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An Integrated Analysis of Multisite
Recruitment, Mark-Recapture-Recovery

and Multisite Census Data

R.S. Borysiewicz, B.J.T. Morgan, V. Hénausx, T. Bregnballe, J.-D. Lebreton,

and O. Gimenez

Abstract The statistical analysis of mark-recapture-recovery (MRR) data dates

back to the 1960s, when the foundation was laid for stochastic models, fitted to

data by the method of maximum likelihood. There have been a number of develop-

ments which have proved to be extremely influential. Two of these are: the extension
of MRR data and modelling to multi-site inference, and the integrated modelling
of single-site MRR and census data. The aim of this study is to unite these two
independent research programs, in order to enable effective integrated analysis of
multi-site MRR data and multi-site census data. Census data can be described by
a state-space model, and the likelibood is formed using the Kalman filter. By mak-
ing use of movement information provided by MRR data, it is possible to avoid
flat likelihood surfaces, thus allowing estimation of site-dependent parameters. This
increases the precision of dispersal parameters and allows estimation of parameters

inestimable from MRR studies alone.
i'the area of integrated population analysis by

This paper extends research within
_site census data coupled with multi-site

developing methods for analysing multi
capture recapture data. The methodology is explored using a simulated data set, the

structure of which is motivated by a dataset of Great cormorants (Phalacrocorax

carbo sinensis).

Kalman Filter - Mark-Recapture-Recovery Data-

Keywords Integrated Analysis -
o sinensis - Recruitment - State-Space Models

Multistate Models - Phalacrocorax carb

1 Introduction

1.1 Mark-Recapture-Recovery Models

The development of models for mark-recapture-recovery (MRR) data began in the

1960s with the Cormack-Jolly-Seber (CJS) model (Cormack 1964; Jolly 1965;
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Seber 1965), which estimates survival and capture rates from recapture data of ap
animal population collected at a single site. This model initiated a surge of interest
into constructing models for this type of data and numerous extensions have since
been developed. These include incorporation of categorical variables for character-
ising individuals and analysis of multiple data sets using group effects (Lebreton
et al. 1992). Also, models that allow the integrated analysis of both recaptures of
live animals and recoveries of dead animals have been developed (Burnham 1993;
Lebreton et al. 1995; Barker 1997; Catchpole et al. 1998).

A further development which has enhanced the potential of MRR data analysis
has been the extension of the CJS model to the multi-site framework. First estab-
lished by Arnason (1972, 1973) and later developed by Schwarz et al. (1993) and
Brownie et al. (1993), this extension allows estimation of survival and transition
probabilities as well as recapture parameters and parameter redundancy of these
multi-site models has been assessed in Gimenez et al. (2003). The Arnason-Schwarz
model has been further generalised to multi-state models (Lebreton et al. 1999) and
multi-event models (Pradel 2005). A number of computer software packages for
fitting such models are available, including program MARK (White and Burnham
1999) and M-Surge (Choquet et al. 2004).

1.2 Integrated Population Analysis

Integrated population analysis combines data from a variety of sources. Integrating
MRR and census data was first proposed by Besbeas et al. (2002) as a method for
estimating productivity, otherwise not estimable from either type of data alone. It is
possible to form the likelihood for the MRR data as outlined in Section 1.1. A state
space model of the census data comprises two parts — the observation equation and
the underlying state equation. Gaussian assumptions provide the key to the accessi-
bility of these models and makes it possible to form the likelihood, using a recursive
procedure known as the Kalman filter (Harvey 1989; Durbin and Koopman 2001).
Assuming independence, it is possible to combine the MRR and census likelihoods
to provide one global likelihood which can be optimised to provide maximum like-
lihood estimates of all parameters.

A multivariate normal approximation to the exact MRR likelihood (Besbeas et al.
2003) more efficiently integrates both data sets. Further, Brooks et al. (2004) intro-
duced a Bayesian approach, while Besbeas et al. (2005) provides a discussion on
further possible advances. Besbeas et al. (2008) gives details of the Kalman filter
methodology, including initialisation procedures in ecological applications and a
discussion of the break-down of independence assumptions and the effects of intro-
ducing overdispersion in the state space model.

