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ABSTRACT Effective conservation and management require reliable monitoring methods and estimates of
abundance to prioritize human and financial investments. Camera trapping is a non-invasive sampling
method allowing the use of capture–recapture (CR) models to estimate abundance while accounting for the
difficulty of detecting individuals in the wild.We investigated the relative performance of standard closed CR
models and spatially explicit CR models (SECR) that incorporate spatial information in the data. Using
simulations, we considered 4 scenarios comparing low versus high detection probability and small versus large
populations and contrasted abundance estimates obtained from both approaches. Standard CR and SECR
models both provided minimally biased abundance estimates, but precision was improved when using SECR
models. The associated confidence intervals also provided better coverage than their non-spatial counterpart.
We concluded SECR models exhibit better statistical performance than standard closed CR models and
allow for sound management strategies based on density maps of activity centers. To illustrate the
comparison, we considered the Eurasian lynx (Lynx lynx) as a case study that provided the first abundance
estimates of a local population in France. � 2012 The Wildlife Society.
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The presence of large carnivores (wolves, bears, lynx, and
wolverines) usually results in strong socio-cultural issues in
all societies, Europe being no exception. These species share
common features such as large territories and the need for a
large mosaic of habitat and prey, potentially competing with
human activities (e.g., hunting and raising livestock). Such
conflicts, in combination with habitat loss, have led to local
extirpation of large carnivores in many areas. Although large
carnivores were almost extinct at the beginning of the 20th
century in many European countries, their populations have
slowly recovered via reintroduction or natural re-coloniza-
tion through dispersal.
In this context, the Bern Convention (1979), the European

Habitats Directive (1992), and the International Union for

Conservation of Nature (IUCN) Red list provided specific
indices and rules to assess the conservation status of species
and to help assess howmanagement decisions could meet the
conservation requirements. Abundance was defined as one of
the key estimates needed in assessing species’ statuses.
Moreover, it is the state variable of interest in most ecological
research and monitoring programs involving management
and conservation of animal populations (Nichols and
MacKenzie 2004). Indeed, reliable estimates of population
size are essential to evaluate conservation and wildlife man-
agement programs, such as reintroduction programs.
However, large carnivores are difficult to monitor because
they are elusive, live at low densities over wide areas, and are
usually solitary and mostly nocturnal. Exhaustive counts are
therefore often expensive, time consuming, and sometimes
impractical.
To assess population trends in elusive and wide-ranging

species, non-invasive survey methods have been used increas-
ingly over the last decade. In particular, camera-trapping
methods combined with capture–recapture (CR) modeling
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have become a standard tool to estimate carnivore abundance
while accounting for detectability <1 (e.g., tigers [Panthera
tigris]: Karanth et al. 2006, Karanth and Nichols 1998;
ocelots [Felis pardalis]: Trolle and Kéry 2003; snow leopards
[Uncia uncia]: Jackson et al. 2006; jaguars [Panthera onca]:
Silver et al. 2004). Standard CR models usually assume
geographical closure (no movement in or off the sampling
grid). However, this assumption is often violated, especially
for mammals with large home ranges. Another major as-
sumption of these models is that no individual within the
sampled area has a zero probability of being captured. To
address these issues, an alternative approach known as spa-
tially explicit CR modeling (SECR) was developed recently
(Royle and Young 2008, Borchers and Efford 2008). This
method has been applied to a large number of taxa (e.g.,
birds: Efford 2004, Borchers and Efford 2008, Efford et al.
2009a; cetaceans: Marques et al. 2012; stoats: Efford et al.
2009b; bears: Obbard et al. 2010, and lizards: Royle and
Young 2008). In SECR models, the probability of detection
for each trap is modeled as a function of distance between a
latent variable, the individual activity center (equivalent to
the home range center) from which animals move randomly,
and the camera trap where they have been captured. This
model does not rely on the assumption of geographic closure
by accounting for the fact that animals move and that
detection probability depends on their center of activity
(Gardner et al. 2009).
Our objectives were twofold. First, we aimed at evaluating

