
Digging through model complexity: using hierarchical models to
uncover evolutionary processes in the wild

M. BUORO*†‡ , E . PRÉVOST‡§ & O. GIMENEZ*
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Abstract

The growing interest for studying questions in the wild requires acknowl-

edging that eco-evolutionary processes are complex, hierarchically struc-

tured and often partially observed or with measurement error. These issues

have long been ignored in evolutionary biology, which might have led to

flawed inference when addressing evolutionary questions. Hierarchical mod-

elling (HM) has been proposed as a generic statistical framework to deal

with complexity in ecological data and account for uncertainty. However, to

date, HM has seldom been used to investigate evolutionary mechanisms

possibly underlying observed patterns. Here, we contend the HM approach

offers a relevant approach for the study of eco-evolutionary processes in the

wild by confronting formal theories to empirical data through proper statisti-

cal inference. Studying eco-evolutionary processes requires considering the

complete and often complex life histories of organisms. We show how this

can be achieved by combining sequentially all life-history components and

all available sources of information through HM. We demonstrate how eco-

evolutionary processes may be poorly inferred or even missed without using

the full potential of HM. As a case study, we use the Atlantic salmon and

data on wild marked juveniles. We assess a reaction norm for migration and

two potential trade-offs for survival. Overall, HM has a great potential to

address evolutionary questions and investigate important processes that

could not previously be assessed in laboratory or short time-scale studies.

Introduction

Investigation of eco-evolutionary processes in the wild

is challenging due to their complex interactions as

well as the difficulty in collecting relevant data.

Addressing the interplay between life-history traits

and associated plasticity remains crucial though, to

understand the evolution of life histories, how their

variations influence population dynamics (Roff, 1992;

Proaktor et al., 2008) and to assess the ability of indi-

viduals to adapt to environmental change (Stearns,

1992; Clutton-Brock, 1998; Roff et al., 2006).

Theoretical and manipulative approaches have

provided useful information about, for example,

state-dependent life-history decisions, reaction norms

and trade-offs (Roff, 2002). However, the patterns

highlighted in such studies constitute ‘potential’

evolutionary processes. Working in a controlled envi-

ronment or isolating part of the process (e.g. a life-

history stage) does not capture interactions between

ecological and evolutionary processes themselves

(Stearns, 1992). Evolutionary studies in the wild are

necessary to reveal processes occurring in natural

conditions that cannot be easily mimicked in labora-

tory conditions. In this context, individual lifetime

fitness components need to be assessed through con-

tinual monitoring of individuals from birth to death,

which raises methodological issues, especially in wild

animals.
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First, the exhaustive monitoring of individuals over

time is almost impossible in the wild. The observation

of an individual is often a random process, with a prob-

ability of detection < 1 (i.e. the probability to observe

an individual that is alive and present in the study

area). Consequently, life histories and traits are only

partially observed: if an individual goes undetected, is it

dead or alive? If alive, is it breeding or not? This issue

of uncertain detection has long been ignored in evo-

lutionary biology (Clobert, 1995; Cam, 2009; Conroy,

2009), which might have led to flawed inference when

addressing evolutionary questions (Gimenez et al.,

2008; Hadfield, 2008; Nakagawa & Freckleton, 2008).

Second, uncertainty in the observation process may be

irreducible when some individual traits cannot be fully

observed (e.g. reproductive state) or precisely measured

(e.g. size; Catchpole et al., 2008; Hadfield, 2008; King

et al., 2008). In this case, field data provide only a noisy

or partial measure of the underlying eco-evolutionary

processes.

Sound statistical methods, dealing with complex phe-

nomena and uncertainty, are thus needed for address-

ing eco-evolutionary questions. Hierarchical modelling

(HM) has been increasingly recognized as a powerful

approach for analysing complex ecological phenomena

(Clark et al., 2005; Royle & Dorazio, 2008; Cressie et al.,

2009; Link & Barker, 2010; Kéry & Schaub, 2011;

Fig. 1). In their review paper about HM, Cressie et al.

(2009) define HM according to three levels: the data at

hand, the underlying process of interest and the param-

eters governing this process. The process of interest,

denoted X, is never fully comprehended. It generates

variability, part of which is due to unknown causes:

X is assumed to have some distribution governed by a set

of parameters hX. The process X is in turn generally not

directly or fully observable. It is blurred by randomness

in detection or measurement error: data Y are assumed

to have some distribution that depends on the process

X and on a set of parameters hY governing the random

noise in the relationship between Y and X. Combining

these two assumptions, HM allows modelling the ran-

domness both in the data and in the underlying process

via the joint conditional distribution of Y and X given

the set of associated parameters hY and hX:

Y ;XjhY ; hX½ � ¼ Y jX; hY½ � � XjhX½ � (1)

where AjB½ � stands for a set of random variables A dis-

tributed conditionally on a set of variables B. This HM

formulation is quite generic and encompasses a wide

variety of models, including so-called state-space mod-

els when the process of interest has a temporal dynamic

(Rivot & Prévost, 2002; Clark, 2007; Gimenez et al.,

2012). HM offers a clear distinction between the biolog-

ical process and its observation, and by this mean, it

allows a focus on the former while accommodating

uncertainties in the latter. Within this general frame-

work, the process can itself be broken into simpler

components, of which some are connected to observa-

tions, thus facilitating the accommodation of multiple

sources of data.

