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Summary

1. The dynamics of many populations is strongly affected by immigrants. However, estimating and

modelling immigration is a real challenge. In the past, several methods have been developed to esti-

mate immigration rate but they either require strong assumptions or combine in a piecewise manner

the results from separate analyses. In most methods the effects of covariates cannot be modelled

formally.

2. We developed a Bayesian integrated population model which combines capture–recapture data,

population counts and information on reproductive success into a single model that estimates and

models immigration rate, while directly assessing the impact of environmental covariates.

3. We assessed parameter identifiability by comparing posterior distributions of immigration rates

under varying priors, and illustrated the application of the model with long term demographic data

of a little owlAthene noctua population from Southern Germany.We further assessed the impact of

environmental covariates on immigration.

4. The resulting posterior distributions were insensitive to different prior distributions and domi-

nated by the observed data, indicating that the immigration rate was identifiable. Average yearly

immigration into the little owl population was 0Æ293 (95% credible interval 0Æ183–0Æ418), which
means that ca 0Æ3 female per resident female entered the population every year. Immigration rate

tended to increase with increasing abundance of voles, the main prey of little owls.

5. Synthesis and applications. The means to estimate and model immigration is an important step

towards a better understanding of the dynamics of geographically open populations. The demo-

graphic estimates obtained from the developed integrated population model facilitate population

diagnoses and can be used to assess population viability. The structural flexibility of the model

should constitute a useful tool for wildlifemanagers and conservation ecologists.

Key-words: Athene noctua, Bayesian, capture–recapture, identifiability, population counts,

reproductive success, survival, state-space model

Introduction

Immigration and emigration are important demographic pro-

cesses which can have a strong impact on population dynamics

(Ward 2005; Lampila et al. 2006; Schaub et al. 2006; Grøtan

et al. 2009). In an attempt to fully understand the dynamics of

a population, it is therefore important to be able to estimate

and include these parameters into a population dynamical

model. Knowledge of immigration and emigration is also

essential for identifying whether a local population is a source

or a sink (Pulliam 1988; Peery, Becker & Beissinger 2006)

which may be of interest in conservation and other manage-

ment applications.

Existing methods can be used to estimate emigration rate by

combining capture–recapture and dead recovery data (Burn-

ham 1993, Reynolds et al. 2009). In most population studies

where emigration cannot be directly estimated, it is accounted

for in the estimate of apparent survival (function of mortality

and permanent emigration), which is obtained from capture–

recapture data (Lebreton et al. 1992). Unlike emigration, the*Correspondence author. E-mail: fitsum.gebreselassie@iee.unibe.ch
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rate of immigration is notoriously difficult to estimate. Conse-

quently, relatively little is known about its role in population

dynamics and about factors affecting its variability across

space and time. The problem of estimating immigration stems

from the difficulty of making direct observations: immigrants

can only be distinguished from established individuals if all

members of one or both groups are marked. Only in very

intense studies, in which all individuals in the population are

marked each year, can immigration be readily inferred from

the number of unmarked individuals. However, such an inten-

sive capture effort is very rarely applied because in natural con-

ditions complete capture is usually not possible (Møller 2002;

Grøtan et al. 2009). To date, several approaches have been

used to deal with this problem. Key to all of them is the avail-

ability of capture–recapture data. However, some methods

require additional demographic data which then need to be

combined with capture–recapture data to estimate immigra-

tion rate.

Initially, immigration was inferred from direct observations

of the movement of marked individuals between populations

using multistate capture–recapture models (Spendelow et al.

1995). Thesemethods solve the problem that not all individuals

in the population are captured each year. However, immi-

grants can originate from very different populations that may

be far away, and in practice it is almost impossible to mark

individuals at all potential source populations. Therefore, this

method usually results in an underestimation of the immigra-

tion rate.

Secondly, if all locally born individuals aremarked each year

and if a fraction of adults is captured each year, immigration

can be estimated (O’Hara, Lampila & Orell 2009). Under this

sampling protocol, it is clear that any unmarked individual in

the population must be an immigrant, but owing to the imper-

fect capture of adults, it is not clear when they have immi-

grated. This latter problem can be solved by the application of

the Jolly-Sebermodel (O’Hara et al. 2009). The critical require-

ment is that all young born in the population must be marked

every year. This can only be achieved in rare situations.

Thirdly, immigration can be estimated if capture–recapture

data are sampled under the robust design (Nichols & Pollock

1990). Here the population is sampled at least twice within

short time each year, allowing the estimation of population

sizes of young and adult individuals as well as their survival

probabilities. By rearranging these quantities, the total number

of immigrants can be estimated. The disadvantage of this

approach is that this special sampling design is rarely applied

due to the high sampling effort it requires.

