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The ongoing recovery of terrestrial large carnivores in North
America and Europe is accompanied by intense controversy. On
the one hand, reestablishment of large carnivores entails a recov-
ery of their most important ecological role, predation. On the
other hand, societies are struggling to relearn how to live with
apex predators that kill livestock, compete for game species, and
occasionally injure or kill people. Those responsible for manag-
ing these species and mitigating conflict often lack fundamental
information due to a long-standing challenge in ecology: How do
we draw robust population-level inferences for elusive animals
spread over immense areas? Here we showcase the application
of an effective tool for spatially explicit tracking and forecast-
ing of wildlife population dynamics at scales that are relevant to
management and conservation. We analyzed the world’s largest
dataset on carnivores comprising more than 35,000 noninvasively
obtained DNA samples from over 6,000 individual brown bears
(Ursus arctos), gray wolves (Canis lupus), and wolverines (Gulo
gulo). Our analyses took into account that not all individuals
are detected and, even if detected, their fates are not always
known. We show unequivocal quantitative evidence of large car-
nivore recovery in northern Europe, juxtaposed with the finding
that humans are the single-most important factor driving the
dynamics of these apex predators. We present maps and forecasts
of the spatiotemporal dynamics of large carnivore populations,
transcending national boundaries and management regimes.

spatial capture–recapture | imperfect detection |
noninvasive monitoring of large carnivores | density surface | vital rates

Few topics in conservation and wildlife management are as
controversial as large carnivores. Predation is both the most

important ecosystem service provided by predators (1, 2) and the
primary source of conflict with humans, e.g., via livestock loss,
competition for game species, and risk to people (1, 3). The
ongoing recovery of large carnivores in North America (4) and
Europe (5) has brought this conflict to the forefront of public
debate as societies grapple with relearning how to live with apex
predators. Stakeholders face each other across a polarized spec-
trum with some lobbying for carnivore recovery and protection
while others advocate fiercely against it (6). Meanwhile wildlife
managers find themselves navigating an often hostile political
landscape, as they attempt to follow national and international
mandates of sustainable natural resource management (7).

Regardless of their position in the dispute, stakeholders gen-
erally agree that reliable estimates conveying the state and
dynamics of carnivore populations are urgently needed to inform

debate, policy, and management. Unfortunately, large carnivores
are notoriously difficult to monitor due to their elusiveness and
because their populations tend to spread over vast areas and mul-
tiple jurisdictions. In general, comprehensive population-level
assessments are highly sought after in ecology but remain elusive.
As a consequence, ecologists often resort to minimum counts
and much-criticized proxies (8–10) or piece together estimates
from local studies that are difficult to scale up. For example, con-
servation of the endangered tiger (Panthera tigris) would clearly
benefit from monitoring and assessment at large spatial scales
(10) but efforts in this direction have only just begun (11).

In this study, we provide the most comprehensive assessment
of the distribution, status, and population dynamics of three sym-
patric apex predators to date. Using a unified analytical approach
(Fig. 1), we mapped the densities and measured vital rates
of brown bears (Ursus arctos), gray wolves (Canis lupus), and
wolverines (Gulo gulo) across more than half a million square
kilometers. We utilized the world’s most extensive individual-
based monitoring dataset on large carnivores collected annually
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Fig. 1. The process of turning long-term monitoring data, such as noninvasive genetic samples and dead recoveries, into population density maps and vital
rate estimates. The OPSCR model combines submodels for the ecological and observation processes. The model produces estimates of parameters describing
individual space use (home range size and movements), abundance and density, and population dynamics. The model can be used further to generate
spatially explicit projections of abundance for user-defined scenarios (see also Fig. 4).

by Norwegian and Swedish authorities and volunteers (Rovbase
3.0) (12). We analyzed data collected between 2012 and 2019
consisting of DNA genotypes from 35,578 noninvasively col-
lected samples associated with 2,824 individual bears, 1,092
wolves, and 2,118 wolverines (SI Appendix, Figs. S1–S3). In addi-
tion, we integrated information associated with known deaths
of 2,246 bears, 457 wolves, and 596 wolverines (SI Appendix,
Figs. S4–S6). Dead recoveries are not only evidence of human
impact but also an important source of information on individual
fates in these hunted populations.

