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Conditional strategies are the most common form of discrete phenotypic plasticity. In a conditional strategy, the phenotype

expressed by an organism is determined by the difference between an environmental cue and a threshold, both of which may

vary among individuals. The environmental threshold model (ETM) has been proposed as a mean to understand the evolution

of conditional strategies, but has been surprisingly seldom applied to empirical studies. A hindrance for the application of the

ETM is that often, the proximate cue triggering the phenotypic expression and the individual threshold are not measurable, and

can only be assessed using a related observable cue. We describe a new statistical model that can be applied in this common

situation. The Latent ETM (LETM) allows for a measurement error in the phenotypic expression of the individual environmental

cue and a purely genetically determined threshold. We show that coupling our model with quantitative genetic methods allows

an evolutionary approach including an estimation of the heritability of conditional strategies. We evaluate the performance of the

LETM with a simulation study and illustrate its utility by applying it to empirical data on the size-dependent smolting process for

stream-dwelling Atlantic salmon juveniles.

KEY WORDS: Bayesian modeling, conditional strategies, environmental threshold model, phenotypic plasticity, quantitative

genetics.

The ability of organisms to adapt to rapidly changing envi-

ronmental conditions is becoming of applied importance for

understanding how they persist (Gienapp et al. 2008; Reed et al.

2010). Phenotypic plasticity (i.e., the ability of a given genotype

to produce variable phenotypes, dependent upon environmental

conditions) is the most immediate, and potentially adaptive,

response of individuals to environmental change (Ghalambor

et al. 2007; Gienapp et al. 2008). Its evolution can accelerate

phenotypic evolution, which, in turn, can facilitate persistence

in new environment (Lande 2009; Chevin and Lande 2010).

It can be maintained (i.e., adaptive phenotypic plasticity) in

variable environments when reliable cues allow organisms to

match their phenotypes to encountered conditions (Ghalambor

et al. 2007; Reed et al. 2010). Anthropogenic disturbances

and/or climate change can reduce the reliability of cues as

indicators of optimal life-history decisions, rendering previously
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adaptive plastic responses suboptimal in new environmental

contexts.

In the case of phenotypic plasticity with discrete traits (e.g.,

maturation at given age, polymorphism in defensive structures,

or alternative mating tactics), the concept of conditional strate-

gies (Gross 1996) has become a popular framework (Roff 2011).

Tomkins and Hazel (2007) defined a conditional strategy as a ge-

netically determined decision rule containing a conditional clause.

For example, with binary traits, that is, traits with two possible

categorical phenotypic states (also known as tactics), the pheno-

type expressed by an individual may depend on an environmental

cue and the choice between phenotypes may result from a physio-

logical “comparison” between the cue and a threshold (or switch

point; Oliveira et al. 2008).

Hazel et al. (1990; see also Hazel et al. 2004 and Tomkins

and Hazel 2007) developed the environmental threshold model

(ETM) for representing a conditional strategy as an environmen-

tally cued threshold trait (Roff 1996). In the ETM, the individual

status is determined by the environmental cue, which is compared

to the threshold. Thresholds vary among individuals and exhibit

additive genetic variance. By incorporating environmental and

genetic influences, the ETM encapsulates both phenotypic plas-

ticity and evolutionary change in a unique framework (Tomkins

and Hazel 2007). Specifically, changes in the cue distribution di-

rectly translate into a change in the phenotype proportions, thereby

reflecting phenotypic plasticity. Similarly, evolutionary changes

shift the threshold distributions (Hazel et al. 1990) and modify

the phenotypic proportions, potentially independently of changes

in the distribution of the cue.

Under conditions of sustained directional change, the costs

and limits of phenotypic plasticity (DeWitt et al. 1998) require

genetic variation in order for populations to continue to adapt

to the new conditions by means of natural selection (Pigliucci

2005). With respect to conditional strategies, the ability of the

ETM to accommodate both phenotypic plasticity and evolution

within a single framework is appealing for assessing the evo-

lution of conditional strategies in the wild (Tomkins and Hazel

2007; Roff 2011). However, for the ETM to be useful in real case

studies, its various components (alternative phenotypes, environ-

mental cues, individual genetic effects on the thresholds, and their

related distributional parameters) must be quantified. The ETM

was initially formalized mathematically (Hazel et al. 1990; Hazel

et al. 2004) but statistical tools are needed to draw inferences from

empirical data. Here, we make the distinction between “observ-

ables” (i.e., those variables that can be directly measured) and

“non-observables” (i.e., those variables that can only be inferred,

typically the thresholds). Empirical data often produces noisy

measures of underlying traits, and it is thus important to account

for this uncertainty (or measurement error). We introduce a new

statistical modeling framework, which embeds the ETM to make

it amenable to proper statistical inference on empirical data.