Despite the growing interest in the HM approach for

ecological studies, its use in evolutionary ecology is still

very limited (Fig. 1). Reasons are unclear but we

hypothesize that it stems from the fact that theoretical

and/or experimental approaches used in evolutionary

studies most often involve organisms that are relatively

convenient to monitor. In contrast, ecological studies

require monitoring organisms in natural conditions

implying numerous constraints in the data collection.

We argue that HM is a relevant approach to address

evolutionary ecology questions in the wild as it allows

the combination of several important ingredients within

a single framework: (1) modelling complex phenomena

such as complete life histories and associated transitions

between states (e.g. alive/dead, breeding/nonbreeding,

migrating/resident); (2) integrating underlying evolu-

tionary processes of interest; and (3) accounting for

uncertainty in data collection.

Despite the relevance and flexibility of HM, building

these models and conducting statistical inference on

them is far from trivial (Bolker, 2009; Craigmile et al.,

2009; Cressie et al., 2009) and may appear a daunting

task for evolutionary biologists with no or little

experience in HM. In this paper, we show how the

elaboration of a complex HM is facilitated by proceed-

ing step-by-step to the extension of a suite of nested

models. We illustrate the HM approach using a case

study on Atlantic salmon (Salmo salar) dealing with life
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Fig. 1 Time series of the number of papers using or addressing

hierarchical modelling (HM) in ecology and evolutionary ecology

over the past decade (using ISI web of knowledge citation report;

terms employed ‘Hierarchical modelling’ and ‘Multilevel’ in

subject areas ecology and evolutionary biology). There was no

paper on HM in ecology studies until 1991, and the number of

papers on HM remains small until 2000; thereafter, it increased

constantly. Note the disproportionately small number of papers on

HM in evolutionary ecology.
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histories of stream-dwelling juvenile salmon in the

Scorff River (Southern Brittany, France). We have pre-

viously analysed these individual mark–recapture (MR)

data to investigate evolutionary trade-offs in the wild

while accounting for partial observation with low

detectability (Buoro et al., 2010). However successful

the HM approach was in terms of results, Buoro et al.

(2010) did not demonstrate it was worth the complex-

ity and associated modelling effort. Here, we conduct

statistical inference at each step and further demon-

strate that eco-evolutionary processes would have been

poorly estimated or even missed without integrating all

life-history events and sources of available information.

This case study is well suited for our purpose because

(1) Atlantic salmon has a complex life cycle and exhib-

its a variety of life histories that need to be modelled in

a unique framework if we are to understand the pro-

cesses underlying their variations, (2) juvenile salmon,

like fish in general, are not easy to observe in the wild

and (3) they have been sampled at several occasions

using different sampling methods, hence providing

multiple data sets. We first present the HM framework

to analyse longitudinal MR data collected at the indi-

vidual level. Second, we model step-by-step the size-

dependent reaction norm for seaward migration and

two potential trade-offs, namely a survival cost of

migration and a survival cost of reproduction. A suite

of four nested models is elaborated that unfold the ani-

mal life cycle and successively integrate the various

associated sets of observations. The results obtained

from this suite of nested models are then compared.

Finally, we summarize the lessons learnt from this

exercise and discuss the issue of selection among alter-

native model formulations.

Materials and methods

Longitudinal data at the individual level

In the wild, evolutionary ecologists often rely upon

individual MR protocols (Lebreton et al., 1992) for esti-

mating important fitness components, for example sur-

vival, dispersal and reproduction (Gimenez et al., 2008).

MR data result from the partial observation (detection

or not) of events that are generated from a sequence of

life stages. HM has been proposed as a flexible frame-

work to deal with MR data (Rivot & Prévost, 2002;

Gimenez et al., 2007; Schofield et al., 2007). For the

sake of illustration, we first go through a simple exam-

ple with survival while coping with imperfect detection.

Let us focus on the case of an individual i between two

sampling occasions t�1 and t (Fig. 2). Conditional on

its state at time t�1 (alive or dead), this individual may

be alive or dead at the following sampling occasion

with some probability. Formally, we denote Xi,t a binary

random variable corresponding to the state of the indi-

vidual i at time t, which takes value 1 if the individual

is alive at t and 0 otherwise. Then, Xi,t given Xi,t�1 is

distributed according to a Bernoulli distribution with

probability depending on the survival probability U
(Gimenez, 2007; Royle, 2008). Note that the survival

probability U corresponds to the associated parameters

hX in eqn (1). This leads to the state equation:

Xi;t jXi;t�1;Ui;t�1

� ��Bernoulli Xi;t�1 � Ui;t�1

� �
(2)

Fig. 2 Graphical representation of a hierarchical mark–recapture

model for an individual i between two sampling occasions t�1 and

t (see eqns 2 and 3). Each quantity in the model corresponds to a

node (e.g. latent states or parameters), and links between nodes

show direct dependence. Rectangular and elliptical nodes denote

known and unknown quantities, respectively. The first component

is a demographic process (dashed box) characterized by a

succession of hidden states (solid circles), also called latent states.

The demographic process depends on parameters corresponding to

transition probabilities between successive states (solid ellipses).

