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Summary

1. Distance sampling is widely used to estimate the abundance or density of wildlife populations. Methods to

estimate wildlife mortality rates have developed largely independently from distance sampling, despite the con-

ceptual similarities between estimation of cumulative mortality and the population density of living animals.

Conventional distance sampling analyses rely on the assumption that animals are distributed uniformly with

respect to transects and thus require randomised placement of transects during survey design. Because mortality

events are rare, however, it is often not possible to obtain precise estimates in this way without infeasible levels of

effort. A great deal of wildlife data, including mortality data, are available via road-based surveys. Interpreting

these data in a distance sampling framework requires accounting for the non-uniformity of sampling. In addi-

tion, analyses of opportunistic mortality data must account for the decline in carcass detectability through time.

We develop several extensions to distance sampling theory to address these problems.

2. Webuildmortality estimators in a hierarchical framework that integrates animalmovement data, surveillance

effort data and motion-sensor camera trap data, respectively, to relax the uniformity assumption, account for

spatiotemporal variation in surveillance effort and explicitly model carcass detection and disappearance as com-

peting ongoing processes.

3. Analysis of simulated data showed that our estimators were unbiased and that their confidence intervals had

good coverage.

4. We also illustrate our approach on opportunistic carcass surveillance data acquired in 2010 during an anthrax

outbreak in the plains zebra of EtoshaNational Park, Namibia.

5. The methods developed here will allow researchers and managers to infer mortality rates from opportunistic

surveillance data.

Key-words: carcass, cue, disease, distance sampling, hierarchical model, mortality, opportunistic

surveillance

Introduction

Distance sampling is a common class of methods used to esti-

mate abundance of wildlife populations (Buckland, Goudie &

Borchers 2000). In conventional distance sampling (CDS), a

region is sampled from randomly placed lines (line transect

sampling) or points (point transect sampling) with n detected

animals counted and their respective distances, yi, i = 1, … n,

to the traversed line or point recorded. The distribution of

these distances is then used to estimate the decline in an ani-

mal’s detection probability as a function of increasing distance

from the observer. The fitted detection function then facilitates

estimation of animal abundance or density in the surveyed

region, and the precision thereof (Buckland et al. 2001).

One of the strengths of CDS is that the random placement

of transects in the study area (i.e. design-based surveys) sup-

ports two assumptions. First, the surveyed area is assumed to

be a random (i.e. unbiased) sample of the larger study area

(between-transect scale), allowing extrapolation of density esti-

mates from the former to the latter. Second, the perpendicular

distance of animal locations to the survey transects is assumed

to be uniform (within-transect scale).We use p(y) to denote the
probability density distribution of an independent and identi-

cally distributed random variable y and p(yi) to denote the

probability density at a particular distance yi. If p(y) is uniform,

then any drop-off in the expected number of animals detected

at greater distances is due to declining detectability, rather than

changes in animal density.

Both assumptions above may not hold for distance sam-

pling-type data collected from non-randomly located transects

or paths. Violations of the assumption that the surveyed area is*Correspondence author. E-mail: steve.bellan@gmail.com
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not a random sample of the study area can be accounted for by

modelling population density as a spatially explicit function

of habitat covariates (Hedley & Buckland 2004; Williams,

Hedley &Hammond 2006; Johnson, Laake &Ver Hoef 2010).

Without transect randomisation, however, accounting for bias

caused by violations of the assumption that p(y) is uniform can

pose a challenge (Johnson, Laake & Ver Hoef 2010; Marques

et al. 2010). Violation of the uniformity assumption will com-

monly occur in surveys conducted from easily navigable per-

manent paths that either indirectly (e.g. via association with

habitat variables) or directly (e.g. road avoidance) affect ani-

mal behaviour. Without knowing how a species’ utilisation

varies with distance from transects, results will be biased

(Johnson, Laake & Ver Hoef 2010); although see Marques

et al. (2010) for an alternative approach to disentangling

detectability from p(y). Therefore, from an analytical point of

view,most CDS literature holds that randomisation of transect

location is indeed necessary (Buckland et al. 2001, 2004).

Opportunistic surveys – i.e. those in which detections are

recorded while observers are performing other tasks – have

some important advantages over design-based surveys, sug-

gesting a need formethods that can account for the bias associ-

ated with non-uniform p(y). These advantages include: (1) the
relatively low-cost of acquiring distance data from paths

already being traversed for other reasons (Williams, Hedley &

Hammond 2006; Kiszka et al. 2007) or from easily navigable

paths (Walsh & White 1999), (2) the relative ease of collecting

opportunistic data long-term (Kiszka et al. 2007; Himes

Boor & Small 2012), and (3) avoidance of the problem that,

when studying extremely rare or elusive animals, resource limi-

tations may prevent feasibly sized design-based studies from

detecting enough animals for informative inference.