Fourthly, immigration can be estimated if ordinary cap-

ture–recapture data of young and adults and data on the

reproductive success are available (Cooch, Rockwell & Brault

2001; Peery et al. 2006; Schaub et al. 2006). Pradel’s (1996)

temporal symmetry model applied to the capture–recapture

data of the adults allows estimating population growth rate (k)
or total recruitment (f, immigration plus local recruitment).

From the capture–recapture data, apparent juvenile (/ju) and

adult (/ad) survival probabilities are estimated (Lebreton et al.

1992). Apparent survival probability is the joint probability to

survive and to remain in the study population (i.e. a function

of both mortality and permanent emigration). For species that

start to reproduce in their first year of life, immigration rate

(imm) can then be estimated either as imm = f – b/ju (Peery

et al. 2006) or as imm = k – b/ju – /ad (Schaub et al. 2006),

where b is the reproductive output. Similar calculations are

possible for species with delayed start of reproduction (Cooch

et al. 2001). Standard errors of the estimates are obtained

using the delta method or by bootstrapping. Disadvantages of

this method are that covariances between the parameters

stemming from different data sets remain unknown and immi-

gration rate is not treated as a model parameter but is derived.

Therefore, this method is not flexible enough to test whether

immigration is changing as a function of environmental covari-

ates. Other drawbacks relate to the assumptions of the tempo-

ral symmetry model. If immediate trap response or transients

occur, or if the initial capture probability is different than the

recapture probability (typical in studies using colour bands),

the estimated k and f are strongly biased (Hines & Nichols

2002), and consequently immigration would be as well. Trap

response and transients are frequent in capture–recapture

studies (Perret et al. 2003; Schmidt, Feldmann & Schaub 2005;

Schaub et al. 2009).

Fifthly, Grøtan et al. (2009) recently modelled the immigra-

tion process using a beta-binomial model based on population

count data (i.e. the number of breeding birds). To estimate

immigration they assumed that the number of available nest

boxes in the study area is equal to the maximum number of

immigrants. However, this assumption is only reasonable if

very few birds breed in natural cavities. Further, they assumed

that all adults unmarked or marked outside the study area are

immigrants, whichmay not always be true.

From this overview, it is evident that a coherent method to

estimate immigration is needed, which is applicable to the typi-

cal data that are sampled in geographically open populations.

In this paper, we propose a new method to estimate immigra-

tion using integrated population models (Besbeas et al. 2002)

that does not suffer from these problems. Integrated popula-

tion models need population counts or indices of population

size which are combined with other sources of data (typically

capture–recapture data, data on fecundity) in one coherent

model, with the advantage that otherwise non-estimable

parameters can become estimable (Besbeas et al. 2002). This is

possible because the population size contains information

about all demographic processes in the population, and this

information is extracted. The rationale behind our novel

approach is similar. We show how to estimate immigration,

and how tomodel immigration as a function of covariates.We

illustrate the method with a case study on little owls Athene

noctua Scopoli. Immigration in this population was previously

estimated using the combination of capture–recapture and

fecundity data (Schaub et al. 2006). Keeping the best structure

for survival and recapture probabilities, as well as fecundity

from the previous analysis, we tested whether immigration

showed trends across time and whether immigration is affected

by the density of volesMicrotus arvalis Pallas, the main prey of

the little owl.
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Materials and methods

THE INTEGRATED POPULATION MODEL

The core of the integrated population model is a population projec-

tionmodel describing the development of the population sizes of each

age class from 1 year to another. The projection matrix is parameter-

ized with the demographic rates. Owing to the life history of little owl,

we used a simple age-structured model (Caswell 2001) with two age

classes (1 and 2 years or older) and a pre-breeding census. LetN1,t be

the number of 1-year-old females at time t, N2+,t be the number of

females older than 1 year at time t, /ju,t and /ad,t are the juvenile and

adult (1 year or more) apparent survival probabilities of a female

between time t and t + 1 respectively, bt is fecundity at time t, and

immt is the immigration rate, defined as the number of female immi-

grants in year t + 1 per female in the population in year t. Following

Buckland et al. (2007), the expected number of females present in year

t + 1 are given by

EðNtþ1jNtÞ ¼ E
N1;tþ1

N2;tþ1

N1;t

N2þ;t

����
� �� �

¼ /ju
b
2 /ju

b
2

/ad þ imm /ad þ imm

" #
t

N1;t

N2þ;t

N1;t�1

N2þ;t�1

����
�

eqn 1

�

The model is female based, but fecundity (b) refers to the complete

reproductive output. We assumed an even sex ratio of the fledglings

and thus divide b by 2. Further, we assumed that immigrants add to

the individuals that are at least 2 years old. However, results would

be identical if immigrants were assumed to add to the 1-year-old indi-

viduals.

