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Summary

1. Abundance is a key quantity for conservation and management strategies but remains

challenging to assess in the field. Capture–recapture (CR) methods are often used to estimate

abundance while correcting for imperfect detection, but these methods are costly. Occupancy,

sometimes considered as a surrogate for abundance, is estimated through the collection of

presence/absence data and is less costly while allowing gathering of information at a large

spatial scale.

2. Building on the recent pieces of work on the combination of different data sources, we

showed how abundance data can be complemented by presence/absence data and can be

analysed conjointly to improve abundance estimates. Our approach relies on a hierarchical

model that makes explicit the link between the abundance and occupancy state variables

while formally accounting for imperfect detection.

3. We used a population of Eurasian lynx in France monitored via camera traps and a col-

lection of presence signs as an illustration of our approach.

4. Synthesis and applications. We combined capture–recapture and occupancy data and dem-

onstrated that we can efficiently improve abundance estimates. Our method can be used by

managers when estimates of trends in abundance lack power due to sparse data collected dur-

ing an intensive survey, by simply integrating data collected during non-systematic survey.

Furthermore, combining these two sampling procedures makes full use of all available data

and allows the development of conservation and management strategies based on precise

abundance estimates. Overall, the combination of different data sources in an integrated sta-

tistical framework has great potential, especially for elusive species.

Key-words: abundance, Bayesian approach, camera-trapping, Lynx lynx, population size,

presence signs, site-occupancy

Introduction

Management and conservation strategies require informa-

tion on abundance, key quantity that is notoriously diffi-

cult to assess in the field. Due to the impossibility of

carrying out an exhaustive census for free-ranging animal

populations, sampling methods only yield a count of some

portion of the population. As a consequence, researchers

have to estimate in some ways the probability that an

individual present and exposed to sampling is actually

detected and, therefore, that it appears in a count

(Williams, Nichols & Conroy 2002).

Capture–recapture (CR) methods are often used to esti-

mate abundance while correcting for imperfect detection

(Otis et al. 1978; Williams, Nichols & Conroy 2002).

However, CR methods with physical capture may be

challenging when species are cryptic and individuals

range over large distances. Non-invasive techniques have

recently been developed to promote advancement in eco-

logical research on such species (MacKay et al. 2008).

However, gathering CR data requires individual identifi-

cation that usually involves a great commitment of time

and money.*Correspondence author. E-mail: laetitia.blanc@cefe.cnrs.fr
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In parallel to the estimation of abundance, there has

been increasing interest in alternative state variables such

as occupancy, that is the proportion of area occupied by

a species. Similar to CR models, site-occupancy models

have been developed to infer occupancy while explicitly

modelling detection probabilities (MacKenzie et al. 2002).

This approach relies on replicate observations of ‘detec-

tion/non-detection’ (‘presence/absence’) from repeated sur-

veys of a generic site, therefore allowing the separation of

true absences from non-detections. Site-occupancy sam-

pling is attractive to ecologists as it tends to be less costly

than CR methods and enables the gathering of informa-

tion at a relatively large spatial scale. As a consequence,

such surveys are increasingly used in many areas of inves-

tigation in ecology (e.g. macroecology: Royle, Nichols &

K�ery (2005)).

In general, abundance and occupancy are considered

as two distinct variables answering different biological

questions: abundance is often used to address questions

dealing with population dynamics, while occupancy is

used in biogeography and macroecology. Although

apparently disconnected, occupancy and abundance are

two linked state variables. By considering the sites at

which a species is detected or not as individuals, the link

between site-occupancy and CR models is straightfor-

ward. Occupancy data alone may inform estimates of

abundance (Royle & Nichols 2003) since when a site is

known to be occupied by a species, there is at least one

individual of this species on this site (Mackenzie et al.

2005). This has led some authors to see occupancy as

truncated abundance data (Mackenzie & Nichols 2004;

S�olymos, Lele & Bayne 2012). Royle & Nichols (2003)

exploited the relationship between occupancy and abun-

dance to estimate population size from presence/absence

data and occupancy techniques. Nevertheless, the rela-

tionship between the two variables is not explicit in their

approach, in that they assumed the sources of variation

in detection were mainly driven by the variation of abun-

dance and used the detection probability to extract infor-

mation on abundance.