Opportunistic surveys may also be preferable when count-

ing rare events, such as sighting rare or elusive animals, or find-

ing carcasses of even common animals. In the latter case,

carcasses may be detectable for such short durations that an

unfeasibly large design-based survey would be necessary to

detect enough carcasses for adequate precision. Yet opportu-

nistically sighted carcasses are often recorded in long-term

data sets, often along with cause of death, thereby enhancing

our understanding of a species’ mortality dynamics. In this

manuscript, we extend CDS through the development of new

methods to incorporate estimates of non-uniform p(y) from
auxiliary Global Positioning System (GPS) movement data in

distance sampling estimators. In addition, we also extend CDS

to incorporate data on rates at which scavengers dispose of

carcasses into estimates of mortality rates. If carcasses are

quickly removed from the environment (i.e. by decay or con-

sumption), a smaller proportion of carcasses will be detected.

Consequently, researchers have paidmuch attention to carcass

removal rates when estimating wildlife mortality due to wind

farms (Smallwood et al. 2010), roads (Santos, Carvalho &

Mira 2011), pesticides (Rivera-Mil�an, Zaccagnini & Canavelli

2009) and power lines (Ponce et al. 2010). Using the ‘multi-

plier’ approach (Buckland et al. 2001; Buckland et al. 2004),

one can then estimate the mortality rate by dividing the esti-

mated carcass abundance (from distance sampling analysis) by

the estimated duration for which a carcass is detectable

(equivalent to multiplying by the estimated removal rate), tak-

ing care to incorporate variance due to the latter in the former

(Plumptre 2000).

The above ‘multiplier’ method, however, is invalidwhen car-

casses have multiple chances to be detected, but can only be

detected once – i.e. during opportunistic surveillance when

multiple trips may be made past a carcass, but communication

amongst researchers ensures no double sampling. In such situ-

ations, detections are conditional on previous non-detection.

The probability of detecting a carcass on one of the several

trips is a function of the probability the carcass was available

for detection at each trip (and hence on the removal rate), mak-

ing the detection probability of each carcass a nonlinear func-

tion of the number of trips past that carcass, the interval

between trips and the removal rate. Thus, our second extension

to CDS is the explicit inclusion of detection and removal as

competing processes within distance sampling estimators.

Finally, in some systems ‘removal rates’, which implicitly

assume carcass removal to be a discrete event, may not be the

relevant concept. For instance, detection of large terrestrial

mammal carcasses occurs either by detection of the carcass

itself or via detection of various scavenger species, each of

which may be more or less detectable depending on size and

capability for flight (e.g. large numbers of vultures in flight can

be seen at great distances). Thus, carcass availability for detec-

tion depends on the probability of scavenger (i.e. sighting cue)

presence as a function of time since carcass production

(i.e. death). These probabilities will differ between scavenger

species based on their abundance, search efficiency and niche

partitioning (Hunter, Durant & Caro 2007). Hence, rather

than modelling a ‘removal’ process, we model the sighting cue

process itself. Specifically, we estimate p(c|t): the probability

each sighting cue, c, is available as a function of time since

death, t, from motion-sensor camera trap data on scavenger

activity at carcasses.

In summary, we address several gaps in methods used to

estimate cumulative mortality incidence from opportunistic

surveillance data. As an example of the methods developed in

this study, we estimate cumulative mortality during outbreaks

of seasonally endemic anthrax in the plains zebra (Equus

quagga) of Etosha National Park (ENP), Namibia. Using a

hierarchical modelling framework (Royle &Dorazio 2008), we

model carcass production, sighting cue availability and detec-

tion as concurrent dynamic processes. Our analysis explicitly

accounts for surveillance effort by estimating mortality rates

within surveilled space-time windows.We use bootstrap meth-

ods to incorporate error associated with estimation of p(y) and
p(c|t) into the final incidence estimate. We first present a tech-

nical section extending distance sampling methods, as moti-

vated above. We then introduce the ENP study system,

focusing on the observational and ecological processes that

play a role in producing the passive surveillance data to be

analysed. We continue by using simulated carcass data to

assess the accuracy and precision of the developed estimator,

before applying it to estimate cumulative mortality in the sur-

veilled region during an anthrax outbreak in ENP in 2010.
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Finally, we conclude with a discussion of the utility of these

methods as well as suggest future directions.

Materials andmethods

A GENERAL LIKEL IHOOD FOR CARCASSES

Following the notation in Buckland et al. (2001), in CDS the abun-

dance of N animals within half-strip width w of surveyed transects is

estimated by the Horvitz-Thompson Aestimator bN ¼ nR w

0
gðyjbhÞpðyÞdy,

where n is th number of detected animals, g(y|h) is the probability of

detecting an animal at a perpendicular distance y from the transect,

and h is the parameter set for this function. To allow robust estimation

of N, the detection function g(y) must have a shoulder at the transect

(g’(0) = 0) and detection must be perfect on the centreline (g(0) = 1).