Populations as Changing Surfaces
We analyzed the data using a Bayesian open-population spa-
tial capture–recapture (OPSCR) model (13–15) (Fig. 1), which
addresses three challenges associated with population-level
wildlife inventories: 1) Detection is imperfect and sampling
effort heterogeneous in space and time; not all individuals
present in the study area are detected (16). 2) Individuals that
reside primarily outside the surveyed area may be detected
within it. Without an explicit link between the population size
parameter and geographic space or area, density cannot be esti-
mated and population size is ill-defined (17). 3) Nonspatial pop-

ulation dynamic models often estimate “apparent” survival and
recruitment, as these parameters include the probability of per-
manent emigration and immigration, respectively. By explicitly
modeling movement of individuals between years, the OPSCR
model can return unbiased estimates of demographic parameters
(13, 18).

The OPSCR-derived annual density maps and abundance esti-
mates are direct expressions of the status of the population
(Fig. 2 and SI Appendix, Tables S1–S3) and show that, depend-
ing on species and year, between 8 and 95% of the individuals
remain undetected during annual noninvasive genetic sampling.
Similarly, around 12% of bear deaths, 59% of wolf deaths, and
64% of wolverine deaths go undetected. This underscores how
the use of minimum counts as proxies for population size or vital
rates can be misleading and does not allow users to disentangle
the effects of population dynamics from those of spatially and
temporally varying detection and recovery probability (19, 20).
We estimate that 2,757 (95% credible interval [CrI]: 2,636 to
2,877) bears, 375 (CrI: 352 to 402) wolves, and 1,035 (CrI: 985
to 1,088) wolverines lived in Scandinavia during the final moni-
toring season of our study (Fig. 2). These population-level abun-
dance estimates underline the magnitude of recovery following
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Fig. 2. Annual density maps for brown bears (U. arctos), gray wolves (C. lupus), and wolverines (G. gulo) in Norway and Sweden between 2012 and
2019, with corresponding population estimates (black violins, total; blue violins, Sweden; red violins, Norway). Gray bars in the violin plots indicate the
total number of individual carnivores detected during noninvasive genetic sampling. Time series are labeled with the season or year during which the
majority of samples were collected for each species (SI Appendix). Bear image credit: Staffan Widstrand Photography. Wolf image credit: Shutterstock/Kjetil
Kolbjørnsrud. Wolverine image credit: Shutterstock/Karel Bartik.

eradication policies and intense persecution that had led to local
extinction or severe reduction to small remnant populations of
large carnivores by the early 1900s (21–23).

Wildlife in a Politically Divided World
Large carnivores are highly mobile and often occur in trans-
boundary populations (24, 25). This is also the case in
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Scandinavia where home ranges of many individuals straddle
the border of the European Union between Norway and Swe-
den (14, 26, 27). Like in other transboundary populations, this
has ecological, management, and legal implications. Coordinated
monitoring and a population-level analysis allowed estimation
of density and abundance at various spatial scales and for dif-
ferent administrative units within a single model (Fig. 3 and SI
Appendix, Tables S1–S3). Our study revealed that while the wolf
population occurs primarily in Sweden (SI Appendix, Fig. S7), the
number of wolves in Norway has been growing (posterior linear
slope: 4 individuals per year, CrI: 2.2 to 5.7; Fig. 2). This positive
trend cannot be explained solely by the interplay of recruitment
and survival (see Spatial Population Dynamics), but is likely a
result of movement and source–sink dynamics with neighboring
Sweden. By far the most skewed in terms of the national share in
these populations is the bear (SI Appendix, Fig. S8). The Scandi-
navian brown bear population currently spreads over three core
areas (23, 28) centered in Sweden (Fig. 2) where 95% of the
Scandinavian population resides according to our estimates for
2018. Like wolves, bears in Norway are at the fringe of these
core areas and management on the Swedish side of the border
is liable to play a substantial role in the current state and future
of the Norwegian portion of the bear population (14).