Recognizing the interest in combining capture–recap-

ture and occupancy protocols, Freeman & Besbeas (2012)

developed an integrated approach in which they combined

count survey and ring-recovery data to estimate abun-

dance. Based on simulations and the analysis of a real

case study, they demonstrated that combining different

sources of data provided a better precision allowing the

detection of change in abundance and other demographic

parameters that would not be possible otherwise. Never-

theless, Freeman & Besbeas (2012) assumed that detect-

ability was equal to 1 and did not explicitly consider the

observation process.

Here, we developed an approach to combine site-

occupancy models and CR models to estimate abundance

while formally accounting for species and individual

imperfect detection. We implemented our approach in

a Bayesian framework and used a case study as an

illustration to estimate the local abundance of Eurasian

lynx Lynx lynx in an area of the Jura Mountains, France.

We used data collected through intensive monitoring

protocols analysed with CR models and presence signs

through volunteers monitoring programme analysed with

site-occupancy models. Large carnivores are an ideal case

study to demonstrate the improvement in estimating abun-

dance by combining capture–recapture and occupancy

data as they have low detection probability and large dis-

tribution areas leading to sparse data.

Materials and methods

In this section, we introduce the general procedure for imple-

menting our hierarchical approach beginning with (i) the presen-

tation of abundance and occupancy and the relationship between

these two state variables that permits combining CR with pres-

ence/absence data then (ii) developing the observation processes

leading to the measurement of these state variables using CR

modelling for estimating abundance and site-occupancy modelling

for estimating occupancy. We adopt a Bayesian approach

(McCarthy 2007) to properly accommodate estimation uncer-

tainty at every level of our hierarchical model. The Bayesian

approach provides a convenient framework to combine informa-

tion on important ecological parameters from multiple sources of

data (Ellison 2004; Brooks et al. 2008). It uses powerful com-

puter-intensive methods for handling complex models and com-

bines the likelihood with prior probability distributions of the

parameters to obtain the posterior distribution of the parameters

of interest based on the Bayes’ theorem. We use Markov chain

Monte Carlo (MCMC) methods to simulate observations from

the posterior distributions.

STATE VARIABLES AND THE RELATIONSHIP BETWEEN

ABUNDANCE AND OCCUPANCY

Our objective is to estimate the abundance state variable N. We

assume that N is a realization of a Poisson random variable

with rate k. In parallel, we assume that we have access to

another state variable, namely occupancy, defined as the propor-

tion of occupied spatial units (e.g. patches or sites). We assume

that occupancy Z is a realization of a Bernoulli process with

index w.

Both state variables are inferred from monitoring protocols

and modelling approaches that specifically deal with detectability

less than one (see below) (Fig. 1). The link between abundance

and occupancy is made by using the fact that when the probabil-

ity of a site to be occupied is >0, the abundance at this site is >0

(Fig. 1). More formally, the probability of having at least an

individual is:

PðN[ 0Þ ¼ 1� PðN ¼ 0Þ ¼ 1� e�k eqn 1

which is exactly the probability of having a true presence, that is

the probability of occurrence w in patch occupancy models. Here,

eqn 1 gives information on the probability that abundance is

nonzero if one individual is detected on one site; we do not con-

sider that two presence signs collected nearby necessarily come

from two distinct individuals. For occupancy to bring informa-

tion about abundance, the link between these two state variables

needs to be made explicit. This is achieved by expressing the rate
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of the Poisson distribution k as a function of the probability of

occurrence:

k ¼ � logð1� wÞ eqn 2

OBSERVATION PROCESS FOR ABUNDANCE AND

OCCUPANCY

Abundance and occupancy cannot be directly measured in the

field. The observation process needs to be made explicit to reli-

ably estimate these state variables. Regarding abundance, we

resort to CR closed population model (Otis et al. 1978) to esti-

mate population size. Because N is the key parameter that makes

the link between occupancy and abundance (see above), the chal-

lenge was to find a flexible approach that would treat population

size as an explicit parameter, in contrast with standard CR mod-

els in which it is often calculated as a derived parameter. We use

the complete data likelihood approach proposed by Schofield &

Barker (2014) to fit a CR model with individual heterogeneity on

the detection process pi for individual i. The originality of their

approach lies in the fact that they consider N explicitly in the

likelihood via the trans-dimensional approach (e.g. King &

Brooks 2008).We denote X the complete N 9 k matrix of capture

histories over k capture occasions where xi,t is 1 when individual

i is captured at occasion t and 0 otherwise. Given N and the

mean lp and variance sg governing the normal distribution that

is used to deal with heterogeneity in the detection process, it can

be shown that:

½X;pjN;lp;sg� ¼
N!