Throughout the remainder of the article, we focus on the half-normal

detection function, a common suchmodel with these properties,

gðyjhÞ ¼ exp � y

h

� �2
� �

The denominator of bN is the marginal probability of detecting any ani-

mal within a distance w of the transect. We do not know g(y | h), but
rather estimate bh by maximising the likelihood of the distribution of

detected distances yi given detection: i.e.

LðhjyÞ ¼
Yn

i¼1

gðyijhÞpðyiÞR w

0 gðyjhÞpðyÞdy eqn 1

Consider an opportunistic surveillance data set in which carcass obser-

vations were recorded for i = 1,…, n carcasses that were generated on

day di at distance yi from road ri and sighted with sighting cue ci. In

some systems, there may be only one type of sighting cue – i.e. the car-

cass itself – but in some systems, such as our motivating example

below, there may exist a set of cues with very different detectability-

distance drop-offs and durations of time available for detection (e.g.

avian scavengers, mammalian scavengers or the carcass itself). In these

cases, the likelihood (Eqn 1) can be extended with the probability that

carcass i was generated on day di at distance yi from road ri with cue

ci, given that the carcass was detected. The likelihood for all carcasses

found is the product of individual likelihoods of each carcass and thus

be written as

L1ðhjy; c; r;dÞ ¼
Yn

i¼1

gðyi; ci; ridijhÞpðyi; ci; ri; diÞ
Rðr;dÞ2ðR;DÞ

R w

0 Rc2Cgðy; c; r; djhÞpðy; c; r; dÞdy
eqn 2

where (R, D) is the spatiotemporal window being considered, C is the

set of all detection cues and p(y,c,r,d) is the joint probability density

function of a carcass being generated y distance from the road on

day d, road r, and being observed with cue c. We assume that, d, and

c are independent although d and r are likely correlated because par-

ticular roads may have elevated carcass densities at certain times as a

result of correlated movements of individuals. Thus, we assume that

p(y, c, r, d) = p(y)p(c)p(r, d). While we do not actually know the day

of death di, but only the day of detection li, for many surveillance sys-

tems (i.e. because ageing carcasses is difficult) we assume that the for-

mer is known for now, but expand the likelihood with a latent

variable formulation below. Noting that the denominator of Eqn 2 is

the marginal probability of finding any carcass in (R, D), we can con-

struct a Horvitz-Thompson estimator of carcass abundance in that

window.

bNST ¼ n

Rðr;dÞ2ðR;DÞ
R w

0 Rc2Cgðy; c; r; djbhÞpðyÞpðcÞpðr; dÞdy eqn 3

In the above formulation, p(r, d) explicitly accounts for the spatiotem-

poral (ST) distribution of carcasses. In some ways, this formulation is

attractive. In theory it allows us to fit p(r, d) and thereby estimate not

only the abundance of carcasses but also their spatiotemporal distribu-

tion, given a sufficiently large sample size. However, our initial explor-

atory simulations demonstrated that this formulation has the

disadvantage that surveillance effort that has not resulted in the detec-

tion of carcasses affects the likelihood and subsequently the estimation

of h.When themajority of surveillance effort resulted in zero detections

(often the case for carcass surveillance), including this effort in the anal-

ysis biased bh and subsequently bNST. We therefore decided to develop

an estimator that was conditional on the particular road ri where the

carcass was found, the date di it was generated (i.e. date of death) and

the distance yi. The likelihood is then the conditional probability of yi
and ci given detection of a carcass at (ri, di):

L2ðhjy; c; r; dÞ ¼
Yn

i¼1

gðyi; ci; ri; dijhÞpðyiÞpðciÞR w

0 Rc2Cgðy; c; ri; dijhÞpðyÞpðcÞdy
eqn 4

The denominator of (3) is no longer themarginal detection probability,

but rather the conditional probability of detecting a carcass given ri and

di and is thus specific to each detected carcass. Thus, followingBorchers

et al. (1998), rather than dividing n by the marginal probability of

detecting, we formulate a Horvitz-Thompson-like estimator which

sums the inverse detection probabilities of each carcass detectedbNC ¼ Rn
i¼1

1
p̂i
, where p̂i is the average probability of detecting a carcass

on road ri that was detected on day di. The detection cue changes over

time so p̂i encompasses the probability of detection with any cue,

yielding:

bNHT ¼ Rn
i¼1

1R w

0 Rc2Cgðy; c; ri; dijhÞpðyÞpðcÞdy
eqn 5

Our simulations also demonstrated that this estimator also was biased

due to integration over both y and the latent variable di when surveil-

lance effort was sparse (Supplementary Table S1). We found that a

slightly modified Horvitz-Thompson estimator that also conditioned

on yiwas approximately unbiased, so we thus use the following estima-

tor throughout the rest of themanuscript

bNC ¼ Rn
i¼1

1

Rc2Cgðyi; c; ri; dijbhÞpðcÞ eqn 6

THE DETECTION FUNCTION

The numerator of Eqn 4 gives the probability a given carcass was

detected at yi from the road with cue ci given death on road ri on day di.