The capture–recapture data contribute to the estimation of sur-

vival, the data on reproductive success to the estimation of fecundity

and the population count data to the estimation of the population

sizes and all demographic rates. For each data set, a likelihood can be

formulated and finally the complete integrated model is the joint like-

lihood of these different parts. In the following we describe briefly the

different likelihoods (for details see Brooks, King & Morgan 2004;

Schaub et al. 2007; Abadi et al. 2010).

We used the Cormack–Jolly–Seber (CJS) model to analyse the cap-

ture–recapture data (Lebreton et al. 1992). The frequency of individ-

ual encounter histories (m) follows a multinomial distribution with

cell probabilities that are function of age-specific apparent survival

(/) and recapture probabilities (p). The formulation of the likelihood

of this model (Lcr(m | /, p)) is straightforward and described in many

papers (e.g. Lebreton et al. 1992).

We estimated fecundity (b) from the number of recorded reproduc-

ing females (R) and total number of offspring (J) produced by them in

year t. We assumed that Jt follows a Poisson distribution with param-

eter written as a product ofRt and bt, hence, Jt� Po(Rtbt). The likeli-

hood of this model is denoted as Lrp(J, R | b).

The population count data were analysed with a state-space model

(Besbeas et al. 2002; de Valpine & Hastings 2002; Buckland et al.

2004). The state-space model is defined by two processes: a state pro-

cess that describes the evolution of the true population sizes across

time and an observation process which describes the observation of

the true process. The state process is already defined by our popula-

tion model (eqn 1), but here we introduce demographic stochasticity

using Poisson and binomial distributions as

N1;tþ1 � Po N1;t þN2þ;t
� �

bt=2ð Þ/ju;t

� �
eqn 2

and

N2þ;tþ1 � ðBinððN1;t þN2þ;tÞ;/ad;tÞ þ PoððN1;t þN2þ;tÞimmtÞÞ
eqn 3

The observation process is conditional on the state process. Here,

only breeding females are counted, and we assume the counts to fol-

low a Poisson distribution. That is, yt � Po(N1,t + N2+,t), where yt
is the number of observed breeding females in year t. The likelihood

of the state process is Lsy(N |/, b, imm), the likelihood of the observa-

tion process isLob(y |N) and the likelihood of the state-space model is

the product of the two likelihoods.

L IKEL IHOOD OF THE INTEGRATED MODEL

The likelihoods of the three data sets have some parameters in com-

mon, as displayed graphically by the directed acyclic graph (Fig. 1).

Thus, by combining these data sources into a single analysis using an

integrated population model, more information can be used to esti-

mate demographic parameters. Under the assumption of indepen-

dence between the three data sources, the joint likelihood for the

combined data, which is a basis for inference, is obtained as the prod-

uct of the likelihoods of the three data sources (Besbeas et al. 2002;

Besbeas, Lebreton & Morgan 2003; Brooks et al. 2004; Abadi et al.

2010), thus

Ljointðm; J;R; yjN;/; b; imm; pÞ ¼ Lcrðmj/; pÞ � LrpðJ;RjbÞ
� LobðyjNÞ � LsyðNj/; b; immÞ eqn 4

The calculation of the joint likelihood (eqn 4) relies on the

assumption that the data are independent which is frequently vio-

lated in practice. However, a simulation study, which combined

capture–recapture, population count and reproductive success data,

showed that the violation of this assumption has only minimal

impact on the accuracy of parameter estimates (Abadi et al. 2010).

Since our model to estimate immigration uses the same kind of

data as the simulation study by Abadi et al. (2010), the potential

violation of the independence assumption is likely to have little

impact on the estimators.

Fig. 1. Structure of the integrated populationmodel: Directed acyclic

graph of the integrated populationmodel for the little owl population

in Göppingen, showing that some demographic parameters are com-

mon to different sources of information. Estimated parameters are

represented by circles and the data are represented by rectangles.