P
hZh!

PN
i¼1P

k
t¼1p

xit
i ð1�piÞ1�xitPN

i¼1Normalðlp;sgÞ
eqn 3

where zh is the number of individuals observed with capture

history h. The unobserved pi are dealt with a trans-dimensional

algorithm (Carlin & Chib 1995). We refer to Schofield & Barker

(2014) for the technical details of the implementation of eqn 3.

Now we define the occupancy as the probability that a ran-

domly selected site or sampling unit in an area of interest is occu-

pied by a species (at least one individual of the species).

Obviously, we cannot have access to the genuine proportion of

occupied sites since we do not see all the individuals, and species

imperfect detection needs to be accounted for.

From the area of interest, R spatial units are selected to be sur-

veyed for the species using appropriate methods (e.g. collection

of presence signs). These sites are surveyed multiple times each

season for T years. In each survey, detections are considered as

true, meaning that we cannot falsely recognize the species, but

the non-detections can arise from both (1) true absence and (2)

false absence (i.e. presence but not detected). Within a season, we

assume that sites were closed to changes in occupancy. So a unit

must be either occupied or not for all visits in this season (Mac-

Kenzie et al. 2002). We denote Ys,t a binary random variable cor-

responding to the observation of an individual on site s at time t,

which takes value 1 if the individual is observed and 0 otherwise.

Given a realization zs,t of the state variable occupancy, Ys,t is dis-

tributed as:

½Ys;tjzs;t� �Bernoulliðzs;t � pOsÞ eqn 4

where pOs is the probability of detecting the species at a site s.

APPLICATION

Material

For many elusive species such as large carnivores, it is easier to

detect evidence of their presence than to actually see the animal.

To overcome these issues, monitoring a carnivore population

may be performed at various levels of resolution (Gese 2001).

Biologists often resort to large-scale sign survey to provide infor-

mation on species distribution or relative abundance at a lesser

cost (mustelids: Ruiz-Olmo, Saavedra & Jim�enez (2001); felids:

Rolland, Basille & Marboutin (2011); canids: Llaneza et al.

(2005)). If the financial support is substantial enough, intensive

monitoring (camera trapping or DNA sampling) is conducted to

provide absolute abundance estimates or density but is often

restricted to small areas [mustelids: Graham (2002); felids:

Karanth et al. (2004); canids: Cubaynes et al. (2010)].

In the French Jura Mountains (Fig. 2), this two-scale survey

method is used for monitoring a population of Eurasian lynx.

The monitoring is organized at two levels: an extensive sign sur-

vey carried out by a network of observers (state employees, hunt-

ers, naturalists, farmers and mountain guides; Duchamp et al.

(2012)) who collect evidences of presence in the field (i.e. tracks,

scat, hair, sightings, livestock and wildlife killed) and an intensive

Fig. 1. Diagram representing the capture–
recapture and occupancy models used to

estimate, respectively, abundance and

occupancy. Both models deal with imper-

fect detection, that is not all the individu-

als are detected with camera traps and

some sites were falsely considered as unoc-

cupied while collecting presence/absence

data. Red crosses represent individuals

detected, and yellow circles represent sites

detected as occupied. The link between

abundance and occupancy is made by

using the fact that when a site is occupied

(orange circles), the abundance at this site

is >0 (blue crosses).
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survey using the non-invasive monitoring technique of camera

trapping conducted since 2011 by the French National Wildlife

Agency (Blanc et al. 2013). Each presence sign collected is associ-

ated with a 10 9 10 km grid cell (Marboutin et al. (2011); site

EEA), which is the most convenient way to deal with a biological

process occurring at the scale of species’ distribution range. Only

the cells within the camera-trapping zone are considered. We

assume that the entire camera-trapping zone was surveyed by the

observers’ network that collected the presence signs, thus prevent-

ing false absence. Duchamp et al. 2012 estimated that 15 km was

the mean distance at which signs were recorded relatively to the

observers’ living place. This information provides good support

for our assumption that the camera-trapping area was covered by

the network of lynx observers. To model the occurrence of lynx

in the camera-trapping zone, we use a 3-year temporal window in

the occupancy model (Stahl & Vandel 2001).