In the ETM, as the individual thresholds and the parameters

of their distribution are conceptual and unknown quantities, they

represent non-observable quantities. In contrast, the phenotypes

expressed by individuals are observable. Whether the environ-

mental cue is observable is often more complex. The choice of a

single and observable environmental feature (e.g., ambient tem-

perature), although logistically tractable, is necessarily to some

extent arbitrary as the ways in which organisms perceive their en-

vironment is undoubtedly multifactorial (Price and Schluter 1991;

Merilä and Sheldon 1999). We follow Dieckmann and Heino

(2007) such that “it is more practical to let the organisms them-

selves do the integration over time and environmental effects.” In

fish, growth rate and/or size at a given age are known to be strongly

influenced by the environment and are thus considered as integrat-

ing various environmental factors (Hutchings 2004; Dieckmann

and Heino 2007). Rather than considering observable phenotypes

as a determinant of the biological process (i.e., size-determining

maturation process), we take the alternate approach in assuming

that they are a manifestation of an underlying process. We argue

that this assumption is biologically more realistic.

Regardless of which way the investigator chooses to measure

the environmental cue, be it as an external environmental variable

or a biological trait, the proximate mechanism by which the or-

ganism assesses its environment will most often remain unknown

(Metcalfe 1998; Tufto 2000; Thorpe 2007; Tomkins and Hazel

2007). Therefore, we argue that this source of uncertainty should

be explicitly incorporated in a statistical framework to assess con-

ditional strategies by means of the ETM. We propose to split the

environmental cue of the ETM into two distinct but related quan-

tities: the proximate cue which is to be compared with a thresh-

old that would trigger the phenotype expressed by an individual

and an observable cue which can be readily measured. Although

the proximate cue is unobservable (e.g., underlying physiological

mechanisms such as hormones; see Willmore et al. 2007; Aubin-

Horth and Renn 2009; McNamara and Houston 2009), it should be

correlated with the observable cue (e.g., morphology such as body

size or growth; see Fairbairn and Yadlowski 1997). The threshold

versus proximate cue comparison is now a fully hidden process

as it involves two unobservable variables. This process combines

both an environmental effect, through the proximate cue, and a

genetic effect, through the threshold. In a modeling context, both

aspects need to be distinguished in a model so that they can be

interpreted separately. For this reason, we further assume that the

threshold is purely genetically determined, in keeping with Roff’s

(1994) statement that “the critical assumption of the ETM is that

there is a single and unique switch point (threshold) for each

genotype.”
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We describe a new statistical model, the Latent ETM (LETM)

and highlight its connections with statistical models in quantita-

tive genetics. The LETM structure makes the variation in the

additive genetic component of the conditional strategy (the vari-

ance of the threshold distribution) relatively easy to estimate. This

feature is crucial because the genetic variance of the threshold is

a key element for assessing the evolutionary potential of a condi-

tional strategy (Hazel et al. 1990; Hazel et al. 2004; Tomkins and

Hazel 2007). In addition, we show that the use of genetic relat-

edness between individuals is required for the estimation process

by separating the threshold genetic variance from random noise

in the proximate versus observable cue relationship. Finally, we

illustrate our approach with a case study on the size-dependent

smolting process for stream-dwelling juvenile Atlantic salmon in

the Scorff River (Southern Brittany, France). Overall, the LETM

approach can be fruitfully applied whenever the conditional strat-

egy framework is relevant, pending the availability of individual

data for at least the alternative phenotypes involved and a related

observable cue.

The Latent Environmental
Threshold Model
We use the notation A|B ∼Dist( f (B)) to denote a set of random

variables A distributed conditionally on the set of variables B

according to a probability distribution Dist with parameters that

are a function f of B. Observable quantities are denoted with

capital Roman letters and unknowns with Greek letters.

FROM THE ETM TO THE LETM

For an individual i, the threshold modeling framework stipulates

that if the value of a cue ηi is larger (respectively lower) than

a threshold θi, then it triggers the expression of a phenotype,

say migrant (respectively resident). If Yi is the binary variable

indicator of the phenotype (e.g., 1 for migrant and 0 for resident),

then we have:

Yi =
{

1 if ηi ≥ θi

0 if ηi < θi

}
. (1)

The cue ηi varies among individuals as a function of the

environment, whereas the threshold θi is considered an intrinsic

property of the individuals, independent of ηi. The threshold θi

also varies among individuals and is a polygenic quantitative trait

that is normally distributed with mean μθ and standard deviation

σθ, as typically assumed in quantitative genetics (Hazel et al.

1990; Lynch and Walsh 1998; Tomkins and Hazel 2007):

θi | μθ, σθ∼N (μθ, σθ). (2)

Equations (1) and (2) and their associated assumptions cor-

respond exactly to the ETM (Hazel et al. 1990). Equation (1)

represents the putative proximate mechanism explaining the phe-

notypic expression. In this mechanism, the phenotype Yi is ob-

servable, whereas the threshold θi is not; it is a conceptual variable

referred to as a latent variable in statistical terminology (Congdon

2007).