Arrows represent dependences between nodes. Node notations: m,

capture–recapture data; y, population count data; J, number of new-

borns; R, number of recorded reproducing females; b, fecundity; /ju,

juvenile survival probability; /ad, adult survival probability; imm,

immigration rate; p, recapture probability;N, population size.
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CASE STUDY

Data

We used demographic data on little owls to illustrate the estimation

and modelling of immigration rate using the integrated population

model. The little owl is a small-sized owl preying mostly on voles in

Central Europe and inhabiting semi-open landscapes. It is a cavity

breeder and readily accepts nest boxes (Cramp 1985). We collected

the demographic data nearGöppingen (SouthernGermany; 48�40¢N,

9�38¢E), where nest boxes were installed and the population wasmon-

itored from 1978 to 2003. Each year we checked all nest boxes several

times, recorded reproductive success (n = 353 breeding attempts),

marked nestlings with rings (n = 659) and captured and marked

adults that were in the nest boxes at the time of the checks (n = 73).

Thus, capture–recapture data, data on reproductive success and on

population size (number of occupied nest boxes) were available. Fur-

ther, we recorded a two-level index of vole abundance (high, low)

each spring based on the number of vole hills and holes. For further

details see Schaub et al. (2006).

PARAMETER ESTIMATION AND SENSIT IV ITY ANALYSIS

The joint likelihood of the model (eqn 4) is constructed based on data

of females only. However, we had also capture–recapture data of

males. These data were also included and modelled, but they contrib-

uted to the joint likelihood only, if at least one parameter was identi-

cal (e.g. if survival was not sex-specific), improving the precision of

the estimates common in both sexes.

We performed a Bayesian analysis of the integrated population

models, which gives us more flexibility regarding model assump-

tions to form the likelihood of the population count data (Brooks

et al. 2004; Schaub et al. 2007; King et al. 2008). To estimate demo-

graphic rates, we mimic as closely as possible the Schaub et al.

(2006) analysis. We used constant immigration and those structures

of the other demographic rates that turned out to be best in Schaub

et al. (2006). We assessed whether the integrated analysis provides

an identifiable estimate of immigration by comparing the prior and

posterior distributions for immigration rate. In the Bayesian con-

text, a parameter is considered to be identifiable if the posterior dis-

tribution differs from the prior distribution (Garrett & Zeger 2000;

Gimenez, Morgan & Brooks 2009). If this is so the data do contain

information about the parameter under scrutiny. We specified four

prior distributions for immigration (three with uniform distribu-

tions between 0 and 5 (U(0, 5)), 0 and 2 (U(0, 2)), and 0 and 1

(U(0, 1)); one with a normal distribution with mean 0 and variance

0Æ25 truncated to the values between 0 and 2 (N(0,0Æ25)I(0,2))). The
first three prior distributions assumed that immigration is equally

likely within the given ranges, whereas the normal prior assumed

that low immigration is much more likely than high immigration.

We regard the U(0,5) prior as non-informative and the normal

prior as the most informative. If immigration is identifiable, we

expect the choice of the prior to have only limited impact on the

posterior distribution. Thirdly, we estimated the demographic rates

while using only capture–recapture and population count data, but

not the data on fecundity. This allows us to check whether estima-

tion is still possible in the case where explicit data for two different

parameter types (immigration and fecundity) are lacking.

In all cases we specified the following prior distributions for the

other model parameters than immigration. Since survival and recap-

ture probabilities are modelled as linear functions of time and sex on

a logit scale, we assigned a N(0,104) prior to the regression

coefficients. Further we used a U(0, 5) prior for fecundity and a

N(0,104) truncated to positive values on the age-specific population

sizes.

Unfortunately, no measure of goodness-of-fit (GOF) is available

yet for integrated population models. Therefore, the best thing to do

is to assess the GOF of single data sets. Schaub et al. (2006) assessed

theGOF of the CJSmodel and found no lack of fit.

MODELLING IMMIGRATION AS A FUNCTION OF

COVARIATES

In this section, we show how the integrated model can be used to

model immigration rate as a function of environmental covariates

and to make inference. In fact, the inclusion of a covariate is easy and

straightforward. We modelled the log of immigration rate as a linear

function of covariates using the linear relationship

logðimmtÞ ¼ b0 þ
Xv
j¼1

bjXjt eqn 5

where Xjt is the value of the jth covariate at the tth sampling

occasion, the b’s are regression coefficients. We used a N(0,104)

prior for the unknown regression parameters (b’s).
Either classical hypothesis tests (i.e. evaluating whether b is differ-

ent from 0) or model selection (e.g. using the deviance information

criterion DIC (Spiegelhalter et al. 2002; van der Linde 2005) or per-

forming reversible jump MCMC (Green 1995)) can be used to make

inference about immigration in relation to covariates. Here, we com-

pared several models based on the DIC. We used the DIC as a preli-

minary tool for comparing different models. The models that we

compared had all different structures for immigration, but the same

structure for all other model parameters.