the relative performance of SECR methods versus conven-
tional non-spatial CRmodels in estimating abundance in the
context of carnivore conservation. Most of the studies assess-
ing bias in spatial models compared abundance estimates
using real datasets rather than simulated data, hence were
unable to infer bias and precision (e.g., Gardner et al. 2009).
Recent papers dealing with SECR models and simulations
(Efford 2004, 2011; Borchers and Efford 2008; Royle and
Young 2008) focused on the performance of different meth-
ods to estimate density (e.g., nested subgrid vs. inverse
prediction, frequentist vs. Bayesian methods) but did
not formally compare SECR and non-spatial models.
Therefore, we carried out a simulation study with several
scenarios comparing low versus high detection probability
and small versus large populations to quantify the perform-
ances of parameter estimates using both SECR and non-
spatial models. We also suggested how the simulation results
could be used to improve the trapping design when necessary.
Second, we used the 2 methods to analyze a real dataset from
a camera-trapping experiment with the Eurasian lynx (Lynx
lynx) in the French Jura Mountains. This population orig-
inates from reintroductions in Switzerland in the 1970s.
Although listed as a species of Least Concern given its
wide range (IUCN 2001), habitat loss, prey depletion, and
poaching are still regarded as potential threats. Up to now,
the main monitoring program for lynx in France was based
on indirect signs (i.e., tracks, scat, hair, and other signs)
collected by a network of volunteers (state employees, hunt-
ers, naturalists, farmers, and mountain guides). Although the
use of indirect signs is often the most effective and least

expensive method for estimating the distribution of carni-
vores, the resulting estimates of population parameters, such
as abundance, are often approximate. Camera-trap monitor-
ing has recently been initiated in France to monitor the lynx
population and evaluate the conservation status of a popula-
tion where problematic interactions between hunters and
lynx exist. We provided the first estimate of lynx abundance
for this French population. Finally, recommendations are
provided for the conservation of elusive species, with an
emphasis on large carnivores and their monitoring.

STUDY AREA

Our study area was located in a 480-km2 zone in the southern
center of the French department of Jura between the
Vouglans lake and the southern border of Doubs depart-
ment. We delimited this study area using knowledge on lynx
habitat and forest continuity.

METHODS

Simulation Study Design
We assumed that our population was demographically and
geographically closed (i.e., no birth, death, immigration, or
emigration during the sampling period) when applying CR
models to estimate abundance. Lynx are long-lived animals
(Sunquist and Sunquist 2002) and the camera-trap sampling
period was short enough so that we assumed no deaths or
births occurred during this period. In addition, the trapping
session was timed outside the dispersal period for subadults.
To compare the performance of the standard versus the

SECR methods in estimating abundance, we simulated 100
datasets with a particular spatial organization. We consid-
ered 4 scenarios comparing low versus high detection prob-
ability and small versus large populations. We used these
scenarios to evaluate relative bias in parameter estimates and
the precision and the coverage of 95% confidence and credi-
ble intervals (CI hereafter for Bayesian credible intervals or
frequentist confidence intervals, indistinctively). We created
each dataset using the trap configuration from monitoring of
lynx in the study area (see case study below), but we did not
use any constraints to mimic lynx behavior in the simulated
datasets. We set the number of capture occasions to k ¼ 15
and the actual population size to N ¼ 10 or N ¼ 50,
depending on the scenario. We based the simulations
on the SECR model formulation. We simulated the coor-
dinates of N individual activity centers. Then, we evaluated
whether we could reliably model a posteriori the number
and location of activity centers we had simulated. We con-
ducted the simulation in 2 steps. First, a point process
component described the spatial distribution of the centers
of activity. Second, an observation process component
made the connection between the detection of an individual
and its center of activity given the spatial distribution of
traps.
Point process.—We assumed a fixed and known number of

activity centers si (similar to home range centers) with geo-
graphic coordinates si ¼ (sxi, syi) for each individual i (i ¼ 1,
. . . , N) of the population. We assumed that these centers
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of activity were uniformly distributed over a region S, an
arbitrary polygon containing the trapping array.

si � UniformðSÞ (1)

To simulate capture histories, we assumed that the capture
probability of each individual was a function of the distance
between its activity center and the trap.
Exposure to traps.—The exposure of an individual to a given

trap was a decreasing function of the distance from the
activity center to that trap: the further the activity center
was from the trap, the less likely the animal was exposed
to capture. Thus, we first defined a distance matrix Di,j as
the Euclidean distance between every activity center i and
trap j:

Di; j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsxi � xjÞ2 þ ðsyi � yjÞ2

q
(2)