We introduce two additional assumptions in the specifica-

tion of the LETM. First, we assume that the proximate cue ηi

is unobservable. By doing so, we explicitly recognize that of-

ten little biological knowledge is available regarding the prox-

imate mechanism influencing the expression of the phenotype

(Metcalfe 1998; Thorpe 2007; Tomkins and Hazel 2007). Al-

though ηi is not observable, an observable proxy Xi can be mea-

sured which is correlated with ηi. The distribution of the unknown

proximate cue ηi can be expressed conditionally on the observable

proxy Xi with some residual error εi:

ηi = F(Xi ) + εi , (3)

where F is a function, for example, a linear relationship, summa-

rizing the link between the proximate and the observable cue. The

residual error εi is assumed normally distributed with mean 0 and

standard deviation ση:

εi∼N (0,ση). (4)

Note that equations (3) and (4) correspond to the Berkson

measurement error model in the statistical literature (Congdon

2007). This formulation has the advantage of being assump-

tion free regarding the distribution of the Xi. Consequently,

the statistical analysis is made more flexible as it is indepen-

dent of the procedure used for collecting the Xi observations.

They can come either from field sampling or from controlled

experiments.

The second assumption is in line with Roff’s (1994) state-

ment that there may be a unique threshold for each genotype.

Specifically, we consider the threshold θi as being completely

genetically determined which implies that the standard deviation

σθ in equation (2) is a measure of genetic variability. This was

also proposed by Hazel et al. (1990) to show the effect of the

selection on the threshold distribution. By doing so, the vari-

ous components involved in the model are clearly distinguished,

hence making the inference process easier: the environment, the

proximate mechanisms triggering the phenotype expression (con-

ditionally on the environment), and the genetic control on this

mechanism.

The statistical model defined by equations (1)–(4) considers

the ETM as a latent structure connecting the observed environ-

ment with the observed phenotypes. We, therefore, refer to it as

the LETM. The conditional structure of the LETM can be sum-

marized by a directed acyclic graph (Fig. 1).
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Figure 1. Directed acyclic graph of the latent environmental

threshold model. Squares represent observable data and circles

represent unknown quantities to be estimated. For an individual i,

the threshold θi is normally distributed with mean μθ and standard

deviation σθ . The proximate cue ηi is normally distributed with a

mean of the observable cue Xi and standard deviation ση. Finally,

Yi is a binary indicator variable of the observed phenotype and is

modeled as a function of the threshold and the proximate cue at

the individual level, with Yi = 1 when θi < ηi . Solid and broken

arrows represent stochastic and logical dependence, respectively.

The model is fit to observations of phenotyped individuals, hence

the boxes denoting a loop over i = 1, 2, . . . , N individuals.

ALTERNATIVE FORMULATION OF THE LETM

Equation (1) can be reformulated as:

Yi =
{

1 if zi ≥ 0

0 if zi < 0

}
, (5)

where zi is the difference (ηi - θi) between the proximate cue and

the individual threshold. Taking the proximate versus observable

distinction into account (eq. 3), zi is given by:

zi = Xi − θi + εi , (6)

where εi and θi, are independent and normally distributed (eqs. 2

and 4), hence zi is normally distributed with mean (Xi −μ θ) and

variance σ2
P = σ2

θ + σ2
η.

From equations (5) and (6), the LETM can be seen as a

threshold model often used in quantitative genetics to model bi-

nary traits (Falconer 1981; Gianola 1982; Sorensen et al. 1995).

In a threshold model, Yi is distributed as a Bernoulli distribution

with probability pi, where

pi = Pr (Yi = 1) = Pr (zi ≥ 0) = �

⎛
⎝ Xi − μθ√

σ2
θ + σ2

η

⎞
⎠, (7)

where φ is the cumulative distribution function of a standardized

normal distribution.

In this framework, zi is a latent variable often called a liability.

Equation (6) is analogous to a standard “animal model” (Kruuk

2004; Wilson et al. 2010) and splits zi into three terms: Xi the

observed cue is a fixed effect, θi the threshold is a random additive

genetic effect (also called the genetic value or the breeding value

for individual i), and εi is a residual error term. In the animal

model, σ2
P is the total phenotypic variance and the ratio of the

additive genetic variance (σ2
θ) to the total phenotypic variance (σ2

P )

is the heritability (h2) of the latent trait zi. It is also considered as

the heritability of the associated conditional strategy (Lynch and

Walsh 1998).