An extensive model selection by Schaub et al. (2006) revealed

that survival was best estimated using the same linear time trend

for both age classes with an additional sex effect, that recapture

probability was best modelled time-specific with an additive sex

effect and that reproductive success was different in each year

(model denoted as /age2+T+sex, pt+sex, bt). We defined six different

models for immigration. The first model considers that immigration

is time-dependent (immt). Secondly, we assumed that immigration

had systematically changed with time, either linearly (immT) or fol-

lowing a quadratic function (immT+T
2). The fourth model assumes

the immigration to depend on the abundance of voles (immv). We

expect high vole abundance to have a positive impact on immigra-

tion. The next model assumes that immigration is constant across

time (imm.). Finally, to test whether immigration was important at

all, we considered a model where we assumed no immigration

(imm0).

MODEL IMPLEMENTATION

All analyses were carried out using WinBUGS (Lunn et al. 2000)

called from R 2Æ7 Æ1 (R Development Core Team 2008) with the

R2WinBUGS package (Sturtz, Ligges & Gelman 2005). WinBUGS

performsMarkov chainMonte Carlo (MCMC) techniques to sample

from the posterior distribution of each parameter. We used the

Brooks and Gelman diagnostic (R̂) to assess the convergence of the

MCMC simulations (Brooks &Gelman 1998). Initial trials with three

independent chains showed that convergence (R̂<1Æ01) was obtained
after 20 000 iterations with a burn-in period of 10 000 iterations. For

all analyses we therefore ran single chains of 200 000 iterations, of

which the first 100 000 were removed as a burn-in period and thinned

such that every 100th observation was retained. The R and
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WinBUGS code for the model which included a covariate are pro-

vided inAppendix S1 (Supporting Information).

Results

PARAMETER ESTIMATION AND SENSIT IV ITY ANALYSIS

The estimated immigration rate from our simplest constant

model was 0Æ293 with 95% credible interval (CRI) 0Æ183–0Æ418
(under prior U(0, 2)). This means that for every breeding

female in year t, about 0Æ3 female had immigrated in year

t + 1.As can be seen inFig. 2, the prior distributions had little

effect on the posterior distribution of immigration rate, indi-

cating that the posterior distribution was highly dominated by

the observed data. The posterior means and 95%CRIs for the

immigration rate were almost the same under different priors

[posterior mean (95% CRI): under U(0, 5): 0Æ290 (0Æ173–
0Æ417); under U(0, 1): 0Æ292 (0Æ183–0Æ415); under

(N(0,0Æ25)I(0,2)): 0Æ296 (0Æ175–0Æ425)]. Consequently, immigra-

tion is identifiable using the integrated population model. The

estimated immigration rate obtained from the analysis without

fecundity data was 0Æ288 with 95% credible interval 0Æ170–
0Æ425, which was virtually identical to the one obtained from

the analysis which did include fecundity data. Also in this case

was the posterior distribution of immigration insensitive to the

prior distributions, indicating again that immigration was

identifiable (Fig. 2). However, the wide credible intervals indi-

cated uncertainty in the estimates of immigration in all cases.

The annual point estimates of all demographic rates were

very similar regardless of whether they stem from the inte-

grated population models or from the ‘two steps’ approach

(Schaub et al. 2006; see Appendix S2, Supporting Informa-

tion).

MODELL ING IMMIGRATION WITH COVARIATES AND

MODEL SELECTION

Model selection of immigration rate showed that the model

where immigration was a function of vole abundance was

favoured by DIC (Table 1). However, the difference in DIC to

the next best model with constant immigration rate was small.

Thus, there is uncertainty whether immigration really

depended on vole abundance. This is also reflected in the pos-

terior distribution of the vole abundance effect which includes

zero (Fig. 3). The models where immigration changes deter-

ministically across time and where immigration rate was differ-

ent in each year were clearly lower ranked. In particular, the

model where no immigration occurred was ranked as the

worst, indicating that immigration was important in this little

owl population. The estimates of all demographic rates with

associated 95% credible intervals based on the best model are

shown in Fig. 4.