Spatial Population Dynamics
The OPSCR model includes a population dynamic submodel
(also estimating movements; Materials and Methods and SI
Appendix, Tables S4–S12) that integrates both live detections
through noninvasive genetic sampling (NGS) (based on feces,
hair, saliva, and urine) and dead recoveries (Fig. 1). For all three
species, we considered two competing sources of mortality: 1)
legal culling, which is always detected (e.g., legal hunting, man-
agement kills, defense of life and property), and 2) all other
mortalities, which are not always detected (e.g., natural deaths,
vehicle and train collisions, illegal hunting). By distinguishing
these two main causes of death and accounting for imperfect
detection, the model can produce estimates of total mortality,
as well as separate estimates for each mortality cause (29, 30).
Humans are the dominant force driving the dynamics of all three
species. Legal culling alone made up 70% of estimated total mor-
tality for bears and 28% for wolves and wolverines during the
study period (SI Appendix, Figs. S9–S11). Male bears and wolver-
ines experienced on average higher mortality than females (SI

Appendix, Figs. S9 and S11), contributing to female-biased pop-
ulations. At least for bears, higher male mortality is most likely
driven by regulations that protect females with dependent young
from legal hunting (31). By contrast, wolves form cohesive family
groups (packs) and showed substantially less sex-specific differ-
entiation in key parameters, such as abundance and vital rates
(SI Appendix, Fig. S10 and Table S9).

Norwegian and Swedish management programs cull from the
same carnivore populations, but, as shown here, do so at differ-
ent intensities (SI Appendix, Fig. S12). This can at least in part be
explained by different legal and regulatory constraints: Whereas
both countries are signatories to the Council of Europe Bern
Convention for the protection of European Wildlife and Habi-
tats (32), only Sweden is bound by the rules of the European
Habitat Directive (33) regarding the conditions under which
wildlife species may be killed. Thus, despite lower overall car-
nivore numbers, Norway’s legal culling rates are as high as or
higher than those in Sweden (SI Appendix, Fig. S12). Wolverines
experience the most pronounced difference in national culling
pressures: In most years wolverines in Norway are culled at more
than twice the rate of those in Sweden (SI Appendix, Fig. S12).
This is the likely cause for the apparent decline in wolverine
abundance in Norway (posterior linear slope: −10.3 individu-
als per year, 95% CrI: −15.3 to −5.5; Fig. 2), compared with
an increase in Sweden (posterior linear slope: 21.6 individuals
per year, 95% CrI: 12.4 to 30.6; Fig. 2). Differences in manage-
ment are also manifested in the truncated national distribution
of wolves and bears: To limit conflict with livestock husbandry
(mostly domestic sheep and semidomestic reindeer), Norway
delineates zones where wolves and bears are allowed to exist, as
opposed to areas where they are not tolerated (34).

Into the Future
What if, akin to weather maps, we could forecast the dynam-
ics of wildlife populations across space and time? The OPSCR
model can be used to project density and abundance under dif-
ferent conditions and intervention scenarios (35, 36) (Fig. 4).
This is a powerful tool to aid adaptive management of natural
resources and to test hypotheses about spatial ecology and popu-
lation dynamics. For example, maintaining current levels of adult
culling mortality of female wolverines during the coming years
(and assuming that it is additive to all other mortality sources)
would lead to a predicted 6% probability of decline in the

90 (80-102)

62 (54-74)

98 (87-109)

87 (79 - 96)

27 (22-33)

375 (353-397) 660 (619-703)

194 (175-215)

134 (117-151)

211 (192-231)

36 (28-43)

Population-level Sweden CountiesNorwayManagement regions

33 (27-40)

42 (34-50)

1035 (985-1088)

Fig. 3. The OPSCR model generates population-level density (color scale in Fig. 2) and abundance estimates (with 95% credible intervals), as shown here
for wolverines on the Scandinavian Peninsula in 2019. These can be broken down into estimates for the national or local jurisdictions at the scale at which
carnivore management takes place (e.g., large carnivore management regions in Norway and counties in Sweden). This top–down approach is preferable to
methods that piece together estimates derived locally because they risk biased estimates by double counting animals that are shared by multiple jurisdictions
(14). Abundance estimates are not shown for all regions on the map; for a complete tally across all jurisdictions and scales see SI Appendix, Table S3.
Equivalent maps for wolves and bears can be found in SI Appendix, Figs. S7 and S8.
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Fig. 4. Estimated (white background) and projected (hatched background) size of the female wolverine population in Scandinavia. Abundance estimates
were obtained through OPSCR analysis of 7 y of noninvasive genetic sampling and dead recoveries. Forecasting was accomplished through posterior sampling
from the same model. Forecasts are shown for five different levels of culling pressure, compared to the average annual adult culling mortality between
2013 and 2019. The approach also captures the increase in uncertainty (longer violins) as predictions are made farther into the future.

number of female wolverines in Scandinavia by 2022 compared
with the average population size during 2013 to 2019. A 50%
increase in culling mortality would result in a 61% probability
of decline, whereas the probability of a decline would shrink to
4% if culling mortality were to decrease by 50% compared with
pre-2020 levels.