The unknown state of individual i at time t (Xi,t) is drawn from a

Bernoulli distribution depending on its state at time t�1 (Xi,t�1)

and the probability of transition between these two states (e.g. the

survival probability Ui,t�1). The observational data (solid square)

through the observation process (solid box) are the visible part of

the demographic process. Observations are obtained conditionally

on latent states and the parameters of the observation process

associated (solid ellipses). The observation or not of individual i at

time t (Yi,t) is drawn from a Bernoulli distribution that depends on

the detection probability pt at time t and conditional on individual

i being alive at time t (Xi,t = 1). This formulation separates the

nuisance parameters (detection probabilities) from the parameters

of interest, for example survival probability, the latter being

involved exclusively in the state equation. The resulting

hierarchical modelling (HM) is a combination of a demographic

process and an observation process.
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When individual i is alive at t (Xi,t = 1), it can be

observed or not, whereas when dead (Xi,t = 0), it neces-

sarily goes undetected. We denote Yi,t a binary random

variable corresponding to the observation of the indi-

vidual i at time t, which takes value 1 if the individual

is observed and 0 otherwise. Given the state Xi,t, Yi,t is

distributed according to a Bernoulli distribution with

probability pt depending on the detection probability at

time t (Gimenez et al., 2007; Royle, 2008). Note that

the detection probability pt corresponds to the associ-

ated parameters hY in eqn (1). This leads to the obser-

vation equation:

Yi;tjXi;t ; pt
� ��Bernoulli Xi;t � pt

� �
(3)

Besides the estimation of transition probabilities

between the demographic states, HMs allow infer-

ring the state (e.g. survivor, migrant or breeder) of

any individual at a given time while acknowledg-

ing that they may be only partially observed. By

extension to the full eco-evolutionary process (e.g.

life-history transitions), the life history of every

individual can be estimated. In the sequel, we

extend the simple example above to a real case

study and show how building increasingly complex

and comprehensive HMs can limit the risk of flawed

inference in eco-evolutionary studies. We focus on

the study of phenotypic plasticity and selective sur-

vival in the juvenile phase of Atlantic salmon life

cycle using MR data.

Step-by-step modelling of juvenile Atlantic salmon
MR data

Atlantic salmon life cycle
Atlantic salmon is an anadromous fish species. Its life

cycle unfolds both in freshwater and in the ocean

(Webb et al., 2007). The juvenile phase takes place in

freshwater. In Brittany, it lasts 1 or 2 years (Fig. 3).

Thereafter, the fish migrate to the ocean. This migration

is accompanied by a smolting process preparing individ-

uals for seawater life. Fish return after 1 or 2 years to

their native stream to breed. Males may breed before

undertaking seaward migration. During the juvenile

phase of the life cycle, individuals adopt alternative

life-history tactics. First, they have to decide whether to

migrate to the ocean after their first year of life or to

reside in the freshwater an additional year. Second,

they have to decide whether to mature or not before

migrating to the ocean. The latter choice involves only

males during their second year in freshwater. These

life-history tactics depend on, and modify, the way

energy is acquired, stored and used by individuals

(Thorpe et al., 1998). Evolutionary trade-offs are thus

expected in this species, that is, migrating and maturing

costs for survival.

In the following, we use the term ‘0+’ for individuals
of < 1 year of age in freshwater, ‘1+’ for those of more

than 1 year of age and ‘2+’ for those of more than

2 years of age. Juveniles are named ‘parr’ if resident in

freshwater and ‘smolts’ when they migrate to the sea.

Fig. 3 Life cycle of the Atlantic salmon in the Scorff, Brittany (France). Reproduction occurs in freshwater in December, and eggs are

buried in the river bed gravel. Fry emerge from the spawning in early spring. After a few months of life, juveniles, then called ‘0+ parr’,

choose between migrating to sea the following spring (1+ smolt stage) with a probability j or staying another year in freshwater (1+ parr)

with a probability 1�j. The probability of winter survival of the 0+ parr between the first autumn and the following spring is U1 winter.

The probability of summer survival of the 1+ parr is U2 summer. Some of the males remaining in freshwater become sexually mature at

the 1+ parr stage with a probability of maturing w. The probability of winter survival of the 1+ parr between the second autumn and the

following spring is U3 winter. Virtually, all surviving juveniles (previously mature or not) will migrate to the sea in the following spring

(2+ smolt). Migration to the sea is accompanied by physiological, morphological and behavioural changes (i.e. smolting process), which

prepares individuals for seawater life.
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Study site and MR data collection
The Scorff River is a small coastal river of Southern Brit-

tany (France). Atlantic salmon colonization is essentially

restricted to the main river over a 50-km stretch. In

autumn 2005, 0+ parr were sampled by electrofishing at

39 stations along the main course of the Scorff. Every

fish captured was measured (fork length) and individu-

ally marked with a passive integrative transponder (PIT)

for subsequent identification. In spring 2006, down-

stream migrating 1+ smolts were captured at two succes-

sive traps located at the lower end of the river system

below all sites where juveniles were marked. Untagged

fish caught at the upstream trap (Leslé Mill) were

marked by removing a small piece of a pelvic fin. At the

second trap (Princes Mill) situated downstream, all indi-

viduals previously fin-clipped were identified. In autumn

2006, the 1+ parr were sampled by electrofishing.

Marked fish were identified and untagged fish were PIT-

tagged. Sexually maturing and already spermating males

were detected by pressing their belly. In spring 2007, the

2+ smolts were trapped, checked for PIT tags and fin-

clipped if unmarked. These data are summarized in

Table S1. More details on the MR protocol can be found

in the study by Buoro et al. (2010).

Nested statistical models
Our HM approach combines a demographic process

model and an observation model. Both are made up

of several components, each corresponding to a life-

history transition or a source of information. Life-his-

tory events are binary and modelled as random vari-

ables with Bernoulli distribution (see eqns 1 and 2

above; Table S2). To illustrate the usefulness of

increasing complexity and comprehensiveness of HM,

we incorporate the different parts in four steps (noted

A–D) sequentially and compare the results between

steps.