The integrated analysis performed in this paper is on a simulated multi-site
data set which contains both breeding and non-breeding individuals. Recruitment,
defined as the progression from a non-breeding state to a breeding state, is a param-
eter of biological interest, and it is this type of transition, along with dispersals
between study areas which will be estimated from the contribution of MRR multi-
site/state and multi-site census simulated data.
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2 Motivation for the Study

This investigative simulation study was motivated by data on cormorants, Phalacro-
corax carbo sinensis, collected by the National Environmental Research Institute in
Denmark. P. carbo is the most widely distributed of all cormorants — known to breed
in North America, Europe, Asia, Africa and Australasia. The studied cormorants
belong to the Eurasian subspecies P. carbo sinensis. This subspecies is smaller than
the North Atlantic subspecies P. carbo carbo, and often breeds and winters inland
(Hatch et al. 2000).

The data were collected as part of a larger ringing programme started in Denmark
in 1977, which continues to the current day. The data correspond to a period of pop-
ulation expansion (1981-1993) in 6 colonies located 32-234 km apart. Recapture
and recovery data from this period were analysed in detail by Henaux et al. (2007)
who estimated dispersal and recruitment.

The oldest of the six colonies, Vorsg, was established in 1944 and along with
Ormg (OR, est. 1972) and Brendegard Sg (BR, est. 1973) comprised the only
colonies present in Denmark at the start of the ringing study. Colonies Toft Sg (TO),
Dyrefod (DY) and Méigegerne (MA) established during the study in 1982, 1984 and
1985 respectively.

14,018 cormorant chicks were marked between 1981 and 1991 with a standard
metal ring on one leg and a coloured plastic band, engraved with a unique com-
bination of 3 alphanumeric characters, on the other leg. Resightings of the ringed
cormorants took place from 1983 to 1993. Resightings were of breeding cormorants
only and these breeders were identified using strict biological criteria identified in
Henaux et al. (2007). Recoveries spanned a large geographical area, ranging from
northern United Kingdom to Southern Algeria and from western Spain to eastern
Romania. Recoveries of birds for which only one ring was found were excluded to
avoid negative bias due to ring loss.

Each of the six colonies were censused in early May. Data consisted of a count
of all occupied nests. The location of nests varies between colonies: in MA nests
were built on the ground, in BR nests were found in trees and on the ground while
in the other colonies all nests were in trees.

Based on the parameters of this real-life investigation, this simulation study
demonstrates the statistical gains of performing integrated population modelling
on multi-site data and also the ease with which even complex models, such as the
recruitment structure, can be incorporated into an integrated population modelling
framework. ’

3 Methods

.

3.1 Formation of the Mark-Recapture-Recovery Likelihood

The closed-form likelihood for Arnason-Schwarz models is derived in King and
Brooks (2003). Suppose captures or recaptures occur for animals age j € J =
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{0, ..., J} and the study site is split into R regions. The set of model parameterg
includes:

¢;(r) is the probability that an animal in location r at age j survives until age
J+ 1

Aj(r) is the probability that an animal in location r at age j dies and is recovered
dead before age j + 1;

pj+1(r) is the probability that an animal in location r at age j+1 is recaptured;
and

¥;(r, s) is the probability that an animal in location r at age j moves to location
s by age j + 1 given that it is alive at age j + 1.

The encounter history of each animal can be broken down into three partial histo-
ries. These are: last live encounters and beyond, consecutive live sightings and dead
recoveries. The likelihood can similarly be deconstructed into these elements and
full details of the likelihood construction can be found in the Appendix.