Discussion

Immigration to geographically open population is often an

important demographic component to population growth

(Lampila et al. 2006; Peery et al. 2006; Schaub et al. 2006; Grø-

tan et al. 2009), but immigration rate is one of themost difficult
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Fig. 2. Parameter identifiability: Prior (dashed line) and posterior

(solid and dotted lines for models with and without fecundity data,

respectively) distributions of the immigration rate, estimated using

the integrated population model, where immigration rate was con-

strained to be constant over time (model denoted as /age2+T+sex,

pt+sex, bt, imm., Table 1). A U(0,5) (Panel a), a U(0,2) (Panel b), a

U(0,1) (Panel c) and a N(0,0Æ25)I(0,2) (Panel d) prior are used. Note

that the posterior for the model without fecundity is hardly visible,

because it matches almost completely the posterior of the model

including fecundity.

Table 1. Model selection results for different patterns of immigration

rate (imm) of little owls using integrated populationmodels

Immigration model Deviance pD DDIC

immv 583Æ44 63Æ95 0Æ00
imm. 573Æ99 73Æ70 0Æ31
immt 579Æ71 72Æ34 4Æ66
immT 584Æ51 67Æ86 4Æ98
immT+T

2 584Æ65 66Æ77 5Æ03
imm0 588Æ18 76Æ82 17Æ61

The model deviance, the effective number of parameters (pD),

and the DIC difference (DDIC) between the current model and

the best model are provided. The model subscript t stands for

year-specific rates, T and T2 denote a linear and quadratic trend

over time, respectively, 0 denotes no immigration, ‘.’ denotes con-

stancy over time, and v denotes a vole abundance effect. For sur-

vival (/age2+T+sex), recapture (pt+sex) and fecundity (bt) the same

structure was used for all models.
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demographic rates to estimate. Here we propose an extension

of an integrated population model to estimate immigration

rate using population count, capture–recapture and fecundity

data. We show that immigration is estimable and can further-

more be modelled as a function of environmental covariates.

This is a step forward tomodel the dynamics of geographically

open populations.

A key advantage of integrated population models in general

is that they allow estimating demographic parameters for

which no explicit data are sampled (Besbeas et al. 2002, Abadi

et al. 2010). This is possible because the population count data

contain information about all demographic processes in the

population and because this information is extracted with the

inclusion of independent data about some of these processes.

Previously developed integrated population models showed

that fecundity can be estimated if count data are combined

either with ring-recovery data (Besbeas et al. 2002; Brooks

et al. 2004) or with capture–recapture data (Abadi et al. 2010).

Here, we show that immigration can be estimated, if count

data are combined with capture–recapture data. The inclusion

of data on fecundity contributes little to the estimation of

immigration rate. This might be different in a situation where

survival from birth to recruitment as breeder is high. However,

it is very encouraging that the integrated populationmodel has

the power to estimate two demographic parameters (i.e. immi-

gration rate and fecundity) for which no explicit data are

available.

Our analyses revealed that the posterior distributions of

immigrationwere not very sensitive to different priors. Because

the posterior distribution generally becomes independent of

the prior distribution when the data are highly informative,

our result indicated that the immigration rate could be esti-

mated based on the information from the observed data.

Other approaches to estimate immigration have been pro-

posed and we reviewed them briefly in the introduction. The

integrated population model has several advantages over

existing methods. The first advantage is that the model allows

immigration to be modelled as a function of covariates.

Often, the interest is not just in a point estimate, but on test-

ing biological hypotheses about immigration. This is only

possible if covariates can be included. Secondly, our approach

does not rely on strong assumptions, as other approaches do.

In particular there is no requirement for all unmarked indi-

viduals that are born in the population to be marked, that the

population is counted without error or that all unmarked

individuals are assumed to be immigrants. In our view, relax-

ing these assumptions provides much more realism to the

data than has been possible previously. Yet, the integrated

population model is also based on some assumptions. The

different data must be independent from each other. A

simulation study in a slightly different context has shown that

the violation of this assumption has limited impact only on

parameter accuracy (Abadi et al. 2010). Furthermore, the

assumptions of the capture–recapture model (Lebreton et al.

1992) including identity of estimates of survival and recapture

among individuals must hold. However, some frequent rea-

sons for the violation of these assumptions such as occurrence

of transients (Pradel 1996), trap-dependence (Pradel 1993) or

non-random temporary emigration (Schaub et al. 2004) can

be relaxed by specifying a different capture–recapture model.
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This can be included into the integrated population model. In

contrast, for methods that rely on the reverse-time modelling

of capture–recapture data (Peery et al. 2006; Schaub et al.

2006) this is not possible.