IDENTIFIABILITY ISSUES

The animal model is known to be prone to identifiability issues

(i.e., difficulty in distinguishing variance components in the esti-

mation process) as it combines several unobservable random ef-

fects (Kruuk 2004; Wilson et al. 2010). Regarding the LETM, the

issue lies in the separation of the genetic effects represented by the

threshold θi from the residual error term εi. When data are avail-

able only for the observable cue Xi and the alternative phenotypes

Yi, there is potential confusion between the genetic variance σ2
θ

and the residual error variance σ2
η. As a consequence, only the total

phenotypic variance (σ2
P ) is identifiable, whereas the proportion of

total variance explained by the variability in the threshold—that is,

the heritability h2 = σ2
θ/σ

2
P —is not. To circumvent this issue, ad-

ditional information is required. To make the animal model iden-

tifiable, pedigree data on individual relatedness are used and the

individual phenotypes are considered as nonindependent because

related individuals share genes. More specifically, the individual

additive genetic effects covary and the structure of the covariance

matrix depends on the relatedness between individuals. In the case

of the LETM, we assume that the individual thresholds θi covary

according to the individual relatedness, equation (2) therefore

becomes:

θi | μθ, σ
2
θ, A∼ MVN (μθ, G), (8)

where MVN is the multivariate normal distribution, θ is the

vector of thresholds (i.e. additive genetic effects), and G is the

variance–covariance genetic matrix. The matrix G is given by

G = A × σ2
θ , where A is the additive genetic relationship ma-

trix and σ2
θ is the additive genetic variance. The additive ge-

netic relationship matrix A contains all the pairwise values of

relatedness (two times the coefficient of coancestry, i.e., 0.5 for

parent–offspring pairs and full siblings, 0.25 for half siblings,

and 0.125 for first cousins; see Wilson et al. 2010 for more

details).
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BAYESIAN STATISTICAL INFERENCE

Bayesian approaches using Markov chain Monte Carlo (MCMC)

algorithms provide a flexible framework for analyzing latent vari-

ables models and their conditional structure (Clark 2004). We

therefore adopted this approach to fit the LETM to data. Specifi-

cally, the Bayesian approach combines the likelihood (i.e., infor-

mation derived from the observed data) and the prior distribution

of the unknown quantities (i.e., knowledge available before the

data were observed) to produce a joint probability distribution of

all model unknowns, conditionally on the observed data (the so-

called joint posterior distribution; see Gelman et al. 2004; Ellison

2004 and McCarthy 2007; for more details about the Bayesian sta-

tistical modeling). If the (noninformative) prior and the posterior

distributions of a given parameter largely overlap, then there is

not enough information in the data to estimate this parameter. The

joint posterior distributions of all the model unknowns, that is, the

parameters (μθ, σ2
θ , σ2

η), the individual thresholds, and the proxi-

mate cues (θi, ηi), were obtained by means of MCMC sampling as

implemented in the OpenBUGS software (Lunn et al. 2009). The

code of the LETM as well as an example of data are available at

(http://www.cefe.cnrs.fr/biom/zips/LETM.txt). We ran two par-

allel MCMC chains and retained 25,000 iterations after an ini-

tial burn-in of 5000 iterations. Convergence of MCMC sampling

was assessed by means of the Brooks-Gelman-Rubin diagnostic

(Brooks and Gelman 1998).

A Bayesian analysis requires specifying prior probability dis-

tributions for the model parameters, that is, the unknown quanti-

ties that are not conditioned by any other quantity in the model

(μθ, σθ, ση; Fig. 1). In our study, all priors were noninformative or

weakly informative (e.g., priors on threshold and proximate cue

variance). The prior on the mean of the threshold distribution μθ

was specified as a normal distribution with mean 0 and a large

variance (1000). To make the assessment of identifiability issues

easier, priors on the standard deviations σθ and ση were not de-

fined directly but rather on the total phenotypic variance and the

heritability h2. Note that because there is a one-to-one transfor-

mation relating (σ2
P , h2) to (σ2

θ , σ2
η), assigning a prior to (σ2

P , h2)

induces a prior on (σ2
θ , σ2

η) as well (Gelman et al. 2004). We used

a uniform distribution between 0 and a large value (100) for σP

as recommended by Gelman (2006) and a uniform distribution

between 0 and 1 for h2.

Simulation Study
We evaluated the performance of the LETM for statistical infer-

ence, with simulated data. The simulation model was the LETM

itself with known parameter values and including three common

genetic structures for the θi’s, that is, full siblings, half siblings,

and a mixture of both. The covariation in the θi’s according to

their relatedness (eq. 8) was explicitly included in the simulation

model. Note that clonal genetic structure can be used (coefficient

of relatedness equal to 1; see Ostrowski et al. 2000 for an illustra-

tion of such an experimental protocol) but we believe our approach

is more realistic regarding data at hand for ecologists and evolu-

tionists. Statistical inference was then derived from the simulated

data to check whether the LETM provided accurate estimates of

the parameters (μθ, σ2
θ , σ2

η) and of the individual latent variables

(the thresholds θi and proximate cues ηi). Genetic information

regarding the θi’s was incorporated in the fitting process.

