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Abstract. Understanding population dynamics requires accurate estimates of demo-
graphic rates. Integrated population models combine demographic and survey data into a
single, comprehensive analysis and provide more coherent estimates of vital rates. Integrated
population models rely on the assumption that different data sets are independent, which is
frequently violated in practice. Moreover, the precision that can be gained using integrated
modeling compared to conventional modeling is only known from empirical studies. The
present study used simulation methods to assess how the violation of the assumption of
independence affects the statistical properties of the parameter estimators. Further, the gains
in precision and accuracy from the model were explored under varying sample sizes. For
capture–recapture, population survey, and reproductive success, we generated independent
and dependent data that were analyzed with integrated and conventional models. We found
only a minimal impact of the violation of the assumption of independence on the parameter
estimates. Furthermore, we observed an overall gain in precision and accuracy when all three
data sets were analyzed simultaneously. This was particularly pronounced when the sample
size was small. These findings contribute to clearing the way for the application of integrated
population models in practice.
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INTRODUCTION

The dynamics of populations are essentially driven by

the variation in the number of surviving and newly

recruited individuals. To understand the demographic

mechanisms that drive population trajectories, it is thus

essential to accurately estimate vital rates. This is indeed

crucial for effective species management and conserva-

tion (Williams et al. 2002, Norris 2004). As the study of

the dynamics of wildlife populations usually requires

detailed demographic data, researchers often collect

different kinds of data such as capture–recapture, ring

or tag recovery from dead animals, fecundity, and/or

population-survey data. Traditionally, these data sets

are analyzed individually while studying demographic

processes. However, separate analyses will lead to more

uncertainty and bias in the estimated demographic rates,

in particular if sample size is small (Doak et al. 2005).

A promising, recently developed tool to analyze

different sources of data simultaneously is integrated

population modeling (Besbeas et al. 2002, 2003, Buckland

et al. 2004, Thomas et al. 2005). The core of this model is

a projection matrix parameterized with demographic

parameters, which maps population sizes of different age

or stage classes from one year to the next. Typically, part

of the demographic information comes from capture–

recapture type of data, while the information about

population size is drawn from population surveys.

Integrated population models have successfully been

used to jointly analyze ring-recovery and population-

survey data (Besbeas et al. 2002, Brooks et al. 2004),

capture–recapture and population-survey data (Gauthier

et al. 2007), capture–recapture, population-survey, and

productivity data (Schaub et al. 2007) as well as estimates

of abundance and data on incidental mortality in

fisheries (Hoyle and Maunder 2004). Empirical studies

have shown that integrated population models deliver

demographic estimates with a higher precision than

separate, conventional models (Besbeas et al. 2003). For

estimating some parameters that are especially difficult to

evaluate and cannot be retrieved from single analyses

(e.g., fecundity from either capture–recapture or popu-

lation-survey data), they even constitute the only feasible

solution (Besbeas et al. 2002, Schaub et al. 2007). This is

due to the fact that the information about all demo-

graphic processes is included in the population-survey

data, and with the integrated model the entire informa-

tion can be extracted. Eventually, it is the combination of

different, independent information for a given parameter

(e.g., survival probability determined through popula-
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tion-survey and capture–recapture data) that leads to an

increase in precision.

Although integrated population models are very

appealing in principle, and potentially very useful, a

thorough assessment of their accuracy for parameter

estimation has never been performed. Moreover, the

model relies on the critical assumption that the different

data sets that are jointly analyzed are independent from

each other. This assumption must be met because the

joint likelihood of the model is calculated as the product

of the likelihoods of the different data sets. It is currently

little known whether the model performs well if this

assumption is violated. Besbeas et al. (2009) combined

ring-recovery and census data to test this assumption

and concluded that the effect of dependency is a serious

issue. In practice, however, it is often easier to obtain

capture–recapture than ring-recovery data. It would

thus be worth assessing the violation of the assumption

in integrated models combining capture–recapture with

other sources of demographic information such as data

on population surveys and reproductive success.

The aim of this paper is to make a thorough

assessment of the performance of integrated population

models using extensive simulations. To study parameter

performance we considered the life history of a short-

lived species and used three different classes of sample

size for evaluating the behavior of this model with respect

to variation in sample size. Generally, we expect a greater

benefit of the integrated population model at small than

at large sample sizes. We addressed the following three

main issues considering different sample sizes.