For a known date of death di

gðyi; ci; ri; diÞpðyiÞpðciÞ ¼ pðyiÞRq2Qg�ðyi; ci; ri; di; tq;iÞpðcijtq;iÞ
eqn 7

where tq,i ≡ lq,i � di is the number of days between death and the q-th

trip past the i-th carcass and lq,i is the calendar day of this trip. We

define g*(yi, ci, ri, di, tq,i) as the probability of detection on exactly the

q-th trip with cue ci, conditional on previous non-detection. The cumu-

lative probability of detection within tmax days (i.e. the maximum num-

ber of days after death that we believe a carcass is detectable, chosen

based on knowledge of the study system) of di is calculated by summing

over this function for all trips inQi, whereQi is defined such that q ∈ Qi

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution
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if tq,i ∈ [0, tmax]. The probability of detection exactly tq,i days after death

with cue ci is the probability of missing the carcass on all trips to road ri
after the carcass was generated, but prior to the trip of detection multi-

plied by the probability of detecting it on trip q: i.e.

g�ðyi; ci; ri; di; tq;iÞpðcijtq;iÞ ¼ hðyi; ciÞpðcijtq;iÞ
Y

s2Sq;i

ð1� Rc2Chðyi; cÞpðcjtsÞÞ
eqn 8

where h(yi, ci) is the distance detectability function (equivalent to g(y, z)

used in the CDS notation above) giving the probability of detecting a

carcass displaying sighting cue ci given the carcass is yi distance from

the road. The product occurs over all trips in Sq,i, where Sq,i is defined

such that s ∈ Sq,i if ts ∈ [0, tq,i] and trip s occurred before trip q (when

theywere on the same day).

The function h(yi, ci) is the detection function in the CDS sense in

that, it is the probability of detecting a carcass yi metres from the road

given that the carcass is presenting sighting cue ci. We use the

half-normal detection functionwith a scale parameter for each cue type

hðyi; ciÞ ¼ exp � yi
rci

� �2
� �

.

While for simplicity, we do not consider covariates other than cue

type here, other covariates can easily be included in themodel using the

following modification for M covariates (Zi, …, ZM) thought to

influence detection: hðyi; ciÞ ¼ exp � yi
ri

� �2
� �

where ri ¼ rci�

exp RM
m¼1bmzm;i

� 	
, and bm is the parameter determining the effect of the

covariate zm. We could imagine increased precision in the estimator if,

for example, we included covariates such as driver, number of passen-

gers in the car or habitat type.

INCORPORATING A LATENT VARIABLE FOR THE DATE OF

DEATH

In many systems we rarely know the date of death di for detected car-

casses. Consequently, we model di as a latent variable, whose distribu-

tion was informed by the observed sighting cue, the probability a given

sighting cue is available as a function of time since death, and the

recent history of surveillance effort. For instance, if a carcass is

detected by a cue that is only available for 3 days after death we can

be reasonably sure the carcass is less than three days old. More for-

mally, we define p(ti) as the probability that a carcass is ti days old. We

allow ti to take integer values in the interval [0,tmax] and sum over the

latent variable di

gðyi;ci;ri;diÞpðciÞ¼Rli
di¼li�tmax

pðtijciÞRq2Qðgðyi;ci;ri;di;tq;iÞpðcijtq;iÞÞ
� 	

eqn 9

where we define ti ≡ li � di as the number of days between death and

detection (for each potential value of di). We can express p(t|c) as the
probability of detection exactly ti days after death with cue ci divided

by themarginal probability of detectionwith cue ci

pðtjciÞ ¼ gðyi; ci; ri; di; tÞpðcijtÞ
Rli
di¼li�tmax

gðyi; ci; ri; di; tiÞpðcijtiÞ
eqn 10

OPTIMISATION AND INTERVAL ESTIMATION

The conditional probability of detecting a carcass at (ri, di) (the denomi-

nator in the conditional likelihood given by Eqn 4) requires calculation

of an analytically intractable integral. To increase computational

efficiency, we use a rectangular quadrature approach to discretize this

integral. Likelihood maximisation of Eqn 4 was performed using the

R function optim. All scripts needed to reproduce this analysis are

included in theOnline SupplementaryMaterial.

We formulated both parametric and nonparametric bootstrap confi-

dence intervals and compared their bias and coverage with simulated

data (described below). To build parametric bootstrap confidence

intervals for the estimated parameters, we invert the Hessian matrix of

the likelihood to estimate the covariance-variance matrix bR. Given the

maximum likelihood parameter estimate vector bh and bR, we draw

10,000 random parameter sets bhj from the multivariate normal distri-

butionNðbh; bRÞ and calculate bNC;j for each bhj. Confidence intervals are
then constructed from the appropriate quantiles of the empirical distri-

bution function of the sample bNC;j.