Human interference is the main driver of the dynamics
of many wildlife populations. Robust quantitative estimates
and projections are thus essential for decision making and
should consider populations, not only parts thereof. Isolation-
ist approaches to monitoring and inference are still the norm
today and lead to management decisions that ignore essential
factors influencing populations, such as transboundary source–
sink dynamics (37). Whereas management interventions can be
constrained to jurisdictions, their implications cannot.

Materials and Methods
Large Carnivore Monitoring. We used data from the Scandinavian large car-
nivore database Rovbase 3.0 (12). This database is used jointly by Norway
and Sweden to record information obtained during large carnivore mon-
itoring, NGS data, GPS search tracks, and dead recovery data. Detailed
information about each of these components is provided in SI Appendix.

Open-Population Spatial Capture–Recapture Analysis. The OPSCR model (13–
15) is composed of three submodels described in the following sections: 1) a
model for population dynamics and population size (Population dynamics),
2) a model for density and movements (Density and movement), and 3) a
model for detections during DNA searches (Detections).
Population dynamics. We used a multistate formulation for the popula-
tion dynamics model (38). Following this framework, each individual life
history is represented by a succession of discrete states zi,t that arise from
a Markov process. Between two consecutive years, an individual i at time
t can either remain in its current state or transition to another one, with
transition probabilities corresponding to vital rates (e.g., recruitment and
mortality). For the bear and wolverine models, we considered four differ-
ent states (SI Appendix, Fig. S13A): 1) “unborn” if the individual has not yet
been recruited in the population; 2) “alive” if the individual is alive at the
start of the current monitoring season; 3) “dead legal” if the individual has
died from legal culling between the start of the previous and current mon-
itoring seasons; and 4) “dead” if the individual has a) died from any other
cause of mortality between the start of the previous and current monitoring
seasons or b) died earlier, regardless of the cause.

At the first occasion, individuals can only be in the unborn or alive states
so that zi,1∼ dcat(1− γ0, γ0), where γ0 is the probability to be in state alive
at the first occasion. In subsequent years (t> 1), the individual state zit is
modeled as a Markov process, i.e., conditional on the state of the individual
at t− 1 as follows:

• If zit = 1, an individual can be recruited by transitioning from state
unborn to state alive with probability γt . This parameter has to be time
specific, as it depends on the number of individuals that are left in the
departure state (i.e., the unborn state) which necessarily decreases with
time. Note that the per capita recruitment rate can be derived as the
number of new recruits at time t, divided by the number of individuals
alive at t− 1.

• If zit = 2, the individual can survive and remain in state alive with prob-
ability Φt , die from legal culling (zi,t+1 = 3) with probability h, or die
from all other causes and transition to zit = 4 with probability w, where
Φt = 1− ht −wt .

• Finally, all individuals in dead states (zit = 3 or 4) transition to zi,t+1 = 4,
the absorbing state, with probability 1.

Population size in each year is derived as the sum of all individuals in the
alive state,

N̂t =
M∑

i=1

I (zi,t = 2), [1]

where M is the total augmented population size and I() the indicator
function. This approach uses data augmentation, whereby additional, unde-
tected individuals are provided and are available for inclusion in the
population in each time step (39). A slightly different population dynam-
ics submodel was used for wolves (SI Appendix, Fig. S13B) to account for
social behavior.

For all three species, we considered two competing sources of mortality:
legal culling (h), which is always detected (e.g., legal hunting, management
kills, defense of life and property), and all other mortalities (w), which may
not always be detected (e.g., natural deaths, vehicle and train collisions,
illegal hunting). By distinguishing between these two causes of mortality
in the model and accounting for imperfect detection, the OPSCR model
can produce estimates of total mortality, as well as separate estimates for
each mortality cause (29, 30). For wolves and wolverines, vital rates were
allowed to vary between years, yielding annual estimates of recruitment
and cause-specific mortality. For bears, the patchy configuration and large
spatiotemporal gaps in sampling in Sweden (SI Appendix) did not allow us
to estimate fully time-dependent vital rates; instead we split the total time
into two periods (2012 to 2014 and 2015 to 2018) and allowed recruitment
and “other” mortalities to differ between periods, while assuming that they
were constant within each period. However, even for bears, mortality due to
legal culling was allowed to vary annually, as dead recoveries were available
every year in both Sweden and Norway. Although compensation between
mortality sources was not modeled explicitly, estimates of w and h can
reflect mutual influences, including compensation, of the associated true
vital rates as these parameters are estimated independently between years
(or multiyear periods for bear).