Second, we modeled the exposure of each individual as a
function of distance and 2 other parameters:

E0i; j ¼ l0 exp
�D2

i;j

s

 !
(3)

where l0 is the baseline encounter rate (i.e., the expected no.
of captures of individual i at trap j during a sampling occasion
when an individual’s activity center si is located precisely at
trap j) and parameter s (in km) controls the shape of the
distance function, reflecting how fast the exposure decreases
with distance. The greater s is, the faster the exposure
decreases with distance.
Capture process.—If an individual i is exposed to trap j, we

assumed a capture probability pi,j. The distance function
allows the development of the capture process model. The
increase of the exposure to traps translates into an increase of
the capture probability and was modeled with an exponential
function:

pi; j ¼ 1� expð�E0i;jÞ (4)

We assigned 2 different values for l0 (0.03 and 2) and 1
value to s (1.5) depending on the scenario. We tested all
combinations of all levels of N, l0, and s resulting in 4
scenarios. For each scenario and each simulated dataset, we
constructed the distance matrix Di,j between the simulated
activity centers and the trap locations. We used the distance
matrix to estimate for each individual a per trap capture
probability pi,j. Then, we performed a binomial trial with
parameters N and pi,j to determine whether the individual
was captured or not. Since detection is not perfect, only n out
of theN total individuals from the population were detected.
We compiled for each of the j traps the number of occasions,
k, an individual, i, was detected. Thus, for each trap and each
individual, a number ranging from 0 to k indicated howmany
occasions each individual was captured. We used these count
histories to fit SECR models. Finally, we analyzed the
capture histories of the n individuals under the standard
and SECR models.

Model Formulation
Standard CR models.—We first calculated abundance esti-

mates by accounting for detection probabilities using stan-
dard CR models. We considered different sources of
variation in capture probabilities. In addition to a model
with no variation in the detection probability (model
M0), we considered behavioral responses to trapping
(model Mb), differences in capture probabilities over time
(model Mt), and the most complex models included
among-individual heterogeneity in capture probabilities
(model Mh; Otis et al. 1978, Williams et al. 2002). In
addition, we considered 4 models that were combinations
of these sources of variation (Models Mbh, Mth, Mtb,
and Mtbh). For each simulated dataset, we used Akaike’s
Information Criterion (AIC) to select the model (Burnham
and Anderson 2002). When DAIC was <2, the given model
is suggested to be within the range of plausible models to best
fit the observed data. We conducted analyses via maximum
likelihood with the R package Rcapture (Baillargeon and
Rivest 2007).
SECR model implementation using a Bayesian approach.—

Each camera trap reflected the location of capture, which, in
turn, provided insight into the activity center coordinates of
each lynx. The SECR model has the advantage of incorpo-
rating spatial heterogeneity while estimating abundance
(Royle et al. 2009a, b, 2011). More specifically, the SECR
model makes explicit the distinction between 1) a latent
component for the spatial point process of the (unknown)
location of the activity centers (eqs. 1 and 2) and 2) an
observation component that describes how the observed
data arise from the point process (eq. 4).
We adopted a Bayesian approach (McCarthy 2007) to fit

the SECR model; activity centers were treated as
random effects, which are relatively easy to incorporate
in the Bayesian framework (King et al. 2009). The
Bayesian approach combines the likelihood with prior
probability distributions of the parameters to obtain the
posterior distribution of the parameters of interest based
on Bayes’ theorem. We used Markov Chain Monte
Carlo (MCMC) methods to simulate observations from
the posterior distributions. Regarding priors for parameters,
we considered that we did not have any information
about the spatial distribution of the activity centers of
the simulated individuals, thus we assumed they were
uniformly distributed over S. We chose a Uniform(0, 15)
distribution for s and we assigned a Gamma(0.1, 0.1) dis-
tribution to l0.
To obtain an estimate of abundance, we used a data aug-

mentation approach (Royle and Young 2008). We augment-
ed the data set with 100 individuals and we associated a latent
indicator, zi, with every individual. The encounter histories
of the 100 individuals initially contained only zeroes. Some
of these individuals were not captured during the intensive
camera trapping but belonged to the population. The zi
indicator reflects the probability, C, of an individual to be
a member of the population. We assumed a Uniform(0, 1)
prior for C. We defined zi as a binary variable equal to 0
when the individual i was not a member of the population
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and 1 otherwise. We obtained the abundance,N, as a derived
parameter by adding all the presence indicators, zi. We
implemented these analyses in WinBUGS (Spieghalter
et al. 2003) called from R using package R2WinBUGS
(Sturtz et al. 2005).
Evaluating the performance of the 2 methods.—We evaluated