Each model is represented in two ways. First, we opt

for a directed acyclic graph (DAG) that is convenient to

display HM conditioning structure (Lunn et al., 2000).

Second, we provide the corresponding equations

needed to describe the model based on extensions of

eqns (2) and (3).

Model A: 0+ Parr to 1+ smolt stage transition.
Demographic process. We start with model A focusing

on the first two life-history events in the first year of

life of Atlantic salmon juveniles (Fig. 3): (1) the deci-

sion taken in the first autumn of either smolting the

following spring at 1 year of age or to stay an addi-

tional year in freshwater (1+ parr) and (2) the survival

of the 0+ parr between the first autumn and the fol-

lowing spring (winter survival). The DAG of model A is

displayed in Fig. 4, whereas equations are given in

Table S2.

First, we assume that age at smolting depends posi-

tively on growth during the first months of life in fresh-

water (Baglinière & Maisse, 1993; Thorpe & Metcalfe,

1998). Using the conceptual framework of probabilistic

reaction norms (Heino, 2002), we use a logit-linear

relationship to represent the link between the individ-

ual i probability of smolting at age 1+ (ji) and its size at

the 0+ parr stage:

logit jið Þ ¼ a1 þ a2 � Fli (4)

where Fli is the individual fork length (mm) centred on

the sample mean. We use a logit-link function to

ensure that probabilities lie on [0, 1]. Parameter a2 con-

trols the influence of size at 0+ parr stage on smolting

and corresponds to the selection gradient of the proba-

bilistic reaction norm for smolting.

Second, we assume the decision of smolting at age

1+ modifies survival. During the first winter, future

migrants adopt a very different behaviour from those

intended to reside an additional year in the river as

they try to maximize their growth (Metcalfe &

Thorpe, 1992; McCormick et al., 1998). We model this

differential survival at the individual level by linking

the probabilities of winter survival to the smolting

decision.

logit U1;i

� � ¼ b1 þ b2 � Parrsmolt
0;i (5)

where U1,i stands for the probability of first winter sur-

vival (0+ parr) of an individual i, Parrsmolt
0;i is the smol-

ting indicator taking value 1 if individual i is smolting

and 0 otherwise. Parameter b2 reflects the influence of

the decision of smolting on winter survival at 0+ parr

stage. For instance, if b2 is negative, then the winter

survival U1,i of a smolting 0+ parr (Parrsmolt
0;i ¼ 1) is

lower than that of a resident 0+ parr (Parrsmolt
0;i ), reveal-

ing a survival cost of smolting.

Observation. The first recapture event after tagging

was the trapping of the 1+ smolts (spring 2006) both at

the Leslé Mill with probability pL1 and at the Princes

Mill with probability pP1. At the individual level, cap-

ture was modelled as a Bernoulli distribution (Table S2)

with associated probability of capture assumed fixed

across individuals.

Model B: Incorporating summer survival and
maturation process at 1+ parr stage. Demographic
process. To unfold the life cycle, summer survival

and maturation decision of the 1+ parr need to be

modelled (Fig. 4, model B). Survival of resident 1+
parr between their initial marking in autumn 2005

and their first recapture in autumn 2006 is made of

two successive survival events: winter survival (from

autumn 2005 to spring 2006) and summer survival

(from spring 2006 to autumn 2006). The explicit dis-

tinction of these two survival events allows assessing

the first winter survival probability of the future 1+
parr, despite the absence of recaptures for 1+ parr in

spring 2006.
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First, we assume that summer survival of 1+ parr was

higher than previous winter survival in the Scorff River

(Baglinière et al., 1994). We incorporate this informa-

tion by specifying summer survival probability U2,i

conditionally on winter survival U1,i as

U2;i ¼ U1;i þ 1� U1;i

� �� Dsurvival (6)

where Dsurvival is an unknown parameter between 0

and 1, which determines the survival difference

between first winter and the following summer. From

this model B, we introduce an additive random effect ei
in eqn (5), to account for heterogeneity in individual

quality affecting survival. This effect would reflect vari-

ations in energy storage among individuals. As survival

is energy demanding, higher survival should be related

to higher energy stores. ei is normally distributed with

0 mean and unknown standard deviation re. In accor-

dance with Cam et al. (2002), this unobservable indi-

vidual quality affects every subsequent survival event.

By this way, for a given individual, having a higher

survival probability during the first winter reveals a

better chance to stay alive during the following survival

events [i.e. summer survival and second winter survival

(see model C)].

Second, we assume that males 1+ parr have to

decide to mature or not prior to ocean migration dur-

ing this summer transition (Thorpe et al., 1998). Mat-

uration state is only observed for male 1+ parr

captured in autumn and detected as spermating. We

model sexual maturation of males at the 1+ parr

stage using a Bernoulli distribution with probability

of maturing at 1+ parr stage being the product of the

probabilities of sexual maturation for a male and of

being a male. We assume that the probability for a

1+ parr to be a male was 0.5 (balanced sex ratio). A

male with a high level of energy storage should have

a higher probability of maturing at the 1+parr stage

(Prévost et al., 1992; Duston & Saunders, 1997). The

probability of sexual maturation for a male wmale
i is

assumed to depend on the unobserved individual

quality:

logit wmale
i

� � ¼ c1 þ ei (7)

Smolt0+ Smolt1+

Φ1κ

Parr1+

α1 α2

Fl

β1 β2

Observation 
process
(spring)

MODEL A

pL1 pP1

Parr0+ Parr1+

Φ2

Mature

Immature

Ψmale

γ1

pC1

Smolt2+

Observation 
process
(spring)

Φ3

δ1 δ2

pL2 pP2

Observation 
process
(autumn)

MODEL B MODEL C

i in 1 : N

Observation 
process
(autumn)

ε

Fig. 4 Graphical representation (DAG) of hierarchical models A–C for life histories and mark–recapture of Atlantic salmon juvenile. Model

D was not included as it corresponds to the same observation models than model C with additional data. Notations are given in the text.