We generated 20 datasets consisting of 400 individuals and

structured as 20 batches of 20 individuals. Within each batch in-

dividuals were either full sibling, half sibling, or a mixture of

both, whereas between batch, individuals were unrelated. First,

the threshold values were generated from the multivariate normal

distribution with mean μθ = 0 and a genetic variance–covariance

matrix G. The matrix G is the product of an additive genetic rela-

tionship matrix A and genetic variance (eqs. 2 and 8). The additive

genetic relationship matrix A was generated according to each of

the three designs: (1) with values of relatedness of 0.5 between

individuals within a batch in the case of the “full sibling design,”

(2) 0.25 for the “half sibling design,” and (3) a mixture of both in

the “mixture design.” In the latter case, we simulated a pedigree

for each batch from the R package “GeneticsPed” (Bioconductor).

First, we sampled the number of potential breeders in a Poisson

distribution with parameter set to 2 for both sexes (i.e., generat-

ing two potential breeders on average for each sex). GeneticsPed

generated pedigree from potential breeders allowing the recon-

struction of kin groups (mixtures of full siblings and half siblings

and sometimes higher degrees of relatedness such as cousins if re-

quired) and the associated additive genetic relationship matrix A.

The threshold (i.e., genetic) variance was fixed to 0.5. Second,

we generated an observed cue Xi value for each individual i from

a normal distribution with mean 0 and standard deviation 1. For

each individual i, given the value of the observed cue Xi, we gener-

ated its proximate cue ηi from a normal distribution with mean Xi

and variance σ2
η = 0.5 (eq. 3). Thus, the “actual” total phenotypic

variance is 1 and the “actual” heritability of the conditional strat-

egy is 0.5 in the data simulation model. Finally, given the values

of the proximate cue ηi and that of the threshold θi, we assigned

the phenotype indicator values Yi (eq. 1). Note that simulated data

are more variable in the proximate cue than in their threshold,

as it should often be the case with real data (Tomkins and Hazel

2007).

Application to Alternative
Life-History Tactics in the Atlantic
Salmon
The Atlantic salmon is an anadromous species that occupies both

freshwater and the ocean during its life cycle (Verspoor et al.
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2007). In Brittany, the juvenile phase in freshwater lasts one or

two years (Baglinière et al. 1993). Thereafter, fish migrate to the

ocean and return after one or two years to their native stream

to breed. Atlantic salmon are conditional strategists with state-

dependent choice among alternative life-history tactics (Hutch-

ings and Myers 1994; Gross 1996; Thorpe et al. 1998; Garant

et al. 2003; Hutchings 2004; Hutchings 2011). During their first

year of life in their natal river, young of the year (YOY; i.e., indi-

viduals less than one year old) can either migrate to the ocean the

next spring or reside in freshwater for an additional year (Thorpe

et al. 1998). The choice between the migrant versus the resident

alternative tactics (i.e., phenotypes) is related to the size of the

individuals in their first autumn (Nicieza et al. 1991; Thorpe et al.

1998; Thorpe and Metcalfe 1998).

Although size is an observable cue, it is probably best con-

sidered as a proxy for energetic status (Thorpe et al. 1998), that is,

likely a more proximate cue, which is to be compared to a thresh-

old for triggering seaward migration the next spring (Thorpe et al.

1998; Mangel and Satterthwaite 2008; Satterthwaite et al. 2010).

The individual energetic status influences this life-history choice

(Jonsson and Jonsson 2005) because migration to the ocean is pre-

ceded by the smolting process, which is an energetically costly

process of preparing individuals for seawater life (McCormick

and Hansen 1998; Thorpe et al. 1998). The energetic status re-

flects the way that energy is acquired, stored, and used; and is

strongly influenced by the environmental conditions experienced

by each individual (e.g., food availability, temperature regime, or

density of conspecifics; Elliott and Hurley 1997; Forseth et al.

2001; Jones et al. 2002; Imre et al. 2005; Murphy et al. 2006;

Finstad et al. 2010). Under the LETM, we consider migrant ver-

sus resident (at one year of age) as alternative phenotypes and size

in autumn of YOYs as an observable cue indicative of the individ-

ual energetic status (i.e., the proximate cue triggering phenotype

expression).

DATA COLLECTION

In autumn 2006, YOY juveniles were sampled by electrofishing

at 39 stations along the main course of the Scorff. Every fish

captured was measured (fork length, to the nearest 1 mm) and

individually marked with a passive integrative transponder (PIT)

tag (11 mm long, 2.2 mm in diameter) inserted into the peritoneal

cavity according to the protocol described in Acolas et al. (2007).

One-year old seaward migrating juveniles (smolts) previously

PIT tagged were identified during their downstream migration in

the spring of 2007. They were captured at two successive traps

located at the lower end of the river system below all sites in which

YOY were marked. At both facilities, their individual PIT tags

were identified. Eventually, PIT-tagged anadromous salmon were

recaptured in 2008 and 2009 when returning into the Scorff river

after one or two years at sea. They were sampled at the Princes

Mill facility in a trap designed to catch upstream migrating adults.