the performance of the standard CR models and the SECR
models by comparing the abundance estimates obtained from
the 2 methods to the true value of abundance. As a result, we
were able to quantify the potential bias in parameter esti-
mates obtained for both models. We looked at the relative
bias in N̂ , the estimator of N, calculated as (E[N̂ ] � N)/N
where the numerator can be approximated as the average
over the 100 iterations of the difference between the esti-
mated abundance under the model considered and the true
parameter value,

P100
i¼1 N̂ i=100� N . To assess the preci-

sion, we calculated the root mean square error (RMSE)

as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðð½N̂ � �N Þ2Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP100
i¼1 ðN̂ i � N Þ2=100

q
. A low

RMSE is characteristic of a good trade-off between
low bias and high variance. Finally, we looked at the 95%
confidence interval coverage by determining and averaging
over all simulations whether the interval contained the true
value.

Eurasian Lynx in French Jura Mountains

The Eurasian lynx is a solitary nocturnal species, living in
forested areas. It can be individually identified based on the
photographs of unique pelage patterns (e.g., Zimmermann
and Breitenmoser 2007). To maximize detectability, camera
traps were set at optimal locations (on game path, hiking
trail, forest road) based on previous signs of lynx presence and
on local knowledge. In theory, all individuals should have a
non-null detection probability to use standard capture–re-
capture models (Karanth and Nichols 1998), but this re-
quirement is not necessary for SECR models (Royle et al.
2009a). Thus, the study area was divided into a grid of
2.7 km � 2.7 km cells (Zimmermann et al. 2007) where
1 of 2 cells was sampled, leading to 33 cells sampled from
February to April 2011. This grid size and sampling design
ensured that at least 1 camera trap site was set in each
potential lynx home range. At each trapping site, 2 camera
traps with infrared trigger mechanisms were set to photo-
graph both flanks of the animal, allowing a high level of
confidence in individual identification. Date, time, and lo-
cation of each photographic capture of a lynx were recorded.
Camera traps were checked weekly to change memory cards
and batteries. The sampling period was divided into 15
occasions, 1 occasion being defined as 4 successive trap
nights. We used the results of the SECR model to build
a density map of the lynx activity centers. For each of the
MCMC iterations, we plotted the centers of activity of the
individuals belonging to the population (zi ¼ 1) on succes-
sive layers. For every layer, we divided the region S into
squares of 500 m � 500 m then we calculated the mean
number of activity centers falling into each square. R and
WinBUGS codes are available on request from the first
author.

RESULTS

Simulation to Compare Spatial Versus Non-Spatial
Models
For each scenario and each simulated dataset, we reported
the abundance posterior median estimate and its 95% credi-
ble interval for the SECR model and the abundance point
estimate with its 95% confidence interval from the non-
spatial model (Fig. 1). Scenario A represented a small popu-
lation with a low detection probability mimicking the
Eurasian lynx dataset. Both models similarly slightly over-
estimated abundance; the non-spatial model displayed a
relative bias of 0.096 and the SECR model relative bias
was 0.121. Scenario B represented a large population with
a low detection probability. The non-spatial model clearly
underestimated the population size with a relative bias of
�0.08, whereas the SECR model slightly underestimated it
with a �0.016 relative bias. Scenario C corresponded to a
small population with a high detection probability. For most
datasets, the non-spatial model provided estimates close to
the actual abundance (relative bias around 0.007) but with
large confidence intervals and the SECR model provided
unbiased estimates (relative bias around �0.02) and small
credible intervals. Finally, scenario D represented an ideal
situation with a large population and a high detection prob-
ability. The non-spatial model slightly overestimated abun-
dance (relative bias ¼ 0.026), whereas the SECR model
provided values close to the actual abundance (relative
bias ¼ 0.0002). The RMSE clearly revealed that the
SECR model provided a better balance between bias and
variance for all scenarios than the non-spatial model. The
confidence interval of the non-spatial model included the
true abundance value in only 73–78 out of the 100 simulated
datasets depending on the scenario. The credible interval of
the SECR model included the true value in 92–99 datasets
(Table 1). Credible intervals of the SECR model provided
better coverage than confidence intervals as provided by
standard closed CR models.