As described in Fig. 2, we distinguished the demographic process (dashed box) from the observation process (solid box) and hidden states

(solid ellipses) from observational data (solid rectangular). Observations are obtained conditionally on latent states and the parameters of

the associated observation process (solid ellipses). Each quantity in the model corresponds to a node (e.g. latent states or parameters), and

links between nodes show direct dependence. Rectangular nodes and elliptical nodes denote known and unknown quantities, respectively.

Stochastic dependence and deterministic dependence are denoted by single arrows and dashed arrows, respectively. Repetitive structures,

such as the loop i from 1 to N, are represented by overlapping frames; DAG, directed acyclic graph.
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Observation. The 1+ parr remaining in freshwater

(autumn 2006) were captured by electrofishing with

probability pC1 (Table S2). Sampling by electrofishing

was conducted in the same sites each year. There is evi-

dence of site fidelity in Atlantic salmon parr (Stickler

et al., 2008). In our study, almost all the 1+ parr recap-

tured were caught at the same station where they were

marked at 0+ stage. As a consequence, we consider that

the probability of capture for 1+ parr in 2006 was

higher than the probability of capture for 0+ parr in

2005, and specified the probability of detection of 1+
parr in autumn 2006, pC1, conditionally on the proba-

bility of detection of 0+ parr in autumn 2005, pC0:

pC1 ¼ pC0 þ 1� pC0ð Þ � Dcapture (8)

where Dcapture is an unknown parameter between 0

and 1, which determines the difference between pC1
and pC0.

Model C: Incorporating 2+ smolts stage and cost
of reproduction for survival. Demographic process.
Sexual maturation and reproduction of resident males

lead to reduced survival (Myers, 1984; Myers & Hutch-

ings, 1987; Fleming & Reynolds, 2004). We model this

cost of reproduction at the individual level by linking

the probabilities of the second winter survival to the

state indicator of the decision of maturation (Parrmature
1;i )

(Fig. 4, model C):

logit U3;i

� � ¼ d1 þ d2 � Parrmature
1;i þ ei (9)

where U3,i stands for the probability of second winter

survival (1+ parr) of individual i. Parrmature
1;i is the

maturing indicator taking value 1 if individual i is

mature and 0 otherwise. Parameter d2 reflects the influ-

ence of the decision of maturing on winter survival at

the 1+ parr stage. If d2 is negative, then the winter sur-

vival U3,i of a maturing male 1+ parr (Parrmature
1;i ¼ 1) is

lower than that of a immature 1+ parr (Parrmature
1;i ¼ 0),

evidencing a survival cost of reproduction.

Observation. The 2+ smolts (spring 2007) were

trapped at the Leslé Mill with probability pL2 and at the

Princes Mill with probability pP2 according to the same

protocol used for the 1+ smolt the previous year (see

‘Observation’ section in model A).

Model D: Incorporating additional information.
Additional information about life-history events and

smolt trapping probabilities is available. First, the

1+ parr sampled by electrofishing in autumn 2006, but

untagged at 0+ parr stage, were also PIT-tagged. We

assume that sexual maturation and second winter

survival are the same whether 1+ parr had been tagged

or untagged at the 0+ parr stage. As a consequence, we

use the same eqns (7) and (9) with common parame-

ters as presented before (models B–C). Second, we take

advantage of ancillary fin-clipping data collected at the

smolt traps in 2006 and 2007 (see ‘Study site and MR

data collection’ section; Table S1) to improve the esti-

mation of smolt trapping probabilities. We assume that

the probability of capture at both traps is the same for

PIT-tagged, fin-clipped and untagged smolts.

Statistical inference in a Bayesian framework

We fit our HMs to data by Bayesian statistical inference

using Markov chain Monte Carlo (MCMC) sampling.

This approach is the most widely used for fitting com-

plex HMs (Cressie et al., 2009; see also Gelman et al.,

2004; Ellison, 2004; King et al., 2009; and Link &

Barker, 2010 for more details about the Bayesian statis-

tical modelling and associated computational issues).

Besides handling the complexity of our model, it facili-

tates the combination of multiple sources of data, that is,

from the PIT-tag protocol and from the ancillary

fin-clipping experiment (see previous section). Under

the Bayesian approach, the information available in the

observed data is conveyed by the likelihood. The latter

is combined with the prior distribution of the unknown

quantities of the model to obtain their joint posterior

probability distribution. This joint posterior probability

distribution is the outcome of the Bayesian statistical

inference. It provides the comparative degrees of credi-

bility of the possible values of all the model unknowns

(i.e. individual states, transition probabilities between

states, random effects, observation probabilities and

other parameters) conditionally on the observed data

(i.e. the PIT-tagging data and the fin-clipping data).

The Bayesian approach requires assigning a prior dis-

tribution to model parameters, that is, unknown quan-

tities that do not depend on any other in the model.