Nonparametric bootstrapping is commonly used to build robust

confidence intervals in line transect methods. Bootstrapping is usually

performed by resampling individual transects in amulti-transect survey

because transects are generally sufficiently far apart in space or time to

assume independence. In the situation of ongoing opportunistic surveil-

lance, there are no well-defined sampling units. Given that no theoreti-

cally sound sampling unit was available, for simplicity, we choose to

bootstrap over detected carcasses and their corresponding history of

surveillance effort. We maximise the likelihood and calculate bNC;j for

each of 1,000 bootstrap samples and construct 95% confidence inter-

vals as above.

To maintain simplicity, we estimate p(y) and p(c|t) from auxiliary

data sets prior to maximising the likelihood rather than simultaneously

estimating these distributions along with the detection function param-

eters. Thus, these distributions were fixed during estimation of bNC;j. To

assess how error associated with estimating these distributions affected

the interval estimation for the ENPdata set, we also resampled the aux-

iliary data sets used to estimate these distributions during the nonpara-

metric bootstrap resampling above and used the resulting pj(y) and
pj(c|t) distributions, respectively, whenmaximising the likelihood in the

j-th bootstrap run. This approach allows uncertainty to percolate

through into the cumulative incidence estimates without increasing the

computational complexity.

INTRODUCTION TO THE STUDY SYSTEM

Anthrax is a fatal disease of mammals caused by the bacteriumBacillus

anthracis and causes a significant burden of mortality in livestock and

wild herbivores World-wide (Hugh-Jones & de Vos 2002). B. anthracis

is an environmentally transmitted pathogen with animals infected after

being exposed to sufficiently large doses of spores in soil, water or food

contaminated by a carcass that previously died of infection. In ENP,

anthrax is seasonally endemic in plains ungulates and elephants with

the highest observed mortalities generally occurring in the plains zebra

and during the end of the wet season (Lindeque & Turnbull 1994).

Mortalities are generally observed on the central Okaukuejo plains of

ENP where large herds of zebra graze during the wet season (Fig. 1,

Supplementary Movie 1). These plains are near the Okaukuejo tourist

camp where the Etosha Ecological Institute is located and where most

surveillance trips on the park road systembegin and end.We thus focus

on this central region of ENP. Importantly, the habitat across this

region is largely open, yielding similar situations for carcass detection.

B. anthracis is not considered a threat to its hosts in ENP and is not cur-

rently managed. However, it remains unknown the extent to which the

bacterium regulates its host population, alters competitive interactions

or subsidies the scavenger population because the rate of anthrax-

generated mortality remains unknown. Accurate estimates of anthrax-

related mortality would facilitate better decision-making regarding

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution
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how (and whether) to manage the disease in the future. Unbiased

mortality estimates can also facilitate our understanding of the causes

of transmission patterns, as patterns in passive surveillance data reflects

not only the transmission process but also the spatiotemporal distribu-

tion of surveillance effort.

NON-UNIFORM DISTRIBUTION OF PERPENDICULAR

DISTANCES TO ROADS

Roads in ENPoften connect waterholes and are built in areas with high

game density to facilitate tourism andmanagement (Fig. 1). Thus, con-

cern that p(y) is not uniform is warranted.We assume that the distribu-

tion of carcass perpendicular distances to the nearest road is an

unbiased sample of live animal locations. While large carnivores occa-

sionally move carcasses, the distance moved is rarely great enough to

affect this assumption in our experience. Consequently, we can assume

that where animals die is a random sample of their movement paths

while alive and use movement data from 27 GPS-collared zebra to

estimate p(y). Specifically, we measured the distance of all GPS fixes to

the nearest road and fit a truncated gamma distribution to all points

within a maximum strip width of 800 m from the road (Fig. 2; strip

width chosen as advised in Buckland et al. 2001).

TEMPORALLY VARIABLE CUES

Carcasses are observed by detecting cues that we group into three types:

(1) avian scavengers (e.g. vultures, marabou storks, crows, raptors), (2)

mammalian scavengers (e.g. jackals, hyenas, lions), or (3) the carcass

itself. Since detection is intimately linked to these cues, we modelled

detectability as a function of cue presence, which itself is modelled as a

function of time since death, as estimated from data collected by

motion-sensor camera traps deployed at 31 fresh zebra carcasses.

Presence of each cue type was abstracted from the photographs for

each 15 min interval up until tmax = 5 days after death by which time

the most detectable cue types are no longer available. In the following

analysis, we only included carcasses detected by avian scavengers,

mammalian scavengers or a fresh carcass (defined as a carcass with the

majority of muscle and internal organs intact) and excluded the few

detected carcasses thought to be older than 5 days. Such carcasses are

rarely detected far from the road and number too few to robustly esti-

mate detectability functions for these cues. The temporal distribution

of cues over time is displayed in Fig. 3. We modelled detection condi-

tional on the dominant cue, where cue dominance was determined by

the available cuewith the greatest visibility. Thus, mammalian scaveng-

ers were the dominant cue when they were present, but avian scaveng-

ers were absent, and a fresh carcass was the dominant cue only when

neither avian normammalian scavengers were present.