Lynx Case Study
Data were collected between February and April 2011 from
33 trap sites resulting in 1,980 trap nights. One site was
found effective during less than 50% of the trapping nights;
therefore, we removed it from the analysis reducing the
theoretical effort to 1,816 effective trapping nights. The
study provided an encounter history for 9 individuals that
were photographed on 14 of the 32 trap sites. Individuals
were captured on up to 6 different sites and the maximum
distance moved by 1 individual between captures was
27.6 km. Model selection ranked the model incorporating
individual heterogeneity in capture probability as the best
model (AIC weight ¼ 0.39) followed by the model assum-
ing constant capture probability (DAIC ¼ 1.47, AIC
weight ¼ 0.22). The Akaike weight of all other models
was <0.09. Average estimated detection was 0.14 and the
estimated abundance using the best model was 12 individuals
(95% CI: 7.14–20.27). For the SECR model, the baseline
encounter rate at a given camera (l0) was 0.05 photographs/
occasion (95% CI: 0.03–0.15); the movement parameter
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(s) was estimated to be 1.45 (95% CI: 0.16–0.58). The
abundance was estimated to be 12.04 individuals (95% CI:
9.0–18.0). We found extensive spatial variation in the loca-
tion of estimated activity centers (Fig. 2), most of them being
concentrated in the center and in both southeastern and
western corners of the trap array.

DISCUSSION

Information on wildlife population responses and dynamics
are essential complements to information about human

dimensions, habitat, and ecosystem functioning that go
into conservation planning and monitoring (Mills 2007).
Using the Eurasian lynx as a case study, we demonstrated
how cutting-edge analytical methods could be used to
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Figure 1. Comparison between abundance estimates obtained from non-spatial models versus spatially explicit capture–recapture (SECR)models according to
4 scenarios mimicking low detection probability and small population size (A), low detection probability and large population size (B), high detection probability
and small population size (C) and high detection probability and large population size (D) using simulated data. We provide estimates (dots) and confidence
intervals (lines) for the non-spatial model in gray. We display posterior medians (asterisks) and 95% credible intervals (lines) for the SECRmodel in black. The
vertical dashed line indicates the actual value of abundance.

Table 1. Summary of the statistical performance of the non-spatial and
spatially explicit capture–recapture (SECR) models using simulated data
rising from 4 scenarios mimicking low detection probability (A, B) versus
high detection probability (C, D) and small population size (A, C) versus
large population size (B, D).We present the root mean square error (RMSE)
and either the 95% confidence (non-spatial model) or the 95% credible
(SECR model) interval (CI coverage).

Scenario Relative bias RMSE CI coverage (%)

Non-spatial model
A 0.10 4.00 75
B �0.08 9.38 76
C 0.01 1.03 78
D 0.03 5.08 73

SECR model
A 0.12 2.39 97
B �0.02 5.49 92
C �0.02 0.47 99
D 0.00 0.89 96

Figure 2. Map of posterior density of lynx activity centers in French Jura
department in 2011. Specifically, the map shows E[N(i) j data], where N(i)
is the number of activity centers located in pixel i. Colors code for the
estimated number of activity centers in each 500 m � 500 m pixel.
Triangles indicate mean activity center location for identified individuals,
dots indicate camera trap locations, black symbols indicate locations where
lynx were photographed, and gray symbols are trap locations where no lynx
was captured.
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estimate and infer abundance of a rare and elusive species
using sound monitoring protocols. Characterizing the status
of a population in this way can be an important first step of
implementing a conservation strategy.
Although the difference in the relative bias between the

non-spatial and the SECRmodel was trivial, the RMSE and
the interval coverage both support the conclusion that the
SECR model provided better estimates of abundance. Our
simulations highlighted that for scenario A, mimicking the
lynx dataset, and scenario C, abundance estimates should be
used with caution since the spatial model tended to overes-
timate the actual abundance; whereas the non-spatial model
appeared to be closer to the real abundance value. The
positive relative bias may be caused by the proportion
of individuals that move out or partially out of the
trapping array creating an inflated estimate of abundance.
Nevertheless, confidence and credible interval coverage and
RMSE revealed that the SECR model performed best for all
scenarios. For the scenarios B and D, representing a large
population with respectively a low and high detection proba-
bility, abundance estimates were closer to the actual value
when using the spatial model. The 3 deviation indices (relative
bias, RMSE, and interval coverage) supported this conclusion.
Spatially explicit CR modeling is an emerging analytical