Vital rate parameters were time, sex, species, and state specific. Spatial
variation in density and fates was also partially accounted for in the model.
Perfect detectability of legal culling deaths, together with estimates of
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spatially explicit abundance, allowed direct estimation of annual legal
culling mortality for any desired spatial unit, including country-specific esti-
mates. Spatial variation in legal culling mortality and recruitment emerged
phenomenologically because the OPSCR model is ultimately an agent-based
model that allows realizations of individual life histories (including transi-
tions to live and dead states) while taking into account the existing data.
Because large carnivore NGS and dead recovery data are so extensive in
Norway and Sweden, realization of individual life histories (and movement;
see Density and movement) can lead to spatially varying population trends
without explicit integration of country/region-specific vital rates.
Density and movement. In OPSCR, the location of an individual is described
by its activity center (AC). The distribution of individual ACs is modeled using
a spatial point process. Here, we used an inhomogeneous binomial point
process (40). This formulation allows the density of ACs to vary according to
a spatial intensity function, λ(s) (where s is a vector of spatial coordinates).
Then D, the expected number of ACs falling within an area U, follows

D∼ Binomial
(

Λ(U)

Λ(S)
, M
)

, [2]

where S is the entire habitat and M is the total number of ACs (including
unborn individuals) within S and

Λ(U) =

∫∫
U

λ(s)ds. [3]

In this study, we define the intensity function of the inhomogeneous
binomial point process to condition the initial AC locations s1 (index for indi-
vidual i omitted for readability) on a spatial covariate X (the species-specific
proxies for density in our analysis),

λ(s1) = eβX(s1), [4]

where X(s1) is the value of the spatial covariate at coordinates s1.
To distinguish between emigration and mortality, we integrated AC

movement into the OPSCR model by allowing shifts of individual ACs
between years. To account for the fact that individual movements are
the result of both the attractiveness of the habitat at the arrival location
(habitat selection) and the distance from the previous location, individual
movements were modeled as a Markovian inhomogeneous binomial point
process. The probability density of an individual’s AC at time t, st , was con-
ditional on 1) the distance to the AC location in the previous year, with
coordinates st−1, and 2) a species-specific spatial covariate X:

f(st|st−1, τ )∝ e
−
‖st−st−1‖

2

2τ2 · eβX(st )
. [5]

Eq. 5 represents the prior distribution of latent variable st , where τ is the SD
of a bivariate normal distribution centered on st−1. Under this specification,
movement is described as an isotropic Gaussian random walk (41) weighted
by the spatial covariate X. The SD τ therefore regulates the distance that
individuals are likely to move between time periods.

The distribution of carnivores in Norway and Sweden likely depends on
many different spatial covariates (e.g., prey density, human density, land
cover type, terrain, elevation, latitude). Due to the computational challenge
associated with a very large habitat and an already complex model, it was
not feasible within the scope of this study to test for and select covariates
and their interactions from the large pool of candidate variables. Instead,
we chose to use coarse species-specific proxies that reflect the species dis-
tributions. Finally, for bears, we used data on the location of dead animals
to capture the distribution of core areas; we constructed the coarse spatial
density covariate based on all dead recovery locations for bears between
2012 and 2018 (SI Appendix, Fig. S14). For wolves, we used the locations
of pack observations by the authorities, to which we applied a smooth-
ing kernel to create a coarse year-specific spatial covariate representing
the number of observed packs per habitat cell (SI Appendix, Fig. S15). For
wolverines, we used the locations of known dens (from den visits conducted
by authorities in their effort to document reproductions) to generate a spa-
tial covariate representing the number of known dens per habitat cell (SI
Appendix, Fig. S16). These density covariates were not the sole drivers of
patterns in density; spatiotemporal patterns in density emerge as a result of
individual-based system dynamics in the model (i.e., realizations of observed
and latent individual life histories). For example, despite using single (not
time-dependent) density covariates for wolverine and bear, we obtained
substantial fluctuations in model-estimated density surfaces across years.