OPPORTUNISTIC SAMPLING PLATFORM

In ENPpassive carcass surveillance, we consider the ‘survey’ to be com-

prised of opportunistic observations of carcasses by researchers while

conducting other field work. Surveillance effort is thus highly variable

across time and space, depending on the number of individuals

working in the park at any given time. To this end, we divided the

Okaukuejo road system (Fig. 1) into road segments of length � 5 km

and asked researchers to record the roads driven for each trip. Conse-

quently, trips are the unit of surveillance effort. Carcasses are only

reported once and so that the detection on any given trip is always con-

ditioned on non-detection on all previous trips passing that carcass.

Without effort data, we cannot distinguish absence of carcasses

observed from absence of effort. Therefore, only carcasses recorded by

individuals reporting surveillance effort during road-based passive

M from road

0 200 400 600 800

P
ro

po
rt

io
n 

of
 G

P
S

 fi
xe

s

Fig. 2. Distribution of perpendicular distance from road from 52,745

GPS fixes collected from 27 collared plains zebra in the Okaukuejo
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Fig. 1. Map of the central region of ENP showing plains zebra car-

casses (squares) detected by passive surveillance in Feb–May 2010.

Road (grey lines) width scales with the square root of the number of

tripsmade on that road during the study period.
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surveillance were analysed. The vast majority of carcasses, however,

were detected by passive road-based surveillance with reported effort.

Ignoring other carcasses will conservatively bias mortality estimates

downwards because carcasses reported outside of reported effort may

otherwise have been detected during surveillance effort at a later trip.

SPACE-T IME WINDOWS AND EXTRAPOLATION

In CDS, abundance can be obtained from density for a closed study

area (such as a demarcated habitat) of size A. When estimating the

cumulative incidence of events, such as deaths, we are interested in

restricting estimation to a given space-time volume. We choose to esti-

mate outbreak size during the last four months of the 2010 wet season

in ENP (Feb–May; Supplementary Movie 1) as well as restrict our

attention to this period during simulation. Extrapolation from space-

time volume inside the surveillance effort (i.e. strips around road-days

with effort in the next 5 days) to space-time volume outside the surveil-

lance effort (i.e. areas far from roads, or near roads, but at times when

there is no effort) must be made with caution. The validity of this

extrapolation relies on the similarity in host utilisation and transmis-

sion intensity between the surveilled area and the greater space-time

window. In this analysis, we estimate cumulative incidence in the space-

time volume defined by cylinders with half-strip widths of 800 m

around the road system for days when roads were driven in the next

5 days. Thus, we make the distinction that of the Nall carcasses in the

study area,N have nonzero detection probabilities, and for now restrict

our attention to estimating this quantity. Future methodological devel-

opment for extrapolation outside this space-time window to a greater

temporal (seasonal) and spatial (area encompassing the population’s

distribution) scale is mentioned in the discussion as potential future

work.

SIMULATION

To assess the accuracy and precision of bNC, we simulated data based

on the actual surveillance effort analysed below. Briefly, we distributed

N carcasses within 800 m of the Etosha National Park roads on days

when theywere driven in the next 5 days as recorded in our surveillance

system (i.e. the surveilled space-time volume). In this way, all N car-

casses had a nonzero probability of detection. We conducted simula-

tions with both uniform (Scenarios 1 and 2) and gamma distributions

for p(y) (Scenarios 3 and 4). Parameters of the latter were simulated

using the fit fromGPSmovement data (Fig. 2). For Scenarios 1 and 3,

we distributed carcasses across roads and days using the discrete

uniform distribution punifðr; dÞ ¼ lengthðrÞ
ð#daysÞR lengthðriÞ

. To simulate a

more realistic spatiotemporally heterogeneous distribution of

carcasses, for Scenarios 2 and 4 we used pSTðr; dÞ ¼ p0STðr;dÞ
Rp0

ST
ðr;dÞ where

p0STðr; dÞ ¼ punifðr; dÞ � S and S is a random variable defined by

S � Γ(1, 0.5). For simulations with gamma p(y), we also estimated

cumulative mortality assuming p(y) is uniform to assess how this

assumption might have biased analysis of real data. For each of the six

combinations of possibilities, we simulated 100 carcass populations, fil-

tered them through the following detection process and then estimated

N using the estimator bNC.

Each carcass could be detected on trips to the road where it occurred

on the day of death and the five following days. For each trip, the avail-

able sighting cue was randomly chosen using p(c|t) fitted from the cam-

era trap data. The probability of detection given that cue was then

calculated using the detection functions and detection function parame-

ter values given in Table 1 and then a Bernoulli trial determined

whether the carcass was detected on that trip or not. Bernoulli trials

were performed for trips until the carcass was detected or the last trip

within the 5-day detection window was evaluated and the carcass was

determined to have been undetected on all trips.