This prior represents available information apart from

the observed data used to derive the likelihood. By

default, weakly informative priors are used in order to

‘let the observed data speak for themselves’ (Van Don-

gen, 2006; Gelman et al., 2004). Priors can also be used

to incorporate information brought by supplementary

data, extracted from the existing literature or eliciting

expert knowledge (Kuhnert, 2011), hence improving

the precision of parameter estimates (McCarthy &

Masters, 2005). In agreement with what was known

about the species biology, we consider the probability

of surviving in freshwater as being neither null nor

equal to 1 between two consecutive stages. Conse-

quently, we chose prior distributions such that less

importance was given to extreme values of survival

probabilities (see ‘Choice of prior distribution’ section

in Appendix S1 for more details). The probability of

capture of 0+ parr in autumn 2005 could be assessed

from the smolt trapping data in 2006. We summarize

this available information by assigning a beta prior dis-

tribution to pC0 (eqn 8) whose parameters are the
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number of smolts marked in the previous autumn and

captured at smolt traps (Leslé Mill and Princes Mill),

and the number of untagged smolts captured at smolt

traps. Note that the data used here are different from

the observations used elsewhere in the model. For all

the other parameters, we use weakly informative priors

(Appendix S1). MCMC sampling of the joint posterior

probability distribution is implemented using the Open-

BUGS software (Lunn et al., 2009). The OpenBUGS

codes of models are available in the Dryad repository:

http://dx.doi.org/doi:10.5061/dryad.f05mk. OpenBUGS

uses a model statement syntax similar to the popular R

software (R Development Core Team, 2012), which

should make our code self-reading for familiar users.

We run three parallel MCMC chains and retained

50 000 iterations after an initial burn-in of 10 000 iter-

ations for each model. Convergence of MCMC sampling

was assessed by means of the Brooks–Gelman–Rubin
diagnostic (Brooks & Gelman, 1998).

Results

In the following, medians and 95% credible intervals

from the posterior distribution are reported for

unknowns of interest (Table 1). We also provide the

posterior probability for a quantity of being positive cal-

culated as the proportion of sampled values higher than

zero. Results for the probabilities of sexual maturation

and winter survival are given considering a random

effect ei = 0 (eqns 5, 7 and 9).

Observation probabilities

Recapture probabilities are a posteriori well estimated

(Fig. 5) in comparison with their weakly informative

prior distributions (see Appendix S1). Using ancillary

fin-clipping data (model D), uncertainty is most signifi-

cantly reduced compared to PIT-tag data only (models

A–C). Smolt trap efficiencies varied from 2006 (pL1 and

pP1) to 2007 (pL2 and pP2) due to their sensitivity to

hydrological conditions (Rivot & Prévost, 2002).

Choice between alternative life-history tactics

Whatever the model, the gradient of the probabilistic

reaction norm for age at smolting is strictly positive

(Table 1). The decision of smolting at 1 year of age is

strongly size dependent (Fig. 6). The estimation of the

reaction norm is little affected by increasing model com-

plexity and amount of data assimilated. Using the full

model D, uncertainty in the reaction norm parameters is

slightly reduced compared to the simplest model A con-

sidering the 1+ smolt stage only (Table 1). At the same

time, the gradient a2 is somewhat larger and the parame-

ter a1 somewhat smaller.

The probability of sexual maturation for a male at

the 1+ parr stage is high for both models C and D but

poorly estimated. The uncertainty is marginally reduced

in model D [0.72 (0.14; 0.99) vs. 0.58 (0.19; 0.91) for

models C and D, respectively].

Selective survival and cost of reproduction

The 95% posterior probability interval of b2 includes 0

except in model D combining all life-history events and

sources of data (Table 1). The gradual reduction in

uncertainty in the estimation of b2 along the suite of

models finally reveals, under the most comprehensive

model D, a selective survival in first winter in favour of

0+ parr that decided to smolt at 1 year of age the fol-

lowing spring (Fig. 7a). Note that, from model C to D,

it is the incorporation of data not directly linked to the

first winter survival event that allows evidencing the

cost associated with freshwater residency decision.

Using PIT-tag data only (model C), parameter d2 was

estimated negative with probability 0.72 (Table 1). Com-

bining additional sources of data (model D), parameter d2
was unambiguously estimated negative with probability

0.99, thus evidencing a selective survival depending on

the sexual maturation status of the 1+ parr, that is, a cost

of reproduction on the second winter survival (Fig. 7b).

Discussion

There is growing interest in studying eco-evolutionary

processes in the wild (Schoener, 2011). The two main

challenges to address are to account for (1) the rather

complex nature of these processes involving various

life-history traits (and stages) and their associated inter-

actions and (2) the fact that they are partially observed

and/or with measurement error. It is now well recog-

nized that the HM approach offers a generic framework

for meeting these challenges in ecological studies (Clark

et al., 2005; Clark & Gelfand, 2006; Cressie et al., 2009).

By explicitly distinguishing the observation procedures

from the processes of ultimate interest, HM is a power-

ful way to deal with uncertainties inherent in data col-

lection and hence to focus on the underlying complex

eco-evolutionary mechanisms. In the present paper, by

adopting a step-by-step approach, we further demon-

strated how a complex life-history model is relatively

easily built from successive integration of simple com-

ponents. We also demonstrated the payoffs of increas-

ing complexity of models consisting in improving

estimates precision and revealing eco-evolutionary pro-

cesses of interest not identified with simpler models.

