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Summary

1. Numbers of individuals or species are often recorded to test for variations in abundance or rich-

ness between treatments, habitat types, ecosystem management types, experimental treatments,

time periods, etc. However, a difference in mean detectability among treatments is likely to lead to

the erroneous conclusion that mean abundance differs among treatments. No guidelines exist to

determine the maximum acceptable difference in detectability.

2. In this study, we simulated count data with imperfect detectability for two treatments with iden-

tical mean abundance (N) and number of plots (nplots) but different mean detectability (p). We then

estimated the risk of erroneously concluding that N differed between treatments because the differ-

ence in pwas ignored. Themagnitude of the risk depended on p,N and nplots.

3. Our simulations showed that even small differences in p can dramatically increase this risk.

A detectability difference as small as 4–8% can lead to a 50–90% risk of erroneously concluding

that a significant difference in N exists among treatments with identical N = 50 and nplots = 50.

Yet, differences in p of this magnitude among treatments or along gradients are commonplace in

ecological studies.

4. Fortunately, simple methods of accounting for imperfect detectability prove effective at remov-

ing detectability difference between treatments.

5. Considering the high sensitivity of statistical tests to detectability differences among treatments,

we conclude that accounting for detectability by setting up a replicated design, applied to at least

part of the design scheme and analysing data with appropriate statistical tools, is always worthwhile

when comparing count data (abundance, richness).

Key-words: biodiversity monitoring, capture–mark–recapture, comparative studies, detection

probability, nonparametric estimator, population size, sampling design, simulations, type I

error

Introduction

Data on abundance and species richness of animals or plants

are often collected in comparative studies to determine the

variations in abundance and richness between treatments or

habitats, areas that are managed differently, experimentally

manipulated situations, monitoring over time, etc. Yet, the

observed number of individuals or species is both a function of

the true state of the system (i.e. the true number of individuals

or species) and of the observation process. A significant pro-

portion of the individuals or species are invariably missed dur-

ing inventory observations. This has been demonstrated for a

wide range of taxonomic groups, e.g. mammals (Baker 2004),

birds (Boulinier et al. 1998), butterflies (Casula & Nichols

2003), spiders (Coddington, Young & Coyle 1996) and plants

(Kéry et al. 2006). In this article, we will develop the case of

abundance estimators, but our conclusions are equally relevant

to species richness estimators as, from a methodological point

of view, there is a parallel between species in a community and

individuals in a population.

Some statistical approaches do account for differences in p;

however, they usually require replicating counts in space or in

time to be able to distinguish variations in the detection process
*Correspondence author. E-mail: frederic.archaux@cemagref.fr

Correspondence site: http://www.respond2articles.com/MEE/

Methods in Ecology and Evolution 2012, 3, 188–194 doi: 10.1111/j.2041-210X.2011.00142.x

� 2011 The Authors. Methods in Ecology and Evolution � 2011 British Ecological Society



from variations in abundance (but see Discussion for non-rep-

licated methods). Replication greatly increases study costs in

terms of manpower (time in the field), ecological disturbance

(multiple sampling) and training requirements (statistical

methodology). In practice, if manpower is limited, increasing

the number of subsamples per plot is likely to necessitate

reducing the number of plots proportionately. This would in

turn reduce the statistical power of the study to detect differ-

ences among treatments. It is therefore tempting to ignore the

detection difference issue with a view to maximising statistical

power. This is probably one of themain reasons why imperfect

detectability is still frequently ignored in species-monitoring

schemes. For instance, 66%of 396 species-monitoring schemes

in Europe do not control for detectability (EuMon 2006; con-

sulted 18October 2010).

A common belief among opponents of the systematic con-

sideration of imperfect detectability (i.e. a detection probability

of <1) is that, when the degree of detectability is ‘roughly’ the

same among the treatments, they should cancel out and tests

for differences among treatments should not be affected.

Therefore, any effort to account for imperfect detectability is a

waste of manpower. However, Tyre et al. (2003) have already

demonstrated that this simplification is unwarranted in the

specific case of occurrence data analysis, where imperfect

detectability can bias the estimator of the slope for the effect of

covariates. The problem of detectability is generally acknowl-

edged when the probability of detection varies with the factor

of interest (e.g. experimental treatment, ecological or temporal

gradient): differences in detectability may cause, accentuate or

hide differences in the observed mean abundance between

treatments and result in false interpretations. But, to our

knowledge, no threshold values have been defined for themax-

imum difference in p that can be considered negligible among

treatments and therefore can be neglected in the analyses (low

risk of Type I error). In other words, when does the risk of

drawing false conclusions become important enough to coun-

terbalance the cost of replicating counts?