Due to the lack of an appropriate integrated framework, the

data collected during extensive and intensive surveys have so far

been separately analysed. Here, we illustrate how our new

approach can be used to improve abundance estimates by com-

bining these two sources of data.

Models

We fit three models, starting with the capture–recapture model to

the camera-trapping data, then we model the presence/absence

data with a single-season occupancy model, and finally, we imple-

ment the model to combine the two sources of data, that is CR

data and presence/absence data, by combining the two state vari-

ables under interest, that is abundance and occupancy.

A previous analysis of the camera-trap data showed that individ-

ual attributes (e.g. age and sex classes) and home range features

(e.g. home range location relative to traps and composition) gen-

erated heterogeneity in the detection process (Blanc et al. 2013).

Therefore, the detection probability in the CR model is consid-

ered as heterogeneous. More precisely, the logit of pi, that is the

detection probability for the individual i, is written as the sum

of a mean detection probability lp and an individual random

effect gi. This latter variable is assumed to be normally distrib-

uted with mean 0 and variance r2
n. As priors, we use a Gamma

distribution with shape and scale, respectively, equal to 1�5 and

0�027 for r2
n and a Logistic (0, 1) for lp (Schofield & Barker

2014). The rate k is assigned a normal prior distribution with

mean 0 and variance 1000 on the log scale.

We then fit a site-occupancy model (MacKenzie et al. 2002)

with site-dependent ws and site-specific detection probability pOs

as suggested by a previous analysis of the data (Rolland, Basille

& Marboutin 2011). The site-dependent occupancy probability is

defined by the mean occupancy lw and a site random effect bs
normally distributed with mean 0 and variance r2

b. Since we do

not have any information on the occurrence of the species, we

assign a Normal (0, 5) prior for lw on a log scale and a Uniform

(0, 5) prior for r2
b. Regarding the detection probability, the logit

of pO is normally distributed with mean lp and a variance r2
e .

We set a Normal (0, 10) prior for the logit of lp and a Uniform

(0, 10) prior for r2
e .

Finally, we consider the model that combined the two state

variables of interest, that is abundance and occupancy (see

eqn 1). We use a site-dependent occupancy ws and the mean

occupancy lw in the function of the index k for the Poisson dis-

tribution of N. Regarding the observation process, we consider a

site-specific probability of detecting occupancy pOs for the site-

occupancy likelihood and a detection probability varying among

individuals pi in the capture–recapture likelihood. We keep simi-

lar priors that were used in the previous models.

STATISTICAL INFERENCE IN A BAYESIAN FRAMEWORK

We fitted the three models to the data by Bayesian statistical

inference using MCMC sampling. Three chains were generated

using 15 000 iterations each with a burn-in phase of length 2500.

Convergence was diagnosed both visually (checking the traces

and mixing of the chains) and numerically using the Gelman–

Rubin statistic (Gelman & Rubin 1992). We implemented these

analyses in JAGS (Plummer 2003) called from R using the rjags

package. The code for the combined model is available in

Appendix S1.

Results

A total of 172 presence signs were collected by the volun-

teers of the R�eseau Loup-Lynx from 2009 to 2011 across

the camera-trapping area. Regarding the camera-trapping

protocol, lynx photographs were collected from February

to April 2011 from 33 trap sites. We removed one trap

site because of technical problems. The effective effort

was reduced to 1816 effective trapping nights. We

obtained 39 detections of lynx during the sampling period

and identified nine individuals that were photographed on

14 of the 32 trap sites. Individuals were captured at up to

six different trap sites. When the sole CR model with het-

erogeneous detection probability was fitted to these data,

Fig. 2. Map of the area sampled in the French Jura department

by camera traps (green triangles) during winter 2011. The yellow,

orange and red dots represent location of the presence signs col-

lected in 2009, 2010 and 2011, respectively.