PIT tagged resident juveniles, that is, future two years old smolts,

were identified in autumn 2008 using sampling by electrofishing

according to same protocol used for the YOY the previous year.

Two-year old smolts were also recaptured the following spring

(2009) and identified by their PIT tags.

Here, we considered the set of YOY juveniles marked in

autumn 2006 and recaptured later on (n = 104). For each of

them, we recorded both its phenotype (migrant vs. resident) and

its observable cue (fork length at first autumn).

MODELING

For each individual i, the proximate cue ηi (energetic status) was

assumed to be normally distributed with the mean of its fork length

at first autumn Fli (the observable cue) and standard deviation ση

(eq. 3). The alternative phenotype indicator Yi (eq. 1) takes the

value 1 if individual i migrates to sea at one year of age, and 0 if

it stays an additional year in fresh water.

As YOY juveniles tend to stay close to their natal spawning

nest (Beall et al. 1994; Einum et al. 2008; Foldvik et al. 2010), we

assumed that YOY captured in the same station in autumn could

be all brothers and sisters (i.e., full-siblings’ genetic structure) or

half brothers and half sisters (i.e., half-siblings’ genetic structure)

or, a mixture of both (i.e., mixtures’ genetic structure). These as-

sumptions were made to illustrate the greater genetic similarity of

YOY salmon within, than between, sites. The mixture design is

probably the most realistic option because of complex mating pat-

terns in Atlantic salmon with both sexes having several partners

(Thériault et al. 2007). In the mixture design, we assumed that the

number of potential breeders was low at each sampling stations

and that males outnumbered females (Jordan and Youngson 1992;

Grimardias et al. 2010). As the pedigree of the fish sampled is

unknown, we generated 20 mixtures’ genetic structure (i.e., addi-

tive genetic relationship matrix A) according to the same protocol

as in the simulation study (see “Simulation study” section above)

with each station corresponding to a batch made of a mixture of

full siblings, half siblings (and first cousins if required).

Results
SIMULATION STUDY

Whatever the genetic structure considered, the comparison of

posterior and prior distributions showed that the information

contained in the data led to considerable updating of the prior

distributions. The LETM properly estimated the threshold mean

μθ and the total phenotypic variance; the posterior medians of

these parameters were close to their true value (Fig. 2). The pos-

terior distributions of σ2
θ and σ2

η were well estimated too indicat-

ing that these parameters were identifiable. The heritability h2

EVOLUTION APRIL 2012 1 0 0 1



MATHIEU BUORO ET AL.

Figure 2. Posterior distributions of the latent environmental threshold model parameters for each genetic structure (full siblings, half

siblings, and mixture) and for 20 replicate datasets. The median (black point) and the 95% posterior probability interval (solid lines) are

displayed based on 25,000 Markov chain Monte Carlo samples. The actual values are also displayed (dashed lines).

could therefore be estimated: its posterior distribution was much

narrower than its prior and the actual value was very close to

the posterior median (Fig. 2). In fullsibs design, uncertainty was

smaller than in halfsibs design confirming that the power to infer

from half-sibling families is less than from full-sibling families

(Roff 1997). Uncertainty in the mixture design was intermediate.

At the individual level, the proximate cue ηi and the threshold

θi were estimated without systematic bias and the actual simulated

values fell in most instances within the 95% posterior probability

interval (PPI, also called credible interval, which is defined as

the interval between the 2.5 and 97.5 percentiles of the posterior

distribution; Fig. 3).
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Figure 3. Posterior distributions of proximate cue ηi and threshold θi for the latent environmental threshold model for one randomly

chosen individual in each of the 20 batches of 1 (out of 20) replicate datasets. The median (black point) and the 95% and 50% posterior

probability interval (solid lines and bold lines, respectively) are displayed based on 25,000 Markov chain Monte Carlo samples. The actual

values are also displayed (stars).

CASE STUDY

Using the LETM framework, we were able to obtain precise es-

timates of the mean latent threshold μθ and the total phenotypic

variance whatever the genetic structure considered (Fig. 4). The

posterior distribution of the heritability h2 showed the information

contained in the data led to substantial updating of the prior distri-

bution, indicating that σ2
θ and σ2

η could be identified. h2 posterior

distribution favors a high heritability value with a posterior mean

of approximately 0.77. In agreement with the simulation study, re-

sults were very similar between genetic designs. In fullsibs design,

uncertainty was smaller than in halfsibs design whereas mixture

design was intermediate depending on proportions of fullsibs and

halfsibs.

Estimates of the proximate cue and of the threshold at the in-

dividual level were also obtained (Fig. 5). Again, results were very

similar between genetic designs. YOY salmon appeared much

more variable in the proximate cue than in their threshold. The

proximate cue is a conceptual quantity and, as such, its scale

is arbitrary. Here, given the measurement error structure of the

LETM (eq. 3), its scale is the same as that of the observed cue.