The detectability issue in comparative studies is not only a

question of bias and precision in population size estimates (e.g.

Burnham & Overton 1979; Chao 1987; Hellmann & Fowler

1999; Walther & Moore 2005; Xi, Watson & Yip 2008).

Indeed, information about actual differences inNmay bemore

reliable when detectability is low but varies little among treat-

ments than it is when detectability is globally higher but varies

more among treatments. Some specific case studies have

emphasised the importance of accounting for detectability –

i.e. accounting for p changed the conclusions of the study

(Kéry,Gardner&Monnerat 2010a), while others have reached

the opposite conclusion – i.e. accounting for p did not change

the conclusions (Kéry & Schmid 2006; Bas et al. 2008). Mac-

Kenzie & Kendall (2002) discussed ways of incorporating

detectability into abundance ratios (relative abundances) and

recommended estimating detectability in all cases. Although

they argued that there is generally no good reason to assume

detectability to be constant (among treatments, along

gradients), they did not provide a formal assessment of this

statement.

The main goal of our study was therefore to estimate the

minimum acceptable difference in detection probability that

justifies estimating detectability when designing a comparative

study and analysing data. We used simulations to explore the

sensitivity of comparative tests of abundance data to among-

treatment differences in mean individual detectability. We

considered the additional influence of the mean number of

individuals per plot and the number of plots.We then explored

to what extent basic methods of accounting for detectability

(using a nonparametric estimator) are effective at removing the

detectability difference among treatments and limiting the type

I error risk.

Materials and methods

Simulations mimicking real count data surveys were performed to

compare two different treatments (e.g. two habitats, areas or experi-

mental treatments) with different mean detectabilities (p1 „ p2), but

with identical mean population size (N), number of sampling plots

(nplots) and number of subsamples per plot (S). The simulations artifi-

cially created detection ⁄ non-detection histories, i.e. matrices indicat-

ing whether a particular individual was detected or not at a given

subsampling occasion. The simulations were designed to estimate the

risk of committing what is known in statistical terminology as a type I

error, i.e. the null hypothesis H0, ‘there is no difference in population

size between the treatments’, is rejected even though H0 is true

(N1 = N2 = N was fixed). The usual accepted risk is 5%, and a

between-treatment difference is likely to inflate this risk.

Each run had four steps as described below (with i for individual,

j for plot, t for treatment and s for subsample):

Step 1. Assign a population size Njt to each of the nplots of each

treatment assuming a Poisson distribution:Njt� Poisson(N).

Step 2. Assign a detection probability pijt to each of theNjt individ-

uals present on each plot (jt) assuming a Beta distribution: pijt �
Beta(beta1,beta2t) (beta1 was identical for both treatments but not

beta2; pt = beta1 ⁄ (beta1 + beta2t)), and determine whether the

individual is detected on each of the S subsamples by performing S

Bernoulli trials, Bernoulli(pijt).

Step 3. For each plot, count the number of individuals that were

recorded in at least one subsample (N.rawjt £ Njt) and calculate the

corresponding Jackknife 2 estimate (Burnham&Overton 1979):

ŜJack2 ¼ N:raw þ n1 :
2S� 3

3
� n2 :

ðS� 2Þ2

S:ðS� 1Þ

where n1 is the number of individuals detected in only one sub-

sample (singletons), and n2 is the number of individuals detected

in only two of the S subsamples (doubletons). We also calculated

the corresponding Chao 2 estimate (see results in Appendix 2).

Step 4. Test whether the mean N.rawjt (and ŜJack2jt) values statisti-

cally differ between the two treatments, assuming a Poisson (and

respectively Gaussian) distribution; see below for the justification of

using these distributions. Increment a counting variable if the ‘treat-

ment’P-value is significant (i.e.<5%).

For each combination of p1, p2, N and nplots, steps one to four

were repeated 5000 times. The proportion of runs with a P-value

<0Æ05 (asim) was then used as an estimate of the type I error risk.