© 2014 The Authors. Journal of Applied Ecology © 2014 British Ecological Society, Journal of Applied Ecology
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we found that the mean estimated detection probability lp
was 0�11 � 0�07 and that the estimated abundance was

14�46 � 7�50 individuals [95% CI: 9�0; 35�0] (Fig. 3).

Using the single-season occupancy model, the mean occu-

pancy was estimated at 0�96 � 0�04 [95% CI: 0�83; 0�99]
and the mean detection probability was quite high:

0�71 � 0�16 [95% CI: 0�30; 0; 0�97]. Using our new

approach to combine CR and presence/absence data,

abundance was estimated at 9�96 � 1�18 individuals [95%

CI: 9�0; 13�0] (Fig. 3) while detection probability was on

average estimated at 0�16 � 0�06 in the CR model likeli-

hood. The probability of detecting occupancy was esti-

mated on average at 0�71 � 0�15, while the occurrence

probability was estimated at 0�99 � 0�01. All the parame-

ters estimated in the three models converged towards their

stationary distribution.

Discussion

The choice of the state variable to monitor is challenging

when dealing with rare and elusive species. Abundance

data have commonly been assumed to be more informa-

tive on a per site basis, but presence/absence data allow

for more sites to be visited and allow carrying out

inference across a much larger study area. Moreover,

estimating animal abundance requires consistent and

standardized application of a technique to be able to

detect changes or differences with some degree of

accuracy (Macdonald, Mace & Rushton 1998). These

techniques are often costly and time-consuming, to a

point that systematic surveys are in some situations

unaffordable.

Indeed, while studying wild populations, practitioners

frequently encounter difficulties in collecting good quality

data in sufficient quantity to estimate abundance. Most

practitioners have to cope with limited financial resources

and data sampling jeopardy. In the case study we devel-

oped, we raised the issue of scarce data due to the ecology

of the species. Large carnivores have secretive and noctur-

nal behaviour, are distributed over large areas and live at

low density, which means that even standardized and con-

sistent protocols do not guarantee precise estimates. In

this context, there is clear need to develop optimal meth-

ods to analyse data resulting from such population moni-

toring schemes, in particular in regions where resources

for monitoring programmes are limited (Balmford, Green

& Jenkins 2003; Roberts, Donald & Green 2007), or for

species with low detectability. Additional presence/absence

data, coming from citizen science programmes for

instance, may profoundly increase our confidence in abun-

dance estimates, enabling to develop more sound manage-

ment and conservation strategies. Our approach is a first

step in that direction.

Indeed, we showed how abundance data can be comple-

mented by presence/absence data and be analysed con-

jointly to improve abundance estimates. Our approach is

similar to the Freeman and Besbeas approach in that we

combine different sources of data but differs from it in

the way that we extended their model by adding the

detection process to account for imperfect detection. By

combining camera-trapping data and presence signs

through an explicit link between the state variables of

abundance and occupancy, we significantly reduced the

width of the credible interval on lynx abundance esti-

mates. The reduced effort associated with the collection of

presence/absence data means that occupancy surveys have

already proved to be very useful in large-scale surveys for

various species. They now are shown to be very useful in

small-scale surveys to estimate population size. There is

an increasing number of participative programmes on

birds (Greenwood 2007, Christmas Bird Count, eBird) and

amphibians (FrogwatchUSA, Global Amphibian BioBlitz)

that could be used to complement individual-level

data, collected occasionally, when financial resources are

sufficient. Our model is easily applicable to such taxa

since the spatial unit to which occupancy is estimated is

well defined: closed units, such as nests or ponds, fulfil

the closure assumption underlying single-season occu-

pancy models, although application to mammals is more

complicated.

Precautions must be taken when using our new

approach regarding the assumptions underlying the model

and the sampling design. First, we used presence signs

that were collected during 3 years prior to the camera-

trapping session and so, we assumed that the population

of interest was geographically closed during the sampling

period. Thus, the presence/absence data collected were

assumed to be presence signs of individuals that were part

of the population monitored via the camera-trapping

protocol. The geographical assumption is valid for the

Eurasian lynx, but it would not be the case for a non-

territorial species. Secondly, false positives in presence

data may lead to abundance overestimation, and care

Fig. 3. Posterior distribution of the abundance of Eurasian lynx

in the camera-trapping area in the Jura Mountains while using

only capture–recapture data (salmon) or combining the presence/

absence data and the capture–recapture data (blue). The overlap

between the two distributions is displayed in purple.
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must be taken to ensure the quality of the presence signs

which are collected, possibly with a validation step

(Molinari-Jobin et al. 2011) or using models that explic-

itly account for identification errors (Miller et al. 2011).