We note that the density covariates used here do not mirror our covari-
ates for modeling spatial variation in detection probability (including search
effort; SI Appendix, Figs. S17–S20). Density covariates were standardized for
computational efficiency during model fitting.
Detections. In spatial capture–recapture (SCR), detection is closely linked
with the home range concept in that the probability of detecting an indi-
vidual is modeled as a function of the distance to its AC. Most SCR models,
including the ones used here, consider the half-normal model to represent
the decline in detection probability (42) with increasing distance from the
AC. Following this formulation, the probability pijt to detect individual i at
detector j and time t is

pijt = p0ijt
· e
−

d2
ijt

2σ2 , [6]

where p0ijt
represents the baseline detection probability at the location of

the AC; σ, the scale parameter, represents the width of the detection distri-
bution; and dijt is the distance between detector j and the AC of individual
i at time t (Fig. 1). For individuals in state alive, the frequency of subdetec-
tors with at least one detection is then modeled as yijt ∼ Binomial(pijt , kjt),
where kjt , the number of subdetectors associated with detector j at occasion
t, is the number of trials.

Both the baseline probability (p0) and scale parameter (σ) of the detec-
tion function can be under the influence of various individual, spatial,
and detector-specific factors. These, as well as the spatial configuration of
the detector grid, are described in SI Appendix. The detection function in
SCR models reflects animal space use and is thus closely linked with the
home range concept. As a coarse validation of the spatial assumptions
of the model, we calculated sex- and species-specific circular home range
sizes (area encompassed by the 95% vertex of the utilization distribution)
from the scale parameter σ using the χ2 distribution with two degrees of
freedom (43) and report the results in SI Appendix.

The detection process described above concerns detections via NGS. Infor-
mation contributed by dead recoveries was integrated differently, with the
goal to 1) enforce perfect detection of the deaths of individuals legally
culled (as reporting is a legal requirement) and 2) inform the model about
the fates and locations of individuals that had been recovered regardless of
the cause of death. Dead recovery was realized as a binary process where
all individuals legally culled were recovered with a probability of 1 and indi-
viduals had a recovery probability of zero if they died from other causes:
y.deadit ∼ Bernoulli(I(zit)), where I is an indicator function returning 1 if
zit = culled and 0 otherwise. Although detection probability of deaths due
to other causes was fixed at zero, all known deaths, regardless of cause,
were incorporated in the state matrix z. States of individuals recovered
dead (and thus transitions) following the last live detection were thus no
longer latent, even in the absence of further live detections. Dead recovery
locations were used as the coordinates sit of the AC of the recovered individ-
ual in the year following its death, thus informing (through the movement
model described above) the AC location during the last time step that the
animal was alive.

Analysis. We fitted our Bayesian OPSCR models using Markov chain Monte
Carlo (MCMC) simulation with Numerical Inference for Statistical Models
Using Bayesian and Likelihood Estimation (NIMBLE) (44–46) in R version
3.6.1 (47). NIMBLE provides an alternative implementation of the Bayesian
Inference Using Gibbs Sampling (BUGS) model language coupled with the
capability to add custom functions, distributions, and MCMC samplers to
improve computing performance. OPSCR models represent a significant
computational challenge due to their complexity. This challenge is ampli-
fied in our analysis due to the size of the problem (number of individuals,
spatial and temporal extent). For this reason, we implemented additional
approaches to substantially reduce computation time, including 1) a bino-
mial observation model that allowed substantial reduction of the number
of detectors (and therefore runtime) without compromising the precision
and accuracy of model estimates (48) and 2) removing unnecessary evalu-
ation of the likelihood whenever the distance between a detector and a
predicted AC location was larger than a distance threshold (49). This dis-
tance was adjusted for each species and sex to maximize the efficiency of
the local evaluation. Model implementation in NIMBLE (46), in combina-
tion with the aforementioned developments, yielded a roughly 100-fold
improvement in MCMC efficiency (50) compared to that in ref. 51, ultimately
enabling us to run the different OPSCR models presented here in a few days
or weeks, instead of months. We implemented separate OPSCR models for
males and females to account for sex-specific traits such as detection prob-
ability, survival, home range size, and dispersal distance. For all six models
(three species, two sexes), we ran multiple chains (wolf and wolverine, 4;
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bear, 8), each with 15,000 iterations (thinned by a factor of 10 for bears
and 5 for wolves and wolverines), including a 5,000-iteration burn-in period.
We used computing clusters for running multiple MCMC chains on separate
cores, enabling us to run many chains simultaneously thereby reducing the
total runtime. We considered models as converged when the Gelman–Rubin
diagnostic (Rhat) (52) was <1.1 for all parameters and by visually inspecting
the trace plots.