As we randomly generated two sets of populations for the two

treatments in step 1, setting the same p, N and nplots values for the

two treatments, by chance, significant between-treatment difference

in mean N occurred in c. 5% of the simulations. That is, estimated

rejection rates are perfectly acceptable unless they are >5%.
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To determine the maximum acceptable difference in p between the

two treatments (Dpmax = p2)p1) for which the type I error risk was

still below the desired 5%, the value of p2 was increased (from p1)

until the type I error risk was above the desired 5% threshold value

(actually 5Æ6%, i.e. 0Æ05 + 1Æ96*�(0Æ05*0Æ95 ⁄ 5000)). This involved

performing sets of 5000 runs without knowing a priori the number

of sets needed to reach the p2max value with the desired precision.

To speed up the process, we incremented p2 in steps of 0Æ1 among

sets of runs, then in steps of 0Æ01 and finally in steps of 0Æ001, rather
than incrementing p2 directly in steps of 0Æ001.

For simplicity, we assumed that there was no variation in pijt
among the S subsamples. Initially, we also explored the effect of the

level of heterogeneity (var(p)) on the type I error risk by using combi-

nations of beta1t and beta2t values and keeping the samemean detect-

ability pt. However, as the results varied only slightly with var(p)

(at least in comparison with p), only the results for beta1 = 2 are

presented herein.

We used a generalised linear model with a Poisson distribution for

N.raw but a linear model with a Gaussian distribution for ŜJack2 in

step 4 because simulations with N1 = N2 and p1 = p2 (to check that

the nominal rejection rate (anom) of the tests was effectively 5%)

showed that anom was effectively 5% when assuming a Poisson

distribution for N.raw but was generally above 5% for ŜJack2. With a

Gaussian distribution for ŜJack2, the nominal rejection rate was 5%.

Obviously, we could not explore all possible values for all parame-

ter combinations. Hence, we used values that are commonly found in

biostatistics and ecology: N = 10, 50 or 100; nplots = 10, 25, 50, 75

or 100; S = 1 (for raw counts), 3–10; p1 = 0Æ1, 0Æ25, 0Æ5 and 0Æ8 (with
beta1 = 2). We developed specific functions for the R software (R

Development Core Team 2009), provided in Appendix 1, which will

allow the reader to estimate the type I error risk in other situations

(note that the functions can be easily modified as to draw a single set

of populations for the two treatments, mimicking the case of a single

set of plots visited by two different observers or sampled using two

competingmethods).

Results

RAW COUNTS OF INDIV IDUALS

As expected, the type I error risk asim gradually increased to

above the 5% limit as the difference in p among treatments

(Dp) increased. The increase was stronger for lower values of p.
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Logically, asim also increased with bothN and nplots, as the two

variables play symmetrical roles (Fig. 1).

More importantly, asim was far above the 5% threshold

value, even for low Dp, in the majority of the situations consid-

ered. At the extreme, when N = 100, nplots = 100 and Dp
‡4%, awas>0Æ9, for all values of p. The situations with a rea-

sonably low (<0Æ1) risk of committing a type I error had very

low statistical power (and therefore a high risk of committing a

type II error), e.g. with N = 10, nplots = 10, p1 = 0Æ1 and

Dp £ 3%.

PERFORMANCE OF THE JACKKNIFE 2 ESTIMATOR

As expected, the factor that impacted the performance of the

Jackknife 2 estimator the most was p: the higher the p value,

the larger the Dpmax (shown by colder colours in Fig. 2). How-

ever, no simple monotonic relationship related Dpmax to the

number of subsamples s. Indeed, when p1 = 0Æ25, we found an
optimumnumber of subsamples below and abovewhichDpmax

decreased (s = 5 or 6 for all N and nplots; Fig. 2). For other

combinations, the higher (at least 10 replicates per plot) or the
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lower the s value, the higher the Dpmax. In the remaining cases,

s seemed to have little influence onDpmax.

More quantitatively, when p1 = 0Æ1, the Jackknife failed to

keep asim < 5% when the difference in mean p between treat-

ments was ‡2%, for all combinations of N, S and nplots tested.