Modelling complex eco-evolutionary processes
using HM

The incorporation step-by-step of successive life stages

of Atlantic salmon juveniles helps combining several

life-history decisions (i.e. migration and maturation

decisions) resulting from evolutionary processes (i.e.
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phenotypic plasticity, selective survival, cost of repro-

duction). Adopting a HM framework has also the

advantage of treating unobserved individual states (also

called latent states) as any other unknown quantity to

be estimated. This adds to the flexibility of HM because

an unknown state can be used as a covariate within a

model. Taking advantage of this feature, we were able

to explore the effect of migration decision on winter

survival, although this decision could not be observed

at the onset of the winter transition. Indeed, migration

is decided before the first winter by 0+ parr but it was

only partially observed in the following spring through

the recapture at smolts stage during their downstream

migration. Thus, migration decision was an unknown

to estimate for any fish not recaptured at the smolt

stage (or later on). The unknown latent state indicator

for migration decision before first winter was estimated

thanks to the probabilistic reaction norm for migration,

and was used in turn as a covariate in eqn 5 to

highlight a selective winter survival. By combining two

eco-evolutionary processes (life-history decision and

potential evolutionary trade-off), our analysis revealed

a positive relationship between the first winter survival

of the 0+ parr and their decision of smolting the follow-

ing spring. We used the same approach for combining

the life-history decision for maturing with the second

winter survival event to highlight a survival cost of

reproduction. HM allowed the estimation of the matu-

ration state of all 1+ parr tagged, even though it was

only observable for the spermating males captured at

the 1+ parr stage in autumn 2006. Our results con-

firmed that mature male 1+ parr had a lower probabil-

ity of winter survival (post-reproductive survival) than

their immature counterparts (Myers, 1984; Baglinière &

Maisse, 1993; Whalen & Parrish, 1999).

Dealing with various sources of available
information

In line with Cressie et al. (2009), we showed HM is a

powerful approach to deal with various sources of

information within a unique framework, hence improv-

ing our ability to study complex eco-evolutionary pro-

cesses (Ogle, 2009; Buoro et al., 2010). In our Atlantic

salmon case study, the step-by-step modelling of

eco-evolutionary processes is accompanied by the

sequential use of additional sources of data. By assimi-

lating additional data sets, that is, the 1+ parr untagged

at 0+ parr stage and the smolt fin-clipping experiment,

into model D, we significantly improved the estimation

of the observation parameters (detection probabilities;

Fig. 5). More importantly, expanding the basic model

Table 1 Summary of posterior distributions (medians, 95% posterior credible intervals and probability to be positive) for demographic

process parameters of interest (i.e. probabilistic reaction norm and selective survival).

Parameter Definition Model

Posterior distribution

Pr([h|Y] > 0)Median 95% credible interval

Demographic process

a1 Intercept of the size-dependent probabilistic reaction

norm for smolting (eqn 4)

A �2.23 �2.98; �1.33 0

B �2.10 �2.82; �1.35 0

C �1.83 �2.55; �1.13 0

D �1.91 �2.56; �1.24 0

a2 Selection gradient of the size-dependent probabilistic

reaction norm for smolting (eqn 4)

A 0.13 0.09; 0.19 0.99

B 0.14 0.10; 0.19 0.99

C 0.16 0.11; 0.21 0.99

D 0.16 0.12; 0.21 0.99

b1 First winter survival for futures 1+ parr (eqn 5) A 0.02 �3.68; 3.78 0.50

B �2.04 �4.53; 0.46 0.07

C �2.05 �4.53; �0.63 0

D �1.53 �2.80; �0.73 0

b2 Effect of the decision of smolting at 1 year of age on

the first winter survival (eqn 5)

A 0.51 �3.60; 4.96 0.60

B 2.29 �1.07; 5.63 0.90

C 1.84 �0.20; 5.44 0.95

D 1.64 0.43; 3.56 0.99

d1 Second winter survival for immature 1+ parr (males

and females; eqn 9)

A – – –

B – – –

C 0.55 �2.06; 4.18 0.66

D �0.49 �2.29; 0.53 0.19

d2 Effect of the decision of maturing on the second

winter survival (cost of reproduction for survival; eqn 9)

A – – –

B – – –

C �1.28 �5.87; 3.52 0.28

D �1.51 �3.12; �0.28 0.01
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and incorporating additional data sets was crucial in

identifying eco-evolutionary processes of ultimate inter-

est (Fig. 7). It was only from model C (and beyond)

that the survival advantage of the 0+ parr having taken

the decision to migrate the following spring, over those

remaining an additional year in freshwater, could be

ascertained. In the same way, it is only model D that

allowed revealing the survival cost of reproduction for

the 1+ parr. In the first instance, it is worth noting that

the selective survival over the first winter was revealed

by unfolding the model beyond the stages at stake.

Indeed, the 1+ old juveniles having survived the first

winter were observed in spring and autumn and were

already taken into account in model B. In the second

instance, the evidence of a cost of reproduction was, at

least in part, due to the use of ancillary data (fin clip-

ping) that aimed primarily at improving the estimation

of the observation parameters. Our results showed the

payoff of increasing model complexity, including by

expanding models beyond the stages and processes of

Fig. 6 Probabilistic reaction norms for

the age at smolting for each model

(noted from A to D). The posterior

medians of the probability of smolting

at 1 year of age vs. fork length are

shown. A histogram of the size

distribution of the 0+ parr sampled in

autumn 2005 is also displayed.

pL1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A B C D

pP1 pC1 pL2 pP2

A B C D A B C D C D C D

Fig. 5 Posterior distributions of the probabilities of capture for

each model (also noted from ‘A’ to ‘D’; based on 50 000 MCMC

samples). Notation: pL and pP are the probabilities of capture at

Leslé Mill and Princes Mill, respectively, at both occasions (1:

spring 2006 and 2: spring 2007), and pC is the probability of

capture in autumn at 1+ parr stage. The median (black point) and

the 95% posterior probability interval (PPI; solid lines) are

displayed. MCMC, Markov chain Monte Carlo.