tool that has mainly been used to estimate densities because it
does not rely on the assumption of geographic closure
(Efford 2004). Obbard et al. (2010) and Gray and Prum
(2012) evaluated the performance of the SECRmodels while
estimating density by comparing density estimates using
SECR with those obtained from conventional approach in
which the effective survey area was estimated using a bound-
ary strip width. The SECR models were recommended in
both studies but they could not infer bias since the actual
density was unknown. Efford (2004) and Borchers and
Efford (2008) assessed the performance of SECR by simu-
lating data from a regular grid of trap. They used alternative
methods for fitting the spatial detection model, that is in-
verse prediction and maximum likelihood, whereas the cur-
rent study used data augmentation and MCMC (Royle and
Young 2008; Royle et al. 2009a, b). Regardless of the meth-
od, the importance of the spatial nature of the sampling
process in capture probability modeling is clearly supported
by our findings. Modeling the capture probability also avoids
substantial bias in estimating abundance. By making capture
probability a function of both the location of the activity
centers and their distance from the camera traps, SECR
models allow efficient use of spatial information contained
in CR data.
We acknowledge that we could not cover all possible

scenarios in our simulations. In particular, our results were
obtained for scenarios that did not account for specificities of
the species biology, such as sex-related differences in home
range size (Sollmann et al. 2011). Furthermore, we did not
take into account the importance of trap configuration,
which can have large effects on the number of individuals
detected. In our study, the traps were placed mainly on trails
because lynx use the easiest route from 1 location to another.
Further work is needed to determine the optimal number and

location of traps to optimize the human and financial costs of
fieldwork while maximizing the precision of abundance esti-
mates. Simulation studies like the one we have conducted
may help in that purpose. Using SECR models allows the
incorporation of variables affecting detection probability,
hence providing managers the opportunity to modify cameras
distribution to improve capture success (Royle et al. 2011).
Non-invasive sampling methods such as camera trapping or

molecular tracking are commonly used to monitor elusive
and wide-ranging populations of large carnivores, as neither
of them requires physical captures. These methods can pro-
vide estimates of population parameters, like population size,
dispersal distance, population growth rate (Marescot et al.
2011), survival (Cubaynes et al. 2010), recruitment, and
immigration rate (Karanth et al. 2006). They are particularly
relevant for the Eurasian lynx whose individual coat patterns
allow the identification via photographs that can be used
with capture–recapture models to estimate abundance and
density. Furthermore, camera-trapping only requires a single
sampling session, in other words repeated sampling is not
required (Efford et al. 2009a). However, this technique
requires reliable photographs from which individuals can
be unequivocally identified, otherwise risking bias in popu-
lation size estimates (overestimation if 2 photographs be-
longing to the same individual are considered as 2 different
individuals, underestimation if 2 photographs of different
individuals are wrongly considered as a single individual).
The issue of misidentification error has recently received
interest (Yoshizaki et al. 2009, Morrison et al. 2011).

MANAGEMENT IMPLICATIONS

With rare and elusive species, we recommend caution when
using standard or even spatially explicit capture–recapture
models because few data are available commonly. Even
though previous studies have demonstrated the utility of
non-invasive sampling methods (e.g., Petit and Valiere
2006) and the analysis of data collected through CR techni-
ques (e.g., Rees et al. 2011) when few data are available, the
confidence and credible intervals still remain large. A pre-
liminary simulation study is useful to determine which fac-
tors affect abundance estimates (no. of camera traps and their
location in particular). To help in this objective, we provide R
code to reproduce our simulation exercise and adapt it for
one’s own purpose (see supplemental information available
online at www.onlinelibrary.wiley.com). Pending these pre-
cautions, spatially explicit CR models provide useful infor-
mation that can be used to produce sound management
strategies for carnivores. In particular, the density map of
the posterior locations of activity centers could be compared
to livestock attack distribution maps to determine whether
correlations exist between hotspots of attacks on livestock
and pools of lynx centers of activity. This might help to
predict potential conflicts between human activities and
predators.
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