistical framework designed to assess  
the degree of consistency of the models with our data  
(Burnham and Anderson 2002). Our motivation was two-
fold: 1) completely different underlying processes may lead 
to identical simulated patterns, a well-known problem 
when testing the neutral theory in community ecology for 
example (Chave 2004), 2) progress in statistical theory and 
methods have led to the development of ways to quantify 
differences between model parameterizations that reflect 
neutral versus non-neutral models (Jabot and Chave 2009, 
2011, Beaumont et al. 2010, Clark 2010). Historical limita-
tions of estimation methods have hampered assessment of 
complex hypotheses involving differences among individuals 
and species in community ecology (Jabot and Chave 2009, 
2011). Recent statistical techniques (Beaumont et al. 2010) 
have been used to estimate individual- and species-level 
models in community ecology, in an inference framework 
designed to assess several traditionally ‘alternative’ eco-
logical hypotheses (trait-based competition among species 
and neutral theory; Jabot and Chave 2009). Here, because  
the likelihood of models with individual effects can be 
defined and such models estimated, we chose an approach 
based on an information criterion (Burnham and Anderson 
2002) to draw inferences about heterogeneity among indi-
vidual vital rates. Information criteria do not allow infer-
ences in terms of ‘true model’: they quantify the relative 
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fitness at birth of such individuals isn’t necessarily null,  
but the realization of a sequence of a Bernoulli random  
variables governed by survival probability may result in 
immediate death at birth or independence (fledging,  
weaning) even if the expected value of survival is  0. The 
a priori fitness is a conceptual construct with biological  
bases (e.g. the potential associated with the genetic make-up 
of the individual, or ontogenetic development in stud-
ies starting at recruitment) and practical implications: it  
allows estimation and inference about the underlying  
distribution of individual fitness components and lifetime 
fitness in the population (Link and Barker 2009), a capa-
bility that has long been sought in quantitative genetics 
(Charlesworth 1994). The key point is that the observed  
life histories are considered as realizations of an individual- 
specific stochastic model whose form is explicitly defined  
and whose parameters can be estimated. Assuming that 
investigators manage to identify relevant measurable vari-
ables to replace all latent heterogeneity in fitness compo-
nents, investigators will likely face the problem of large 
degrees of stratification of the data unless a few known 
variables account for a large proportion of the heteroge-
neity (Cooch et al. 2002). Otherwise, scalar abstractions  
(also a conceptual construct) of multiple phenotypic traits 
are necessary (Wilson and Nussey 2010). In individual-
based models, the collection of individual values is explic-
itly modeled by simply estimating the ‘distribution’ of 
individual values (e.g. a variance among individuals). In the  
Bayesian framework, Link and Barker (2009) took a step 
further and assessed the population distribution of individ-
ual fitness values using hyperparameter estimates.

Conclusion

The inferential statistical framework based on individual- 
level models makes it possible to compare hypotheses per-
taining to the sources of individual-level variation in life 
histories and assess the corresponding evolutionary or 
ecological implications. This framework can also be used  
to address whether observable covariates account for dif-
ferences in fitness among individuals in a satisfactory man-
ner (proxies for ‘quality’; Bergeron et al. 2010, Wilson and 
Nussey 2010). It is moreover the basis of recent capture– 
mark–recapture developments to the ‘animal models’ used 
in quantitative genetics (Papaïx et al. 2010), where the  
use of latent individual traits has a long history (Moorad  
and Promislow 2011). Teasing apart the sources of indi-
vidual heterogeneity of fitness components could also have 
important implications for our understanding of popu-
lation dynamics and viability (Kendall et al. 2011, Stover 
et al. 2012), as well as coexistence amongst species in diverse  
communities (Clark 2010).
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and non-neutral components. To our knowledge, life history 
simulation studies have not yet used models that accom-
modate latent individual heterogeneity (e.g. with random 
effects). However, as shown here, estimates of fixed effects  
(e.g. age effects) may differ depending on whether or  
not individual random effects are considered. The differ-
ences between parameters that should be used to simulate 
data do not concern exclusively variance terms: coefficients 
associated with variations in the mean may also be relevant. 
The entries in transition matrices used in simulations are 
sensitive to the class of statistical models used to estimate 
vital rates. We see great potential for integrating models  
like ours into the simulation approach developed by  
Caswell (2011).

‘Latent fitness’ and fixed heterogeneity

Individual-level models in animal demography:  
historical context
The relevance of the simplest individual-specific mod-
els (random-intercept models), and of fixed underlying  
heterogeneity in general is currently debated in the evolu-
tionary ecology literature because of difficulties in identi-
fying measurable criteria associated with such differences  
in fitness (Wilson and Nussey 2010, Bergeron et al. 2010). 
Research aiming at quantifying these differences, assessing  
whether they are relevant to natural selection, and iden-
tifying traits whose evolution may depend on such dif-
ferences is central to evolutionary ecology (Wilson and  
Nussey 2010). However, it is important to note that the  
first studies of life histories that subsequently inspired  
the development of individual-specific models did not 
speculate on the relevance of heterogeneity to the ‘conse-
quences of natural selection’ (Fairbain and Reeve 2001). 
Several decades ago, Curio (1983) explicitly referred to 
the within-cohort phenotypic mortality selection hypoth-
esis (the ‘process of natural selection’; Fairbain and Reeve 
2001) to explain the increase in breeding performance  
with age observed in many bird species: ‘The first [expla-
nation] assumes that young birds of ‘bad quality’ both  
breed worse and then die earlier than those of superior 
quality’. Simultaneously, in human demography, a con-
ceptually similar process was suspected to explain some 
patterns of variation in mortality risk with age (Vaupel  
et al. 1979, Vaupel and Yashin 1985), within a different 
theoretical framework. The motivation to develop and 
implement individual-level statistical models in animal 
demography was the use of long-term longitudinal data  
sets in retrospective studies: measuring proxies of ‘quality’  
or ‘frailty’ was not an option, and the authors were inter-
ested in 1) patterns of age-related change over life in fitness 
components at the individual level, and 2) biases in infer-
ences about these patterns when ignoring heterogeneity.

Fitness as the realization of an individual-specific model
More fundamental are the implications of inferences at  
the individual level for conceptual views of fitness. To 
estimate fitness components and lifetime fitness, Link 
et al. (2002a) and Link and Barker (2009) advocated  
an approach where the vital rates are defined even if the 
individual dies immediately after birth; the a priori, ‘latent’ 
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