3.2 Formation of the Census Likelihood

3.2.1 The State Space Model and the Kalman Filter

The Kalman filter is a recursive procedure for computing the optimal estimator of a
state vector at time 7, based on the information available at time ¢ (Harvey 1989). By
imposing Gaussian assumptions it is possible to calculate the maximum likelihood

estimates of unknown model parameters. The general linear Gaussian state space
model is:

yr = Z,a; + ¢ (D
Ay = Ty + 1y (2

with €~ N(O, Ht) and n ~ N(O, Qt )
Equation (1) is the observation equation and (2) is the state space equation. The
state vector, oy, is unobserved and y; is a vector of observations. The matrices

Z,,T,, H, and Q; are assumed to be serially independent and independent of each
other at all times.

The initial state vector ¢ is assumed to be N(a;, Py) independently of €1, .. ., €,
and 1y, ..., .. In practice, some or all of the matrices will depend on elements of
an unknown model parameter vector.

The aim is to obtain a conditional distribution of oy given Yy = {y1, ..., i}

Since all distributions are normal, conditional distributions of subsets of variables
given other subsets are also normal; the required distribution is therefore determined
by a knowledge of a;1 = E(a;411Y;) and Py = Var(o,4|Y,).
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The Kalman Filtering derives the filtering equations and may also compute
the smoothed estimates of the error vectors ¢; and 7;, given all the observations
Viy oo Yne Denoting the parameter vector by 6 and using our previous assumptions
of normality, the likelihood is

LO | )= pO1. - 90 | 0) = pO1 | O] | pO#IYi-1, 6)
t=2

and the log-likelihood is given by

log L9 | y) = Y log p(y:|¥i-1,6)

t=1

where p(y1|Yo,0) = p(y1). Following substitution of appropriate parameters we
obtain

n 1 _
logL(@|y)= ——ZglogZJr -3 Zlog(lF,l + y F; Yo 3

t=1

This likelihood is known as the prediction error decomposition form of the like-
lihood since v, can be interpreted as a vector of prediction errors, y, — E(y:). F;
is the covariance matrix of the conditional distribution of the observations and both
vectors v, and matrix F, are calculated directly from the Kalman filter.

3.2.2 Ecological Application of the Kalman Filter

Define N;7 to be the number of animals in state x = {N, B} (where N denotes
non-breeder and B denotes breeder) in site i = 1, 2, 3 at time ¢. State vector « is

o = (VY NY NY NE NP NP),
then following the notation of equation (1), since only breeders are observed ‘

000100
Z,=1{000010],Vz.
000001

Vector y, is the observed census data and the observation error, o, is assumed
to be constant over time and site; we discuss relaxing this assumption later. The
underlying state space equation is governed by a Leslie matrix (Caswell 2000), and
the explicit form of the Leslie matrix for this application is given in Section 3.4.

The Kalman filter is initialised by specifying values for a; and P, the mean
and covariance matrix of the initial state vector, respectively. Following Besbeas
and Morgan (2008) we initialised the filter using the stable age distribution of the
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population. Other initialisation procedures were implemented on the same simulated
data set and the model structure was robust to the assumption of the stable age
distribution start.

3.3 Simulation of Multisite Recruitment Data

150 simulated non-breeding animals were marked at each site and MRR data were
simulated on this cohort for seven years. All ringing was carried out on non-breeders
and recaptures were of breeders only. Recapture and survival probabilities were site-
and state-dependent and the recovery probability was independent of recovery site.
Three types of transition were considered, which reflect the model structure used by
Henaux et al. (2007):

~ natal dispersal: the movement of a non-breeder from one geographical location
to another whilst remaining a non-breeder.

- recruitment: the accession from non-breeder to breeder.

~ breeding dispersal: the movement of a breeder from one geographical location
to another.

Cormorants can only start breeding from age two and remain capable of breeding
in every subsequent year (Henaux et al. 2007), thus, within this simulation study we
assume that animals start recuiting at age 2 and that all animals have recruited by
age 5 and once a breeder, they remain a breeder until death. Only breeding birds
are ever recaptured and hence constraints applied to natal dispersal and recruitment
need to be enforced in order to ensure identifiability of all transitions, and so it is
assumed that natal dispersal occurs only in the first year of life and subsequently
recruitment then occurs at a single site and no further dispersals occur between sites
until the animal has reached the breeding state.