First, we assessed the magnitude of the improvement

in the estimates of demographic rate in the integrated

population model compared to conventional, separate

analyses. Second, we evaluated the accuracy of the

demographic parameters for which no empirical data are

available and that can thus solely be extracted from

population-survey data. Third, we assessed the extent to

which the violation of the assumption of data sets inter-

independency affects the accuracy of the estimated

parameters. In the strict sense of the term, this

assumption of independence requires that the different

data sets have no individuals in common, which could

be achieved either by sampling individuals from

different populations or by sampling different individ-

uals from the same population. The former further

requires that the dynamics of the different populations

under scrutiny is identical. The latter can be difficult to

achieve in practice, especially when data stem from small

populations, as is often the case in conservation science;

the likelihood of sampling the same individual several

times would be high under these circumstances. Fulfill-

ing these assumptions of the independence of data sets

would thus be particularly challenging precisely when

the benefits of integrated modeling would be expected to

be greatest, i.e., in small and local populations for which

a clear demographic diagnosis (e.g., population trend,

viability analysis) is essential.

METHODS

We examined the performance of the integrated

population model with simulations. We first created

populations using age-structured individual-based pop-

ulation models. We simulated each individual separately

in such a way that its complete life sequence was known.

Second, we sampled from the population three different

types of data (capture–recapture, productivity, popula-

tion survey) under various degrees of independence and

with different sample sizes. Third, we analyzed these

data under two different kinds of integrated population

models (all three types of data above vs. using only

capture–recapture and population-survey data) and with

separate analyses considering only capture–recapture

data or only fecundity data. We repeated these steps 500

times. Next we describe each of the three steps in more

detail.

Creation of the life history in the population

and the data sets

To create the populations from which data were then

sampled we considered the life history of a short-lived

bird species such as the Hoopoe (Upupa epops; see Plate

1). We assumed geographic closure (no immigration or

emigration), constant survival probabilities and fecun-

dity, and a pre-breeding census. We further assumed two

age classes (1 and 2þ years), with reproduction starting

from age 1, and the simulation only included female

animals. Fecundity (average number of females pro-

duced per female, f ) was set at 2.6, juvenile survival

(survival from birth until 1 yr old, /juv) at 0.2 and adult

survival (annual survival after 1 yr of age, /ad) at 0.5.

The expected number of individuals in the two age

classes at time t þ 1 is given by the product of the

population vector (containing the number of individu-

als) in year t and the projection matrix (Caswell 2001,

Buckland et al. 2007) as

EðNtþ1 jNtÞ ¼ E
N1;tþ1

N2þ;tþ1

� �� �
¼ f /juv f /juv

/ad /ad

� �
N1;t

N2þ;t

� �

ð1Þ

where N1,t is the number of 1-yr-old individuals at time t

and N2þ,t is the number of individuals older than 1 yr at

time t.

Using this population matrix model and an initial

population size of 300 individuals per age group, we

carried out the following steps to create the life history

of each individual in the population for 10 years:

1) Select an individual from the initial population or

from the produced offspring ( juvenile) at time t.

2) If the individual is at least one year old, generate

the number of offspring produced at time t by drawing a

random number from a Poisson distribution with

parameter equal to the fecundity ( f ). If an individual

is a juvenile, move to step 3.

3) Determine whether the individual survives from

year t to t þ 1 by drawing a random number from a
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Bernoulli distribution with parameter equal to the age-

specific survival probability (/ juv or /ad).

4) If the individual survives, it moves to the next time

tþ 1 and to the next age class if it is not yet in the oldest

age class. Repeat steps 2 to 3 until it dies or until the end

of the study period.

5) If the individual does not survive, pick the next

individual and repeat steps 2 to 5.

Thus, for each year we stored information about the

state of an individual (dead or, if alive, in which of the

considered age classes it is) and the number of newborn it

has produced. The population reaches a stable age

distribution very quickly, but we discarded the first five

years to avoid transition effects of the initial conditions.

Examples of the life histories of three individuals, along

with the stored information, are provided in Appendix A.

To obtain completely independent samples, we

randomly selected individuals in such a way that none

of them appeared in common in any of the three data

types. To create highly dependent samples, we selected a

random sample of individuals at the beginning and

created samples for the three different data types using

only these individuals. To create three levels of sample

size the number of randomly selected individuals was

varied (small ¼ 200 individuals; medium ¼ 1000

individuals; large ¼ 2000 individuals). Sample size may

differ between iterations, because not all individuals that

were initially considered were marked or surveyed. We

stored the sample size for each iteration and also the

number of identical individuals that are selected in the

three different data sets.

Capture–recapture data.—We created individual cap-

ture–recapture histories using the individuals that were

subject to capture–recapture sampling. For each year

and when a specific individual was alive, we determined

by a Bernoulli random number, with parameter equal to

the capture probability, whether or not the individual

was captured. The probability of initial capture was set

at 0.76 for juveniles and 0.60 for adults, and the

probability of recapture was set at 0.60.