The integrated population model yielded less precise esti-

mates of the immigration rate in comparison to the ‘two steps’

approach (Schaub et al. 2006; see Appendix S2 in Supporting

Information). However, the precision from the ‘two steps’

approach is based on the assumption that the covariances

between all parameter estimates are zero. Presumably this was

violated resulting in an overly optimistic precision. In contrast,

the integrated model provides a more realistic picture of the

uncertainty in all the estimates. In integrated population mod-

els, the precision of fecundity when no explicit fecundity data

were included was much lower than when data on fecundity

were included (see Appendix S2, Supporting Information, and

Abadi et al. 2010). This is likely to be generally true. Thus, as

there are no explicit data on immigration included, the low pre-

cision of the estimates could be expected. To increase precision,

explicit data on immigration must be included. This could be

achieved if capture–recapture data are sampled using the

robust design, allowing estimates of immigration rates to be

obtained (Nichols & Pollock 1990). The robust design model

could then be included into the integrated population model.

In the Bayesian context, one could also consider more infor-

mative priors derived from another population or from a clo-

sely related species to improve the precision of the estimates of

immigration rate.

We foresee several areas for further developing the novel

analytical framework presented here. First, the model could

be modified to include random effects. This is of importance

when the temporal variance of demographic rates and the

temporal covariances between them must be estimated. Such

estimates are crucial for assessing the contribution of demo-

graphic rates to the variation of the population growth rate

(Horvitz, Schemske & Caswell 1997; Burnham &White 2002;

Loison et al. 2002). Moreover, a hierarchical formulation is

useful to model the effect of covariates on demographic rates,

relaxing the assumption that the complete variation in the

demographic rates over time is determined by the covariates

alone. Also, a random-effects formulation for year-specific

parameters is more parsimonious than explicitly estimating

one independent effect for every year. Secondly, the state-

space model could be extended to account for overdispersion

by specifying beta-binomial or negative binomial distributions

for the state process (King et al. 2008). Thirdly, the model

could be adapted to different life histories, such as a life his-

tory with delayed maturity or with explicit inclusion of both

sexes. It may then possible to estimate age and ⁄or sex specific

immigration rates.

In conclusion, our newly extended integrated population

model will be a useful tool to estimate immigration rate in a

geographically open population permitting a deeper under-

standing of the dynamics of such populations and to help con-

servation biologists conducting population diagnoses (e.g.

population viability analysis) and proposing efficient manage-

ment actions.
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References

Abadi, F., Gimenez, O., Arlettaz, R. & Schaub, M. (2010) An assessment of

integrated population models: bias, accuracy, and violation of the assump-

tion of independence.Ecology, 91, 7–14.

Besbeas, P., Freeman, S.N., Morgan, B.J.T. & Catchpole, E.A. (2002) Integrat-

ing mark–recapture–recovery and census data to estimate animal abundance

and demographic parameters.Biometrics, 58, 540–547.

Besbeas, P., Lebreton, J.D. & Morgan, B.J.T. (2003) The efficient integration

of abundance and demographic data.Applied Statistics, 52, 95–102.

Brooks, S.P. & Gelman, A. (1998) General methods for monitoring conver-

gence of iterative simulation. Journal of Computational and Graphical Statis-

tics, 7, 434–455.

Brooks, S.P., King, R. & Morgan, B.J.T. (2004) A Bayesian approach to com-

bining animal abundance and demographic data. Animal Biodiversity and

Conservation, 27, 515–529.

Buckland, S.T., Newman, K.B., Fernandez, C., Thomas, L. & Harwood, J.

(2007) Embedding populaton dynamics models in reference. Statistical

Science, 22, 44–58.

Buckland, S.T., Newman, K.B., Thomas, L. & Koesters, N.B. (2004) State-

space models for the dynamics of wild animal populations. Ecological

Modelling, 171, 157–175.

Burnham,K.P. &White, G.C. (2002) Evaluation of some random effects meth-

odology applicable to bird ringing data. Journal of Applied Statistics, 29,

245–264.

Burnham, K.P. (1993) A theory for combined analysis of ring recovery and

recapture data.Marked Individuals in the Study of Bird Population (eds J.-D.

Lebreton & P.M. North), pp. 199–213. Birkhauser Verlag, Basel, Switzer-

land.

Caswell, H. (2001)Matrix populationModels: Construction, Analysis, and Inter-

pretation, 2nd edn. Sinauer Associates, Inc., Sunderland,MA,USA.