Results

SIMULATION RESULTS

Estimation of the detection function parameters throughmaxi-

mum likelihood maximisation performed well and conse-

quently the Horvitz-Thompson-like estimator performed well

for all four scenarios (Table 1). Parametric bootstrapping con-

fidence intervals enclosed the true number of carcasses � 94%

of the time, but yielded rather high upper boundaries in com-

parison to the nonparametric bootstrap confidence intervals

which had lower coverage, most likely due to the inappropri-

ateness of using carcasses as the bootstrap sampling unit. Thus,

we propose that the parametric bootstrap confidence intervals

should be used. The estimator and parametric bootstrap

Table 1. Mean of 100 detection function parameters, carcass abundance estimates ( bNC), confidence intervals and their coverages are given for each

of the four simulation scenarios. Standard errors are given in parentheses

True value Scenario 1 Scenario 2 Scenario 3 Scenario 4

n – 65 (1) 66 (1) 77 (1) 75 (1)

bNC 300 302 (9) 296 (8) 313 (8) 308 (9)

Bias – 2.2 �3.6 13 7.6

Mean square errror – 7494 6628 7542 7676

CI 95a – 204 (4)–724 (53) 203 (4)–680 (41) 221 (4)–804 (93) 219 (4)–671 (47)
CI 95b – 212 (4)–497 (30) 206 (4)–482 (26) 227 (3)–500 (35) 220 (4)–474 (24)
CI coveragea – 0.97 0.94 0.97 0.94

CI coverageb – 0.84 0.81 0.85 0.89

ravian 0.40 0.4 (0.0043) 0.39 (0.004) 0.39 (0.0045) 0.39 (0.0043)

rmamm 0.12 0.14 (0.0035) 0.14 (0.0032) 0.14 (0.0031) 0.14 (0.0038)

rcarcass 0.10 0.098 (0.0016) 0.098 (0.0019) 0.099 (0.0016) 0.097 (0.0017)

aConfidence intervals constructed using the parametric bootstrap with the information matrix estimate of the covariance matrix and the delta

method.
bConfidence intervals constructed using the nonparametric bootstrap approach.
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confidence intervals proved relatively robust to spatiotemporal

heterogeneity in carcass incidence density (Scenarios 2 and 4).

ANTHRAX SURVEILLANCE ANALYSIS

During Feb–May 2010, individuals recording surveillance

effort detected 72 zebra carcasses within the 800 m half-strip

width of Okaukuejo area roads in ENP. The vast majority of

these carcasses were detected by avian scavengers (Fig. 4). Of

these carcasses, 50 (69%) were confirmed anthrax positive by

selective culture ofB. anthracis ormolecular diagnostics. Using

the newly constructed estimator, we estimated that within the

surveilled space-time volume there were 272 (208–592) zebra

carcasses in total where the parenthetical here and thereafter

gives parametric bootstrap confidence intervals (Table 2).

While parametric bootstrapping does not include the error

associated with estimation of p(y) or p(c|t) because it is based
on optimisation of a single data set, nonparametric bootstrap

confidence intervals including error in estimation of these dis-

tributions suggests that this error wasminor compared to error

associated with the estimation of bNC. Assuming the prevalence

of anthrax amongst observed and unobserved carcasses is

equal, we estimated that 189 (145–411) anthrax-related zebra

mortalities occurred in the surveilled space-time window – 3.8

(2.9–8.2) times greater than the observed number. Given that

this quantity only estimates mortality within the surveilled

space-time volume, it (and the associated confidence interval)

already serves as a valuable lower bound for the incidence of

anthrax during this outbreak. The most recent aerial survey

estimate of zebra population size in ENP was 12,982 in 2005

(95% confidence interval: 10,937–15,027) (W. Kilian unpub-

lished data 2011).

Discussion

While CDS provides a solid framework for developing surveys

of reasonably abundant and visible animals, opportunistic

data may be preferable for estimating the abundance of elusive

animals or short-lived carcasses. Although opportunistic data

are readily available, they are often underused or misused

due to biases inherent in the lack of transect randomisation

(Hedley&Buckland 2004; Kiszka et al. 2007) or a poor under-

standing of how carcass removal and detection are competing

processes (Smallwood et al. 2010). Mark–recapture distance

sampling (MCDS) may be appropriate for treating distance

data from multiple observers in an actively designed survey

(Buckland, Laake & Borchers 2010). However, in opportunis-

tic surveillance when each observer may have multiple chances

to observe a carcass and communication between observers
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Fig. 4. Distribution of perpendicular distances between sighted carcasses and roads for zebra carcasses detected during passive surveillance in Feb–
May 2010 by sighting cue type.Maximum likelihood fitted detectability functions, as estimated with the estimated distribution of p(y) modelled as a

truncated gamma distribution fromGPSmovement data from live zebra (Fig. 2), are displayed as a black line, with lines normalised so that the area

under the curvematches the area of the histogram bars.