In our case study, objective and standardized identifica-

tion and reliability assessment criteria have been defined

for each category of field signs (Vandel & Stahl 1998),

which guarantees a negligible false-positive rate. Thirdly,

we assumed that abundance N was a realization of a

homogeneous Poisson random variable. The violation of

this assumption might lead to underestimating the vari-

ance of N. To relax this assumption, we would need to

resort to spatially explicit capture–recapture (SECR)

surveys that were formulated by Borchers and Efford

(2008) using a general non-homogeneous Poisson process

to model animal home range locations. However, to com-

bine the SECR model likelihood with the occupancy

model likelihood, N has to appear explicitly as a parame-

ter in the former likelihood, which is not the case since N

is obtained as a by-product. Further work is needed to

extend the (Schofield & Barker 2014) approach to SECR

surveys.

Presence/absence surveys in studies with small budgets

or targeting elusive species remain useful in an attempt

to successfully assign IUCN Red List categories of threat

(Joseph et al. 2006) and can accurately represent trends

in population size. For these reasons, Royle & Nichols

(2003) suggested the idea of using presence/absence data

to infer abundance in a proper way. Assuming that the

most important source of heterogeneity in detection was

in animal abundance, they defined the probability of

detecting occupancy as a function of N and used hetero-

geneity in detection to extract information about abun-

dance in the occupancy surveys. As for our study, we

focused on the direct relationship between abundance

and occupancy and directly connected abundance and

occupancy in the model. It results in more flexibility

when combining various sources of information as our

approach can accommodate several sources of data. For

example, recent studies made use of replicated counts on

spatial units that do not rely on individual identification.

As an alternative to CR models, these so-called N-mix-

ture models (Royle 2004) are used to estimate population

size while adjusting for detectability <1 (K�ery, Royle &

Schmid 2005; Royle, Nichols & K�ery 2005). These mod-

els are widely used to estimate bird abundance (Royle

2004; K�ery, Royle & Schmid 2005). Various bird surveys

have two levels of resolution as it is the case for carni-

vores: a standardized survey with repeated visits on a

sampling area provides count data used to estimate

abundance, while some observers distributed over the

area all year long collect presence of the bird species of

interest. The first kind of data can be analysed in the

N-mixture framework, while the presence/absence data

collected by can be analysed in a site-occupancy frame-

work. Our approach can also be used with data arising

from distance sampling protocols (Buckland et al. 2001)

pending some modifications of the abundance component

of the model. We assumed the lynx population was closed

during the CR survey since the sampling period was out of

the breeding (Breitenmoser-W€ursten et al. 2007) and the

dispersal period (Zimmermann, Breitenmoser-W€ursten &

Breitenmoser 2005), and the species being territorial,

migration in or out of the study area that would have

biased the abundance estimates was avoided. We used

the same closure assumption for the occupancy survey. We

assumed that one site that was occupied once has been

occupied during all survey and any non-detection at this

site is considered as a ‘false negative’ (Rota et al. 2009).

Moreover, here, we clearly deal with what Efford and

Dawson (2012) referred to as ‘asymptotic occupancy’. The

authors made the distinction between instantaneous occu-

pancy referring to the probability of a cell being occupied

at a particular time, whereas the overall occupancy of a

given cell refers to the probability that at least one indivi-

dual will enter the cell during the study period. Since large

carnivores are territorial, we can safely assume that if a cell

is detected as occupied once, it will remain occupied during

all the survey (provided that the size of their home range

does not go through major fluctuations). For large carni-

vores and other organisms, the generalization of our

approach to geographically open population system invol-

ving local extinction and colonization processes deserves

further exploration. Since our case study involved a real

data set and the true abundance was unknown, simulations

will be used in future to test the robustness and accuracy of

our estimates.
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