We performed several simulation-based assessments of SCR/OPSCR model
performance and reliability throughout the development process that led to
the models used in the analysis. This included assessing robustness to non-
independence between observations (53), spatial aggregation of detection
information (48), interruptions in data collection (including an empirical test
of the OPSCR model’s ability to make reliable predictions for years with
artificial data removal) (54), and integration of multiple data sources (55).
However, while goodness-of-fit (GOF) tests for nonspatial CR models are rel-
atively mature (56), GOF testing for SCR and especially OPSCR is still in its
infancy and development is needed.

Data and model code for performing the analysis described here are
available in ref. 57. We refer interested readers to our R package nimbleSCR
(50, 58), which includes functions for fitting SCR models using NIMBLE. The
package includes a collection of methods that drastically improve MCMC
estimation, thereby enabling application of SCR to large-scale problems.
Parameter estimation. The OPSCR is a hierarchical model with many param-
eters and latent variables directly estimated or derived (SI Appendix,
Tables S4–S6). Unless otherwise indicated, we summarized posterior distri-
butions using their median and 95% CrI. To obtain abundance estimates,
we summed the number of OPSCR-predicted AC locations of alive individ-
uals that fell within each geographic region of interest (Scandinavia-wide,
country specific, or local administrative unit) for each iteration of the MCMC
chains, thus generating a posterior distribution of the density in that spatial
unit. In this fashion, abundance estimates and the associated uncertainty
can be extracted for any desired spatial unit (Fig. 3). To ensure that abun-
dance estimates of spatial subunits add up to overall abundance estimates,
we used the mean and the associated 95% credible interval to summarize
posterior distributions of abundance. Combined (female/male) parameter
estimates were obtained by summing the posterior samples obtained from
the sex-specific models. We used both the distribution of model-estimated
AC positions and the scale parameter of the detection function to construct
density maps that not only are based on the position of the center of an indi-
vidual’s home range, but also take into account the area over which that
individual’s activity is spread (space use). To do so, we constructed raster
maps of individual utilization distributions (using the half-normal kernel
with the model-estimated scale parameter σ), scaled values in each raster
to sum to one, and then aggregated rasters across all individuals for a given
model iteration into a single raster map. This was repeated for every iter-
ation and an overall density map was derived by calculating the average
of the posterior utilization density (i.e., across iterations) in each cell. We
obtained posterior trend estimates for parameters by calculating the least-
squares slope across years for each iteration. We reported trends as such
if the 95% CrI of the posterior slope did not include zero. Note that these
trend estimates should be interpreted as the result of assumption-free cal-

culation and not linear regression analysis (which makes assumptions about
linearity and normally distributed errors).
Forecasting. To illustrate OPSCR-based forecasting, we generated predic-
tions from the fitted wolverine OPSCR model using posterior predictions. We
created a NIMBLE custom function (45) that takes as input a set of param-
eter values from the posterior MCMC samples and generates new MCMC
samples (for s and z) based on the fitted OPSCR model for future years
for which no data (NGS and dead recoveries) are yet available. Here, we
expanded the model structure for 5 y without data (2020 to 2024) and sim-
ulated model node values for these years based on parameter values of 500
randomly selected MCMC iterations. Uncertainty is propagated during sim-
ulations as it is during model fitting. For the years 2020 to 2024, we fixed
w and per-capita recruitment to their mean values during the preceding 7 y
(2013 to 2019). To explore the impact of alternative hunting pressures, we
repeated the posterior sampling process for five different levels of h rela-
tive to the average adult legal culling mortality h̄ during 2013 to 2019, i.e.,
0.5× h̄, 0.75× h̄, 1× h̄ (status quo), 1.5× h̄, and 2× h̄. For demonstration
purposes, we did not consider the possibility for compensatory mortality
but instead assumed that all hunting-related mortality was additive. Results
from the posterior sampling procedure were processed like those from the
original model fitting. We provide only a simple illustration of the poten-
tial of OPSCR for making forecasts. Actionable predictions should take into
account that different sources of mortality are mutually influenced by their
magnitude and timing. Furthermore, our example relies on the same den-
sity covariates that were used during the period with data. These covariates
would have to be updated if extensive distributional change (e.g., range
expansion or contraction) is to be expected in the future.