For example, a proximate cue 90 can be interpreted as the mean

energetic status of a YOY with a 90-mm-long fork in autumn. For

the same reason, the mean threshold μθ can be either interpreted

as the energetic status (proximate cue; eq. 5) or the fork length in

autumn (observed cue; eq. 6) of a YOY salmon having an equal

probability of becoming migrant or resident.

Discussion
Conditional strategies are the most common form of discrete

phenotypic plasticity within species (Gross 1996). Understand-

ing how plasticity, in general, and these strategies, specifically,

evolve and are maintained by natural selection is crucial for our

understanding of phenotypic and life-history evolution (Pigliucci

2005). The ETM accounts for both genetic variation and environ-

mental cues that affect phenotypic expression. For this reason, in

their review of the theoretical models that have been proposed

to understand the evolution of phenotypic plasticity in the con-

ditional strategy framework, Tomkins and Hazel (2007) argued

that the ETM is “the best model available currently for under-

standing the evolution and maintenance of conditional strate-

gies.” Nonetheless, the ETM has rarely been applied to the

study of adaptive phenotypic plasticity both in the wild (Ede-

line 2007 refers to it but in a rather qualitative way) and under

EVOLUTION APRIL 2012 1 0 0 3



MATHIEU BUORO ET AL.

Figure 4. Posterior distributions of the latent environmental threshold model parameters for Atlantic salmon data from the Scorff.

Parameters for each genetic structure, that is, full siblings, half siblings, and mixture is shown. For the later, 20 putative mixtures are

represented. The median (black point) and the 95% and 50% posterior probability interval (solid lines and bold lines, respectively) are

displayed.

controlled experimental conditions (Ostrowski et al. 2000). We

believe this is because the ETM was not conceived as a statistical

tool to deal with observed data. Here, we developed a statistical

model, the LETM that includes the ETM as its core theoretical

process.

Several methods exist to estimate heritability (see Roff 1997

for a review). However, most of them are not appropriate for as-

sessing heritability of conditional strategies with empirical data,

especially when collected in the wild. Indeed, they have been

developed to analyze data obtained in controlled/laboratory con-

ditions involving no environmental variations and perfect knowl-

edge of the pedigree, including sometimes parents’ phenotype.

Our approach does not suffer from these restrictions and can be

applied with only relatedness data although the parents of the ob-

served individuals are unknown. The “Fullsibs’method” (i.e., an

analysis of variance based approach) is the only classical method
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Figure 5. Posterior distributions of proximate cue ηi and threshold θi for the latent environmental threshold model for one individual

randomly picked in each station along the main course of the Scorff and for each genetic structure, full siblings, half siblings, and mixture.

For the later, one mixture was randomly picked out of the 20 putative mixtures. The median (black point) and the 95% and 50% posterior

probability interval (solid lines and bold lines, respectively) are displayed.

Figure 6. Mean and standard deviation of the heritability estimates calculated using the classical “Fullsibs methods” (see Roff 1997) for

the 20 replicated datasets used to test the latent environmental threshold model. The actual value is also displayed (dashed lines).

listed in Roff (1997) that can be applied to our data. We used it (see

usual formulas in Roff, 1997) to analyze our simulated datasets

(fullsibs design). In contrast with our LETM, this method sys-

tematically underestimates heritability of conditional strategies

(Fig. 6).

The originality of our approach lies in the observable ver-

sus proximate cue distinction, with the latter being unobserv-

able but effectively triggering the phenotypic expression. As

a consequence, the ETM becomes a fully embedded process

within the LETM, linking the observable environment to the

observable phenotype. We take advantage of this feature to ex-

plicitly separate the genetic component from the environmen-

tal component involved in a conditional strategy. The LETM al-

lows the estimation not only of the parameters of the threshold
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distribution, but also of the proximate cue and the threshold at

the individual level. As the LETM is a statistical model inspired

by quantitative genetics, individual relatedness data can be used

to circumvent the identifiability issue affecting the heritability

of the conditional strategy. The accuracy of the genetic threshold

variance estimates, a key parameter for assessing the evolutionary

potential of a conditional strategy (Tomkins and Hazel 2007), is

subsequently improved. When data are only available for the alter-

native phenotypes and the observable cue, the LETM is not fully

identifiable.

The proposed distinction between observable and (unobserv-

able) proximate cues is supported by Ostrowski et al.’s (2000)

study on the snail Bultinus truncatus. They tested the ETM in a

set of experiments in which both the genotype and the environ-

ment were controlled. In contrast with what was expected under

the ETM, they observed significant random variation in the phe-

notypic expression for any environment × genotype combination

they used. They hypothesized that microenvironmental, uncon-

trolled variation in the threshold explained this residual random

variation. We contend the proximate versus observable cue di-

chotomy is a more sensible alternative hypothesis. In the case of

Ostrowski et al. (2000)’s study, it would mean that the organisms

assess temperature—the observable environmental cue that is ex-

perimentally controlled—through an unknown proximate mecha-

nism with some random “measurement error.” The proximate cue

would then only be correlated with temperature.