Table 2. Estimates of cumulative mortality in the plains zebra of

Etosha National Park in the surveilled region during the 2010 anthrax

outbreak

Uniform p(y) Gamma p(y)

n 72 72bNC 366 272

CIa (252, 856) (208, 592)

CIb (256, 601) (202, 381)

CIb – (200, 393)

CId (242, 590) (188, 404)

CIe – (194, 412)

ravian 0.517 0.624

rmamm 0.108 0.109

rcarcass 0.090 0.090

a95%Parametric bootstrap confidence intervals.
b95%Nonparametric bootstrap confidence intervals.
c95% Nonparametric bootstrap confidence intervals with resampling

over both observed carcasses (as in footnote) and also theGPS-collared

zebras used to fit a gammadistribution for p(y).
d95% Nonparametric bootstrap confidence intervals with resampling

over both observed carcasses (as in footnote) and camera traps used to

estimate p(c|t).
e95% Confidence intervals constructed using the nonparametric

bootstrap approach with resampling over observed carcasses, p(y) and
p(c|t) (as in footnotes).
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ensures each carcass is only recorded once, even the weakest

independence assumptions ofMCDS are violated. In contrast,

temporally explicit modelling of sighting cue distributions

allows carcass removal to be treated as a dynamic process

operating on the same time-scale as the survey. With a tempo-

ral model, the integration of auxiliary data on surveillance

effort, sighting cue variation over time and animal movement,

we were able to create robust point and interval estimators of

cumulative mortality in a distance sampling framework. The

general likelihood approach provided here could be used to

estimate cumulativemortality in a wide variety of applications,

including opportunistic surveillance of mortality due to dis-

ease, wind farms, pesticides and road kills (although distance

sampling from the road may not be applicable for the latter,

our approach tomodelling removal processes remains applica-

ble). We feel that where long-term opportunistic data sets

already exist, acquiring such auxiliary data (if not already

available) will still often be cheaper than active CDS surveys.

To estimate abundance in this framework, we made several

assumptions. First, only carcasses detected by individuals

recording surveillance effort were included in the analysis.

Because carcasses are only detected once (after the first sighting

of a carcass, communication amongst vehicles allows all teams

to know its location), carcasses detected outside surveillance

effort were therefore ‘censored’ from the data set, biasing

cumulative mortality estimates downwards. Second, we

assumed that detection functions are not variable across the

study area based on the relative homogeneity and openness of

the Okaukuejo plains, on which the zebra spend the majority

of their wet season. Finally, we estimated p(y) using only a lim-

ited number of GPS-collared animals. We accounted for the

sample size directly by including the error in p(y) estimation

directly via bootstrapping. However, the choice of functional

form for p(y) was ad hoc. The empirical distribution from the

GPS data could have been used itself, although this may be

more sensitive to individual animal heterogeneity. We also

assumed that the distribution was spatiotemporally homoge-

nous due to the lack of sufficient data to understand whether

the way animals act around the road varies in space or time. If

animals indeed die closer to the roads than expected from the

GPS movement data, then our estimator would be upwards-

biased. The goal of this article is to present methods for using

auxiliary data in distance sampling analyses of opportunistic

data. We caution readers that when applying these methods,

they should carefully examine the assumptions regarding

the relationship between the available data sets and the true

distributions p(y) and p(c|t).
Themost obvious extension of thesemethods in future work

is to allow for extrapolation to the entire space-time volume of

interest (i.e. the study area over an entire season or year). This

could be done by modelling overlap between the surveilled

space-time volume and the live host animal spatiotemporal dis-

tribution, with the latter estimated using movement or other

live population survey data. The spatiotemporally explicit for-

mulation of the estimator proposed in this manuscript was

biased because the vast majority of surveillance effort did not

result in carcass detection, but nonetheless affected the estima-

tion detection function parameters when maximising Eqn 2.

Nevertheless, we suggest that future work should incorporate

the conditional formulation’s (Eqn 4) results into a generalised

additive modelling framework to make spatiotemporally

explicit estimates of mortality incidence density (Hedley &

Buckland 2004; de Segura et al. 2007).
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Supporting Information

Additional Supporting Information may be found in the online version

of this article.

Data S1. All the R scripts and data files necessary to reproduce both

the simulation and Etosha data analyses have been enclosed as Supple-

mentary Data S1. The authors have also made all the code accessible

on a public Amazon Machine Image (AMI) with the ID: ami-

d82187b1. Interested users are encouraged to run their analysis directly

through this image via Amazon EC2 Cloud Computing. A more thor-

ough description of the scripts and data sets are provided in the Online

Supporting Information.

Movie S1. The top panel shows daily surveillance effort by showing the

roads driven each day as purple lines, where line thickness scales with

the square root of the number of trips driven on that road. Squares rep-

resent zebra (Equus quagga) carcasses with red, blue and black repre-

senting confirmed positive, negative and unknown for Bacillus

anthracis (the causal bacterial agent of anthrax). Dots display the GPS

movement fixes (at 20 min intervals) of GPS-collared live zebra. Each

colour represents a different animal. The bottom panel shows the

cumulative driving effort and carcasses.
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