When p1 = 0Æ25, the Jackknife performed better as it main-

tained amax<5% for Dpmax values ranging from 5 to 40% (the

%decreasingwith increasingN and nplots). Interestingly,Dpmax

peaked when s equalled six replicates per plot. A more surpris-

ing pattern was observed when p1 = 0Æ5. Indeed, higher values
forDpmax were found when swas either low (3–4) or high (8–9)

than when s was intermediate (especially at low nplots, such as

20). When p1 = 0Æ8, the Jackknife estimator was able to pre-

serve asim<5% for a D p value of around 10% (i.e. p2 around

0Æ9) when s was three forN = 10, 3–4 forN = 50 and 4–6 for

N = 100 (depending on nplots).

Discussion

DIFFERENCE IN P AMONG TREATMENTS AND TYPE I

ERROR RISK

This study provides the first formal evidence supporting the

often-repeated recommendation to systematically use statisti-

cal tools to account for detection probability when comparing

count data among treatments. Our main result is that the risk

of committing type I errors because of differences in mean

detectability among treatments is high even when the differ-

ence is barely perceptible in the field. For instance, for two

treatments with the same number of plots (nplots = 50) and the

same mean number of individuals ⁄ species per plot (N = 50),

there is a 50–90% risk of erroneously declaring that the two

treatments differ in their mean number of individuals ⁄ species
per plot, when themean probability of detection differs by only

4–8% among treatments (depending on the mean probability

of detection, p). Table 1 provides a representative overview of

the variability in p reported in ecological studies, including a

wide variety of taxa and factors impacting p (e.g. species iden-

tity, observer, etc.). The range in detection probability (among

species, observers, etc.) is almost invariably above 10%. We

suspect that in many cases, if not most, assuming that the vari-

ation in p among treatments or over time is negligible could

lead scientists or managers to draw misleading conclusions.

We therefore agree withMacKenzie&Kendall (2002) who sta-

ted that ‘a priori, it is more likely that detection probabilities

are actually different; hence, the burden of proof should be

shifted, requiring evidence that detection probabilities are

practically equivalent’. Small differences in detectability

among treatments are likely to be commonplace in ecological

studies. For example, the set of species may differ among

treatments, different observers may participate in the surveys,

individuals may be counted at different distances among treat-

ments (e.g. because of variations in habitat proximity) or

weather or seasonal conditionsmay not be the same.

Because the type I error risk decreases as the mean detection

probability p increases, one way to reduce this risk is to

increase p. This can be achieved simply by visiting the same

plot a number of times or by installing several subplots (i.e.

replicating counts) and calculating the total number of differ-

ent species ⁄ individuals (or if individuals cannot be identified

from one visit to the next, the highest number of individuals

counted in one visit). Nonetheless, even though this strategy

may help to limit type I errors, the risk still remains above the

5% threshold when raw counts are used. Therefore, as soon as

counts are replicated, one should always use estimators of N

accounting for p, rather than raw counts, because estimators

always keep the type I error risk closer to the desired 5%.

ESTIMATORS OF N ACCOUNTING FOR P

The reliability of abundance ⁄ richness estimates (high preci-

sion, low bias) increases with the fraction of individuals or spe-

cies that is recorded, i.e. with the mean detectability and the

level of replication (Xi, Watson & Yip 2008). Our simulations

point out that for very low detection probabilities (i.e. around

0Æ1), none of the strategies we explored (up to 10 subsamples)

kept the rejection rate below 5% when the difference in mean

detectability among treatments was >2%. In those cases, our

simulations showed that the Chao2 estimator (Chao 1987) per-

formed onlymarginally better than the Jack2 estimator (results

Table 1. Examples of factors impacting the probability of detection p in a variety of taxonomic groups (withmean value p and range of values)

Taxon Cue Factor of variation in p Scale p (%) Range % (p) Reference

Plants Sightings 4 morphological types Species 72Æ7 50Æ5–86Æ1 Archaux et al. (2009)

4 cover classes 87 42Æ6–100
11 observers 81 67–90

Butterflies Sightings 150 species Species 50 17–81 Kéry & Plattner (2007)

40 observers 61 37–83

3 dates 50Æ3 42–65

Anurans Sightings ⁄ Songs 3 dates Species 19Æ1 3Æ4–39Æ9 Royle (2004a)