The assumptions, defined above, are in addition to the traditional Arnason-
Schwarz model assumptions, and in order to proceed with integrated analysis the
MRR data and census data must be independent. Violation of this assumption can
lead to biased estimates, as shown in Besbeas et al. (2008).

The simulated census data were site-specific with structure governed by a Leslie
matrix. Twenty years of site-dependent census information were simulated which,
like the cormorant data set, was of breeding birds only. Parameter values were cho-
sen to reflect biologically reasonable values. Fecundity (defined to be the number of
offspring multiplied by the probability of reproduction ina particular year) was fixed
at a constant value of 1.2. Fecundity however could be adapted to allow for time,
site or density dependence. Transition, survival, capture and recovery probabilities
were set to values which were biologically reasonable, with non-breeder survival
(0.6) assumed lower than breeder survival (0.8) and recovery rates (0.4) lower than
recapture rates (0.7). Dispersal rates varied between 0.05 and 0.3 between sites.
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3.4 Specification of the Leslie Matrix

Suppose we denote the three non-breeding states as 4, 5 and 6 and the three breed-
ing states as 1, 2 and 3 for the respective three sites in each case. The parameters
involved in the MRR likelihood, following the notation of Section 3. 1, are:

Survival Probability: ¢;(r) = ¢(r) for all Jr»forr € {1,2,3,4,5, 6}, where
r € {1, 2, 3} denotes breeder survival and r € {4, 5, 6} denotes non-breeder
survival;

Recovery Probability: A;(r) = X for all j and r;

Recapture Probabilities: p;1(r) = p(r) for all Jandr € {1,2,3};

Natal Dispersal: (r, s) forr, s € {4, 5, 6}

Breeding Dispersal: ¥ (r, s) forr, s € {1,2,3}

Recruitment: Y2, (r,r — 3) forr € {4, 5, 6}

Non-Maturation: Y, (r, r) forr € {4, 5, 6}

The structure of the Leslie matrix for the state space model, using the notation
above is then:

¢ Y244, 4) 0 0 FO@U1(4,4) fO(S)Yi(5,4) fP(6)Y1(6, 4)
0 ¢(5)¥2+(5,5) 0 FOBU(4,5) fo(5)n(S, 5) fH(6)Y (6, 5)
0 0 P(6)¥24(6,6) fH()Y1(4,6) FH(S)V1(5, 6) Fd(6)¥1(6, 6)

¢ Y244, 1) 0 0 oYL 1D oy, 1)  ¢B)y(3, 1)
0 P(5)¥2+(5,2) 0 P(DY(1,2) ¢y (2,2) ¢B3)(3,2)
0 0 P(0)¥24(6,3) ¢(MY(1,3) ¢ (2,3) ¢B)N(3,3)

4

where f is the fecundity parameter.

3.5 Computational Implementation

MATLAB was used to code the MRR likelihood and the Kalman filter which con-
structed the census likelihood. The global likelihood, formed by multipliying the
two likelihoods, assuming independence, was then optimised using a built-in opti-
misation method within the MATLAB software. The logistic link was used to con-
strain recapture, recovery and survival probabilities between 0 and 1, whilst the
generalised logit link, which is an extended logit function was used to ensure that
as well as transition probabilities being between 0 and 1, appropriate combinations
of the transitions added to 1. Further details of the use of the generalised logit link
can be found in Choquet et al. (2005). Figure 1 demonstrates the formation of the

appropriate likelihoods and also the common parameters used to model each type
of data. '
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MRR Data Census Data
State Space Modet
Arnason-Schwarg Model l
Katman Filter
}
Loz (‘D: AP, "P) chms(q), Y, f.o )

Losonar (CD,A, PY, fo )

®,AP, ¥, 1,6

Fig. 1 Directional acyclic graph showing how two types of data (MRR data and census data)
are combined to obtain global estimates of parameters: & — survival parameters; A — recovery
parameters; P — recapture parameters; ¥ — transition parameters, f — fecundity, o — observation
error. The Arnason-Schwarz model is used to form the MRR likelihood whilst the Kalman filter is
applied to a state space model to form the census likelihood