Reproductive-success data.—We created reproductive-

success data using the individuals that were subject to

sampling for this data type. For each year when an

individual was reproducing, we generated a random

number from a Bernoulli distribution with probability

equal to 0.9 to determine whether its reproductive

success was recorded.

Population-survey data.—We created population-sur-

vey data using the individuals that were subject to

sampling of this data type. For each breeder and year we

generated a random number from a Bernoulli distribu-

tion with probability equal to 0.9 and determined

whether it was included in the count. We then stored

the number of detected breeders in each year.

Data analysis

We performed three different analyses for the sampled

data. First, we analyzed all data types simultaneously

using an integrated population model (IPM3); second,

we analyzed only the capture–recapture and the

population-survey data simultaneously in another inte-

grated population model (IPM2); and third, we analyzed
the capture–recapture data and fecundity data separate-

ly with a Cormack-Jolly-Seber (CJS) model and a

Poisson regression model, respectively. We first describe

the likelihood of each single data set and then show how
the integrated likelihoods are created.

Likelihood for the capture–recapture (CR) data.—We

summarized the capture–recapture data in matrix mt1t2 ,

t1 ¼ 1, 2, . . . , T � 1, t2 ¼ t1 þ 1, . . . , T þ 1, where mt1t2

denotes the number of individuals released at time t1 and
subsequently recaptured for the first time at time t2 for t2
� T, mt1 ;Tþ1 denotes the number of individuals never

recaptured after being released in year t1, and T denotes
the number of capture occasions (m-array; Burnham et

al. 1987). Then, each row of the data matrix is of a

multinomial form and the likelihood (L) can be

calculated as

LCRðm j/juv;/ad; pÞ }
YT�1

t1¼1

YT

t2¼t1þ1

p
mt1 t2
t1t2

YT�1

t1¼1

v
ðRt1
�RT

t2¼t1þ1 mt1 t2
Þ

t1

ð2Þ

where Rt1denotes the number of animals released in year
t1 and vt1 ¼ 1 � RT

t2¼t1þ1pt1t2 ; pt1t2 denotes the cell

probability of mt1t2 , which is a function of survival and

recapture probabilities. We defined pt1t2 as follows:

pt1t2 ¼

/juvp
�
/adð1� pÞ

�ðt2�t1�1Þ

for individuals released as juveniles

/ad p
�
/adð1� pÞ

�ðt2�t1�1Þ

for individuals released as 1 yr old or 2 yrþ

8>>>>>><
>>>>>>:

ð3Þ

where t1 ¼ 1, . . . , T – 1; t2 ¼ t1 þ 1, . . . , T; and p is

recapture probability. This is the well-known Cormack-

Jolly-Seber model (see Lebreton et al. 1992).

Likelihood for the population-survey (PS) data.—We

used a state-space model to describe the population-
survey data (Besbeas et al. 2002, de Valpine and

Hastings 2002, Buckland et al. 2004). The state process

models the true, but unknown population trajectory

under the population matrix model defined by Eq. 1,

and the observation process links the observed popula-
tion counts to the true population sizes assuming an

observation error.

We describe the population trajectory (state process)

using Poisson (Po) and binomial (Bin) distributions as

N1;tþ1 ; Po
�
ðN1;t þ N2þ;tÞf /juv

�
ð4Þ

and

N2þ;tþ1 ; BinðN1;t þ N2þ;t;/adÞ: ð5Þ

The likelihood of the state process is a product over
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Poisson and binomial densities and denoted by

LSY(N j f, /juv, /ad), where N ¼ (N1, N2)
0 is a vector of

the true population sizes.

The observation process expresses the population

indices actually observed at time t (yt) conditional on the

state process. Here, the observation equation is given as

yt¼ (1, 1) 3 (N1,t, N2þ,t)
0 þgt. The term gt accounts for

the observation error and we assume that gt ; N(0, r2
y).

The variance (r2
y) was small enough to ensure that

negative values for the number of animals (yt) were not

sampled. Thus, the likelihood of the observation

process, denoted by LOB(y jN, r2
y ), is a product over

normal densities.