Birds Songs 128 species Species 64 3–99 Kéry & Schmid (2008)

8 observers 85Æ9 81–93 Nichols et al. (2000)

Deer Sightings Group size (1–3 ind) Individuals 81Æ7 70–92 Cook & Jacobson (1979)

2 observers 58Æ7 56Æ3–61
Moose Sightings 3 snow condition classes Individuals 57 40–70 LeResche & Rausch (1974)

Dolphins Sightings Distance to vessel (1–5 nm) Individuals c. 80 c. 60–100 Marques & Buckland (2003)
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shown in Appendix 2). Nonetheless, for greater detection

probabilities (>0Æ1), the risk of committing a type I error as a

result of detectability difference was significantly reduced,

sometimes to the 5% threshold, by replicating counts and

using nonparametric estimators (Fig. 2). The Jackknife esti-

mator was able to preserve a nominal rejection rate of 5%

despite an among-treatment difference in p of 10%, with only

three replicates per plots when p ‡ 0Æ5 and N £ 50. A higher

level of replication would be necessary for higher N values,

especially for large sample sizes (large nplots). Schmeller et al.

(2009; see their Table 2) provided data onmonitoring practices

(mainly volunteer based) in five European countries: the med-

ian level of subsampling among 262 monitoring schemes was

between 1 and 3Æ5, with the number of replicates being either

the number of visits each year or the number of samples per

visit. Our results show that such a limited level of subsampling

may not be sufficient to adequately account for potential varia-

tions in detectability.

We focused on nonparametric estimators because they give

sound results inmany circumstances (e.g. Otis et al. 1978;Wal-

ther & Moore 2005) and are widely used; though, alternative,

more flexible methods are now available to assess the size of a

closed population or community. These methods are mostly

based on generalised linear models and can incorporate a rich

variety of factors possibly affectingN and p (see Royle & Dor-

azio 2008; King et al. 2009). It would be interesting to assess

the minimum replication needed with these methods to ensure

acceptable type 1 error risks as we have done for nonparamet-

ric estimators. We therefore suggest extending simulations to

these recent approaches, including patch occupancy (MacKen-

zie et al. 2002; MacKenzie & Royle 2005), finite-mixture mod-

els (Pledger 2000, 2005) and N-mixture models (Royle 2004b).

Finally, methods such as distance sampling (Buckland et al.

1993; Nichols et al. 2000) and spatial capture–recapture meth-

ods (Efford & Dawson 2009) that account for detectability

without requiring replicating counts should also be considered.

Unless unreplicated methods can be implemented, a mini-

mum requirement of doubling or tripling the number of subs-

amples per plot may be incompatible with the resources

(manpower, funds) that can be devoted to many survey pro-

grammes. Furthermore, fieldworkers who have to repeat visits

might become demotivated, thus potentially lowering the

amount and quality of data (particularly when volunteers are

concerned). If replication is traded off against the number of

plots, it would also dangerously lower the ability to detect dif-

ferences among treatments (Type II error). It is nevertheless

crucial that biodiversity data be collected in ways that allow

reliable inferences to be made (Yoccoz, Nichols & Boulinier

2001). MacKenzie & Kendall (2002) discussed various

ways of incorporating detectability into abundance estimates

(equivalence testing, model averaging). A double-sampling

approach may be an interesting balance between limiting the

cost of a study and improving its robustness. This approach

relies on estimating the mean detectability and its standard

deviation by replicating counts over a representative part of

the study plots only (Bart & Earnst 2002; Pollock et al. 2002)

and has been successfully used with patch occupancy models

(Kéry et al. 2010b).

Conclusions

Statistical tests comparing mean plot population size or mean

species richness between treatments are very sensitive to even

small differences in mean probability of detection among

treatments. As numerous factors are likely to significantly

affect detectability in most biodiversity surveys, it is more rea-

sonable to assume a priori that differences in detectability

among treatments could bias the statistical comparison tests.

Consequently, in line with MacKenzie & Kendall (2002), we

recommend that scientists and managers always choose a

robust sampling design that estimates and incorporates detec-

tion probability in the statistical analyses, before the routine

sampling starts.
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Kéry, M. & Schmid, H. (2008) Imperfect detection and its consequences for

monitoring for conservation.Community Ecology, 9, 207–216.
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