4 Results

The maximum likelihood estimates (MLEs) are shown in Table 1. There were no
issues of either intrinsic or extrinsic parameter redundancy in the integrated model
structure, so the MRR data analysed alone is able to estimate all survival, transition
and capture/recovery probabilities. Once the MRR data were combined with cen-
sus information we were also able to estimate the fecundity of the population. The
addition of census data improves the precision of capture and recovery probabilities
slightly (Table 2), however the change is small as the only information added by
the census data is through the correlation structure of these parameters. The largest
improvement in precision is for the breeding dispersal parameters, with no improve-
ment in the natal dispersal parameter. This is most likely due to the fact that natal
dispersal only appears in the Leslie matrix as a product with the unknown parameter
fecundity. Thus, precision is not improved without compromising the precision of
the fecundity parameter. Attempting to estimate parameters from the census data
alone results in parameter estimates with low precision due to the census data pro-
ducing a flat likelihood (the fecundity estimate from census data alone is 1.77 with
standard error 14.854), however once the census data are combined with MRR data,
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Table 1 The maximum likelihood estimates and associated standard errors calculated by a finite

difference method, of the MRR data used alone and the integrated MRR and census data

587

Integrated  Integrated

Parameter True Value  MRR Estimate MRR SE  Estimate SE

¢(1,2,3) 0.80 0.826 0.0312 0.820 0.0279
$4,5,6) 0.60 0.587 0.0211 0.586 0.0211
p 0.70 0.714 0.0396 0.712 0.0379
¥(@4,5)=v¥“4,6) 0.10 0.078 0.0395 0.073 0.0350
¥v(5,4) =¥, 6) 0.20 0.189 0.0441 0.193 0.0418
¥(6,4) = ¥(6,5) 0.05 0.024 0.0227 0.025 0.0236
¥(1,2)=v¥(,3) 0.20 0.248 0.0367 0.209 0.0213
v, 1) =9%@2,3) 0.10 0.083 0.0283 0.106 0.0194
¥3, 1) =v%3,2) 0.30 0.332 0.0351 0.325 0.0279
Y@, 1)=¥6,2= 060 0.593 0.0593 0.601 0.0559

¥(6.3)

A 0.40 0.406 0.0258 0.405 0.0258
f 1.2 - - 1.167 0.1420

Table 2 The mean square errors of the parameters for the MRR data used alone and the integrated

MRR and census data

Parameter MSE (MRR Data Alone)  MSE (Integrated Data)
¢(1,2,3) 0.0752 0.0525
¢4,5,6) 0.0106 0.0110
D 0.0422 0.0375
¥(4,5) =94,6) 0.4436 0.4621
¥(5,4) =¥(5,6) 0.1504 0.1273
¥(6,4) = ¥(6,5) 1.6180 1.5683
w(1,2) = y¥(l,3) 0.2402 0.0362
w2, 1) =v%(2,3) 0.2184 0.0594
v(3,1)=v%@3,2) 0.1733 0.1056
Y4, 1) =¢(6,2) =¥(6,3) 0.0612 - 0.0544
A 0.0120 ~ 0.0119
f - 0.0156
o - 0.0232

the fecundity parameter estimate was precise (MSE = 0.0156). Adult survival gains
some precision whilst juvenile survival does not.

The generalised variances of the common parameters of the MRR analysis and
the integrated analysis are 3.64 x 10713 and 2.80 x 10~!7 respectively. Thus, com-
bining the additional census data has considerably improved the overall precision of
common parameters and allowed fecundity to be estimated with good precision.