Fig. 7 Posterior distributions of the difference in survival

probability (considering a zero individual random effect) for each

model from ‘A’ to ‘D’. Panel (a) Future 1+ smolts vs. future 1+
parr during the first winter and panel (b) mature 1+ parr vs.

immature 1+ males during the second winter (cost of reproduction

for survival). The median (black point) and the 95% posterior

probability interval (PPI; solid lines) are displayed.
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focal interest. It is the inclusion of the various eco-

evolutionary and observation components within a

single model, which connects all unknown quantities

by means of conditional relationships, that allows the

information brought by the various data sets collected

at different life stages to potentially contribute to the

estimation of every unknown quantity in the model.

Comparing alternative models

To illustrate the relevance of HM in revealing eco-evo-

lutionary processes using noisy data, we developed a

sequence of four nested models of increasing complex-

ity. Although we acknowledge that true processes giv-

ing rise to the field data of our case study remain

elusive, we based our biological interpretation of the

results on model D because (1) simpler models A–C
were less integrative in terms of eco-evolutionary pro-

cesses and (2) they restricted data assimilation by

excluding informative data sets. However, alternative

models of similar complexity could be envisaged. Of

great interest for evolutionary biologists is the question

of contrasting alternative eco-evolutionary hypotheses

from observation data collected in the wild. In this

context, model selection has become popular in ecology

and evolution and allows the simultaneous confronta-

tion of several competing hypotheses using the data

at hand (Burnham & Anderson, 2002; Johnson &

Omeland, 2004; Hobbs & Hilborn, 2006; Link & Barker,

2006). Many criteria have been proposed (among oth-

ers, the Bayes Factor, the Deviance Information Crtieri-

on, the Bayes Information Criterion and the Akaike

Information Criterion) but from a practical point of

view, model selection for complex HMs is still an open

question in statistical modelling and faces several issues

(Gelman & Rubin, 1996; Spiegelhalter et al., 2002 and

following discussants; Celeux et al., 2006; Link &

Barker, 2006; De Valpine, 2009). An alternative to

model selection is to conduct careful posterior model

checking within complex models. It consists in compar-

ing replicated data obtained a posteriori from the esti-

mated model with the observed data (Craigmile et al.,

2009; Cressie et al., 2009; Brun et al., 2011; Gelman &

Shalizi, 2012). Although posterior model checking tech-

niques are still in their infancy, useful suggestions and

guidelines can be found in the study by Gelman et al.

(2004), Marshall & Spiegelhalter (2007) and Kerman

et al. (2008).

Advances and constraints of HM

The flexibility of HM does not come without costs.

With the rapid development of statistical software such

as BUGS (Lunn et al., 2009) and the increase in com-

puter power, one may be tempted to incorporate more

and more details, hence increasing model complexity.

This raises several issues. First, even though proceeding

step-by-step as demonstrated in this paper makes model

specification easier (see also Craigmile et al., 2009),

it may not be straightforward for users without any

programming skills. Solutions can be found by making

BUGS codes publicly available, by fostering collabora-

tions between statisticians and evolutionists and by

training in HM (Gimenez, 2008; Ogle, 2009). Second,

there is a risk of overparameterized models with nones-

timable parameters. Rather than fitting the complete

model at first, incorporating the different relevant com-

ponents, piece-by-piece, starting with a simple model

and then increasing complexity is here again a good

practice (Craigmile et al., 2009; Brun et al., 2011).

Third, to cope with complexity, one often resorts to a

Bayesian approach using MCMC algorithms to fit HM

to data. Despite being very flexible, these computa-

tional methods require sufficient training to be applied

correctly. As an alternative to the Bayesian approach,

several approaches are being developed (Lele et al.,

2007; Lele & Dennis, 2009; De Valpine, 2009, 2011)

that deserve further exploration.

HM as a generic framework for studying
evolutionary processes in the wild?

Overall, the costs associated with HM are compensated

by benefits stemming from their ability both to compre-

hensively integrate various life-history events and to

combine multiple sources of available information.

These two features are key for drawing accurate statisti-

cal inference about eco-evolutionary processes in the

wild from field data. These processes operating at the

level of individuals, populations and communities gen-

erate and maintain biodiversity (Pressey et al., 2007).

Evolutionary processes and individual variation, raw

material for natural selection, have ecological conse-

quences and vice versa (Bolnick et al., 2011), hence a

growing interest in integrating ecological and evolu-

tionary tools and concepts. Long-term individual-based

studies are becoming more frequent, providing a

unique opportunity to address evolutionary questions

in the wild and illustrate processes that could not previ-

ously be assessed in laboratory or with short time-scale

studies (Clutton-Brock & Sheldon, 2010). HM holds

great promise by offering a generic framework to com-

bine empirical and theoretical backgrounds and explore

eco-evolutionary dynamics (Ezard et al., 2009; Pelletier

et al., 2009; Carlson et al., 2011). In this regard, intro-

ducing quantitative genetics into eco-evolutionary

models would help understanding the evolution of

traits and their ecological consequences (Ozgul et al.,

2009; Coulson et al., 2010).
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