Despite the introduction of the proximate versus observable

cue distinction, the LETM is still a relatively simple model in

the version we presented here. This transpires from its formu-

lation as specific case of an animal model (eq. 6; see Kruuk

2004; Kruuk and Hill 2008; Wilson et al. 2010). Building upon

the LETM outlined here to incorporate more complex structures

could allow further improvements in parameter estimation. When

biological traits are used as an observable environmental cue, the

latter can have a genetic component (Gienapp and Merilä 2010),

which could be correlated to the genetic threshold. For example,

in salmonids, fish size is considered as an observable environmen-

tal cue, but it has also a genetic basis and is heritable (Garant et al.

2003; Thériault et al. 2007; Carlson and Seamons 2008; Serbezov

et al. 2010; Varian and Nichols 2010). There is no theoretical

reason to restrain the complexity of the animal model within the

LETM framework for improving its biological realism. The sta-

tistical ecologist working with empirical data, however, might be

constrained by identifiability issues, given the information avail-

able in the data in hand. This is especially true for the LETM due

to its threshold structure. Indeed, for the variable zi (eq. 6), we

have only censored information through the observation of the

phenotype (i.e., zi is positive or negative, eq. 5) and not an ex-

act measurement as is usual when the quantitative trait is readily

observable. This difficulty is illustrated in the simulation experi-

ment and the salmon case study. With a large number of simulated

individuals, reasonably precise heritability estimates could be ob-

tained, indicating that the model was identifiable. In contrast, less

precise estimates of heritability were obtained from our case study

data (posterior mean h2 = 0.77, SD = 0.18 for fullsibs design),

which was based on a much smaller number of individuals (n =
104) suggesting identifiability issues. Using an experimental set-

ting of common rearing of half-sibling families (866 individuals),

Páez et al. (2010) had also low precision in heritability estimates

for a binary “propensity to migrate” in Atlantic salmon (h2 =
0.77, SD = 0.33). Similar results were obtained from a simula-

tion with 20 groups each made of five brothers and sisters with

heritability fixed to 0.8 (results not shown). The presence of addi-

tive genetic variance suggests that life-history tactic for migration

can respond to selection, whether natural and/or human induced,

through evolution of the threshold (Hutchings 2011; Páez et al.

2010). At the same time, in our case study the additive genetic

variance of the threshold (σ2
θ) is low compared to the total variance

of the proximate cue, that is, the sum of the empirical variance of

the observed cue (σ2
X = 168.7) and σ2

η. This is consistent with the

conditional strategy framework for phenotypic plasticity, which

implies the adoption of a tactic (i.e., a phenotype) is primarily due

to environmental influence.

Although many theoretical approaches have been proposed

for studying evolution of phenotypic plasticity and its conse-

quences on adaptation and persistence capacities of population

(see Lande 2009; Reed et al. 2010), there is still a paucity of

ecological empirical studies assessing the evolution of pheno-

typic plasticity in the wild (Nussey 2005; Nussey et al. 2007;

Charmantier et al. 2008), and more particularly of conditional

strategies (but see Ostrowski et al. 2000 under controlled condi-

tions; Piché et al. 2008 and Páez et al. 2010). The LETM opens up

interesting prospects for the study of phenotypic plasticity using

observational data. It is a generic tool that could be applied to a

wide range of taxa and to different forms of conditional strate-

gies, for example, the induction of defenses against predators

(Hammill and Rogers 2008), polyphenic traits in insects (Moczek

2010; Tomkins and Moczek 2009), filial cannibalism (Takeyama

et al. 2006), and alternative reproductive tactics (Gross 1996;

Piché et al. 2008; Pitnick et al. 2009). By incorporating cues

that allow organisms to match their phenotypes to the conditions

encountered, it improves our ability to predict how populations

will respond to environmental changes (Reed et al. 2010). It also

facilitates the quantification of patterns of quantitative genetic

variation and heritability of conditional strategies. Although full-

siblingship and/or half-siblings genetic structure was assumed

both in our simulated data and in our illustrative salmon case

study, the LETM can be applied to any other pedigree structure,
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keeping in mind that “the power of a quantitative genetic anal-

ysis (also) depends crucially on the pedigree structure” (i.e., its

connectedness; Wilson et al. 2010).

In the context of rapid and global environmental change,

both evolution and plasticity are likely to prove critical for species

adaptation (Gienapp et al. 2008). The joint appraisal of both phe-

nomena from observational data is required, for which the use and

further developments of the LETM should help.
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