Cooch, E., Rockwell, R.F. & Brault, S. (2001) Retrospective analysis of demo-

graphic responses to environmental change: a lesser snow goose example.

EcologicalMonographs, 71, 377–400.

Cramp, S. (1985) Handbook of the Birds of Europe, the Middle East and North

Africa. OxfordUniversity Press, NewYork.

de Valpine, P. & Hastings, A. (2002) Fitting population models incorporating

process noise and observation error.EcologicalMonographs, 72, 57–76.

Garrett, E.S. & Zeger, S.L. (2000) Latent class model diagnosis. Biometrics, 56,

1055–1067.

Green, P.J. (1995) Reversible jump MCMC computation and Bayesian model

determination.Biometrika, 82, 711–732.

Gimenez, O., Morgan, B.J.T. & Brooks, S.P. (2009) Weak identifiability in

models formark–recapture–recovery data.ModelingDemographic Processes

in Marked Populations (eds D.L. Thomson, E.G. Cooch & M.J. Conroy),

pp. 1055–1067. Springer Series: Environmental and Ecological Statistics,

NewYork.

Grøtan, V., Sæther, B.-E., Engen, S., van Balen, J.H., Perdeck, A.C. & Vis-

ser, M.E. (2009) Spatial and temporal variation in the relative contribu-

tion of density dependence, climate variation and migration to

fluctuations in the size of great tit populations. Journal of Animal Ecology,

78, 447–459.

Hines, J.E. &Nichols, J.D. (2002) Investigations of potential bias in the estima-

tion of lambda using Pradel’s (1996)model for capture–recapture data. Jour-

nal of Applied Statistics, 29, 573–587.

Horvitz, C., Schemske, D.W. & Caswell, H. (1997) The relative ‘‘importance’’

of life-history stages to population growth rate: prospective and retrospec-

tive analyses. Structured PopulationModels inMarine, Terrestrial, and Fresh-

water Systems (eds S. Tuljapurkar & H. Caswell). Champan and Hall,

NewYork.

King, R., Brooks, S.P., Mazzetta, C., Freeman, S.N. & Morgan, B.J.T. (2008)

Identifying and diagnosing population declines: a Bayesian assessment of

lapwings in theUK.Applied Statistics, 57, 609–632.

Lampila, S., Orell, M., Belda, E. & Koivula, K. (2006) Importance of adult

survival, local recruitment and immigration in a declining boreal forest

passerine, thewillow titParusmontanus.Oecologia, 148, 405–413.

Estimation of immigration rate 399

� 2010 The Authors. Journal compilation � 2010 British Ecological Society, Journal of Applied Ecology, 47, 393–400



Lebreton, J.-D., Burnham, K.P., Clobert, J. & Anderson, D.R. (1992) Model-

ling survival and testing biological hypotheses using marked animals: a uni-

fied approachwith case studies.EcologicalMonographs, 62, 67–118.

Loison, A., Saether, B.E., Jerstad, K. &Rostad, O.W. (2002) Disentangling the

sources of variation in the survival of the European dipper. Journal of

Applied Statistics, 29, 289–304.

Lunn, D.J., Thomas, A., Best, N. & Spiegelhalter, D. (2000) WinBUGS – A

Bayesianmodelling framework: concepts, structure, and extensibility. Statis-

tics and Computing, 10, 325–337.

Møller, P. (2002) North Atlantic Oscillation (NAO) effects of climate on the

relative importance of first and second clutches in amigratory passerine bird.

Journal of Animal Ecology, 71, 201–210.

Nichols, J.D. & Pollock, K.H. (1990) Estimation of recruitment from immigra-

tion versus in situ reproduction using Pollock’s robust design. Ecology, 71,

21–26.

O’Hara, R.B., Lampila, S. & Orell, M. (2009) Estimation of rates of births,

deaths, and immigration from mark–recapture data. Biometrics, 65, 275–

281.

Peery, M.Z., Becker, B.H. & Beissinger, S.R. (2006) Combining demographic

and count-based approaches to identify source-sink dynamics of a threa-

tened seabird.Ecological Applications, 16, 1516–1528.

Perret, N., Pradel, R., Miaud, C., Grolet, O. & Joly, P. (2003) Transience, dis-

persal and survival rates in newt patchy populations. Journal of Animal Ecol-

ogy, 72, 567–575.

Pradel, R. (1993) Flexibility in survival anaysis from recapture data: Handling

trap-dependence. Marked Individuals in the Study of Bird Population

(eds J.D. Lebreton & P.M. North), pp. 29–37. Birkhaüser Verlag, Basel,
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