The combined analysis has also accurately estimated the observation error of
the census data. Though it was assumed constant for this simulation, it is interest-
ing to allow observation error to vary proportionally to population size, e.g. €, ~
N(0, y;_10?) (Tavecchia et al. 2006). Similarly, complex fecundity structures, such

as density dependence could also be considered.~
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5 Conclusions

These procedures are extensions of the single-site integrated population analysis,
MRR is now a widely used type of data, with even advanced MRR models in com.-
mon use. Frequently, however, census information is collected concurrently with
MRR data. Until now, census data have been analysed separate from the MRR data,
thereby sacrificing their shared information. The methodologies described in this
paper are simple to implement and can be completed ‘post-hoc’ by using a simple
multivariate normal approximation to the MRR likelihood; if only MLEs and asso-
ciated standard errors are available, they can be used to construct an approximate
diagonal variance-covariance matrix to facilitate analysis and complicated popula-
tion transitions can be incorporated into the state space model.

The potential of single-site integrated population analysis has been assessed in
numerous studies as a method for estimating previously inestimable parameters.
This simulation study has shown that not only does multi-site/state integrated pop-
ulation analysis estimate these parameters, but also greatly improves the precision
of some parameters. This is obviously desirable in complex models with a large
number of parameters that are frequently estimated with low precision.

Single site integrated population modeling with one dimensional census informa-
tion allows the estimation of additional parameters, however little change is made
to the precision of common parameters. By incorporating multi-dimensional census
data, in terms of site or state-specific census data, we have shown that this extra
information has greatly improved the precision of parameters within the model.

Acknowledgments We wish to thank Jens Gregersen and Lars Abrahamsen for their great effort
in ringing and recording breeding attempts of colour-ringed cormorants.

Appendix

The Construction of the Closed-Form Arnason-Schwarz Likelihood

This appendix gives an outline of the construction of the explicit MRR likelihood
first derived in King and Brooks (2003). Recall that the encounter history of an
animal can be broken down into three partial histories: last live encounters and
beyond, consecutive live sightings, dead recoveries. The likelihood can similarly
be deconstructed into these elements. The following derived probabilities facilitate
the likelihood construction.

Let x(;.x(r) denote the probability that an animal is seen for the last time at
age j € J inlocation r € R, and would be age k at the end of the study, with
J <k <J.Then,

1 (=K
XG0T =11 =) [1 = Xer ¥ {1 - Pi+1OIXG+1,06)]
—{1 = ¢;(M}r;(r) - <k
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O, J)(r s) denotes the probability that an animal in locationr € R atage k € J
remains unobserved until it is subsequently resighted in location s € R atage j +1,
for0 <k < j=<J— 1. Then,

O, jy(t, 8) = pj11(8) Q. j(, 8),

where Q, j)(, s) denotes the probability that an animal migrates fromregionr € R
atage k € J tolocations € Ratage j+ 1,for0 <k < j < J—1,andis
unobserved between these ages, and is given by

i)Y (r, 5) (k=)

Cen(r:9) = {¢k<r) YL = P OW(, D Qus 0, 5) (k< )

D, j)(r) denotes the probability that an animal is recovered dead in the interval
(j, j+ 1) given that it is last seen at age k < j inr € R and is given by

{1 =¢;"lr) (k=1J)

Dii(r) =
4 {Z}‘;I{l—¢>,~<Z>}x,-<z>{1—p,-(l)}Qk,j_l(r,n & < j)

The following sufficient statistics which are obtained from the encounter history
data are then formed:

v(j,k(r) denotes the number of animals that are recaptured for the last time in
location r € R aged j and would be aged j < k < J at the end of the study;

n, j)(r, s) denotes the number of animals that are observed in locationr € R
at age k and next observed alive.in location s € R at age j + 1; and

d, jy(r) denotes the number of animals recovered dead between ages j and
j + 1 that are last observed alive at age k < j in location r € R.

The likelihood function has the form given below:

J—-1J-1
L@, n,d) =[] H H{x<, o} T [ [{Dwp}en®
reR | j=0k=j k=0 j=k
J—1J-1
[T TTTT(00 e
k=0 j=k seR

where 0 comprises the model parameters {®, A, P, ¥} and we denote our MRR
likelihood by. Ly rr(®, A, P, ¥). =
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