Data Availability. The .RData file with input data for OPSCR model fitting
and carnivore density raster files have been deposited in Github (https://
github.com/richbi/WildThings) (57).

ACKNOWLEDGMENTS. This work was made possible by the large carni-
vore monitoring programs and the extensive monitoring data collected
by Swedish (Länstyrelsena) and Norwegian (Statens naturoppsyn) wildlife
management authorities, as well as the public in both countries. Genetic
analyses were conducted by the laboratory personnel at the DNA laborato-
ries at the Swedish University of Agricultural Sciences, Uppsala University,
the Swedish Museum of Natural History, the Norwegian Institute for Nature
Research, and the Norwegian Institute of Bioeconomy Research. Compu-
tations/simulations were performed on resources provided by computing
cluster “Orion,” administered by the Center for Integrative Genetics at
the Norwegian University of Life Sciences and by Uninett Sigma2—the
National Infrastructure for High Performance Computing and Data Stor-
age in Norway. We thank both Swedish and Norwegian wildlife managers
for constructive discussions during the study and J. Swenson, D. Sheil,
and three anonymous referees for helpful comments on earlier versions
of this manuscript. This study was funded by the Norwegian Environment
Agency (Miljødirektoratet), the Swedish Environmental Protection Agency
(Naturvårdsverket), the Research Council of Norway (NFR 286886; project
WildMap), and the Peder Sather Grant. Any use of trade, product, or firm
names is for descriptive purposes only and does not imply endorsement by
the US Government.

1. A. Ordiz, R. Bischof, J. E. Swenson, Saving large carnivores, but losing the apex
predator? Biol. Conserv. 168, 128–133 (2013).

2. W. J. Ripple et al., Status and ecological effects of the world’s largest carnivores.
Science 343, 1241484 (2014).

3. C. T. Lamb et al., The ecology of human–carnivore coexistence. Proc. Natl. Acad. Sci.
U.S.A. 117, 17876–17883 (2020).

4. J. T. Bruskotter, L. B. Shelby, Human dimensions of large carnivore conservation and
management: Introduction to the special issue. Hum. Dimens. Wildl. 15, 311–314
(2010).

5. G. Chapron et al., Recovery of large carnivores in Europe’s modern human-dominated
landscapes. Science 346, 1517–1519 (2014).

6. M. Enserink, G. Vogel, The carnivore comeback. Science 314, 746–749 (2006).
7. A. Trouwborst, F. M. Fleurke, J. D. C. Linnell, Norway’s wolf policy and the Bern con-

vention on European wildlife: Avoiding the “manifestly absurd”. J. Int. Wildl. Law
Pol. 20, 155–167 (2017).

8. K. H. Pollock et al., Large scale wildlife monitoring studies: Statistical methods for
design and analysis. Environmetrics 13, 105–119 (2002).

9. P. A. Stephens, N. Pettorelli, J. Barlow, M. J. Whittingham, M. W. Cadotte, Man-
agement by proxy? The use of indices in applied ecology. J. Appl. Ecol. 52, 1–6
(2015).

10. A. M. Gopalaswamy, K. U. Karanth, M. Delampady, N. C. Stenseth. How sampling-
based overdispersion reveals India’s tiger monitoring orthodoxy. Conserv. Sci.
Practice, 1, e128 (2019).

11. T. Tempa et al., The spatial distribution and population density of tigers in
mountainous terrain of Bhutan. Biol. Conserv. 238, 108192 (2019).

12. Miljødirektoratet, Naturvårdsverket, Rovbase 3.0. https://rovbase30.miljodirektoratet.
no. Accessed 8 October 2019.

13. T. Ergon, B. Gardner, Separating mortality and emigration: Modeling space use, dis-
persal and survival with robust-design spatial capture–recapture data. Methods Ecol.
Evol. 5, 1327–1336 (2014).

14. R. Bischof, H. Brøseth, O. Gimenez, Wildlife in a politically divided world: Insularism
inflates estimates of brown bear abundance. Conserv. Lett. 9, 122–130 (2016).

15. R. B. Chandler, J. Hepinstall-Cymerman, S. Merker, H. Abernathy-Conners,
R. J. Cooper, Characterizing spatio-temporal variation in survival and recruitment
with integrated population models. Auk 135, 409–426 (2018).
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