Then, the corresponding likelihood of the population-

survey data is given by

LPSðy jN;/juv;/ad; f ;r
2
yÞ

¼ LOBðy jN;r2
yÞ3 LSYðN j/juv;/ad; f Þ: ð6Þ

Likelihood for reproductive-success (RS) data.—We

assumed that the number of newborn females in year t

(Jt) follow a Poisson distribution with parameter written

as a function of the number of reproducing females (Nt)

and the fecundity ( f ), hence, Jt ; Po(Nt f ). Thus, the

likelihood is a product over Poisson densities and

denoted as LRS(J j f ).
Likelihoods of the integrated models.—Assuming the

different data types are independent, the joint likelihood

of the integrated models is constructed as a product of

the single data likelihoods (Besbeas et al. 2002, 2003,

Brooks et al. 2004). That is, for IMP3 it is

LIPM3ðm; y; J j/juv;/ad; p; f ;N;r
2
yÞ ¼ LCRðm j/juv;/ad; pÞ

3 LPSðy j/juv;/ad; f ;N;r
2
yÞ3 LRSðJ j f Þ ð7Þ

and for IPM2 it is

LIPM2ðm; y j/juv;/ad; p; f ;N;r
2
yÞ ¼ LCRðm j/juv;/ad; pÞ

3 LPSðy j/juv;/ad; p; f ;N;r
2
yÞ: ð8Þ

All models were fitted within the Bayesian framework,

specifying non-informative priors for all model param-
eters. Specifically, we used the beta distribution, b(1, 1),
for the survival and recapture parameters, an inverse
gamma with parameters 0.0001 and 0.0001 for the
variance (r2

y), a normal distribution with mean 100 and

variance 104 truncated to positive values for age-specific
population sizes, and a uniform distribution between 0

and 10 for the fecundity parameter. We first run three
Markov-chain Monte Carlo (MCMC) chains (Gilks et
al. 1996) in parallel for 10 000 iterations, discarding the

first 3000 iterations. The R̂ values of all parameters were
less than 1.01, suggesting that convergence had been

reached (Brooks and Gelman 1998). We then run
100 000 iterations with the first 30 000 as burn-in and
thinned so that every 70th observation was retained.

We simulated 500 repetitions and calculated relative
bias, precision (standard error), and accuracy (mean-

square error) for all demographic parameters. The data
were generated with R 2.6.1 (R Development Core

Team 2005) and the analyses were performed in Win-
BUGS (Lunn et al. 2000) using the R2WinBUGS
package (Sturtz et al. 2005). All source code files and

their descriptions for the analyses are provided in the
electronic Supplement.

RESULTS

The average sample sizes across the 500 simulations

for the independent and the dependent data are
provided in Table 1. Between 72% and 94% of all

individuals occurred in two or three data sets in the
dependent data, indicating strong data dependency.

Integrated vs. independent analyses

Generally, integrated population models provided

slightly more precise, less biased, and more accurate
parameter estimates compared to the separate analyses
(Fig. 1; Table B1 in Appendix B). As expected, the

increase in precision and accuracy was more pronounced
at small sample size. With medium or large sample sizes,

the difference became minute. The increase in precision

TABLE 1. The average number of unique individuals involved in data sampling, for different
sample sizes and independence.

Sample size
Type
of data

Independent Dependent

CR RS PS CR RS PS

Small (200 ind.) CR 23 ��� ��� 23 22 22
RS ��� 30 ��� ��� 30 29
PS ��� ��� 31 ��� ��� 30

Medium (1000 ind.) CR 156 ��� ��� 155 147 147
RS ��� 202 ��� ��� 204 192
PS ��� ��� 203 ��� ��� 204

Large (2000 ind.) CR 310 ��� ��� 309 293 293
RS ��� 407 ��� ��� 406 382
PS ��� ��� 407 ��� ��� 405

Notes: The three data types are: CR, capture–recapture; RS, reproductive success; and PS,
population survey. The number in the diagonal shows the sample size of the corresponding data
type; the off-diagonals contain the numbers of adults included in two data types.
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and accuracy, and the decrease in bias differed among

demographic parameters. The benefit of the integrated

analysis was slightly higher for juvenile survival than for

adult survival, while for reproductive success the

precision and accuracy of the integrated analysis, which

used the three data sets, was virtually similar to that of

the separate analysis.

Differences between integrated analyses

The performance of the two integrated population

models differed only slightly for the estimated survival

probabilities for which explicit data were available (Fig.

1; Table B1 in Appendix B). Still, the integrated

population model that used all three types of data

(IPM3) provided slightly less biased, more precise, and

more accurate survival estimates than the model that

used only two types of data (IPM2). The difference was

slightly larger when sample size was small compared to

when sample size was large. For fecundity, the difference

between the two integrated population models was

much more important: fecundity estimated with the

integrated population model that used no explicit data

for fecundity (IPM2) was clearly more biased, less

precise, and less accurate compared to the estimates

FIG. 1. Relative bias, standard error (precision), and mean-square error (MSE, accuracy) of juvenile and adult survival
probabilities, and of fecundity, all as a function of sample size, estimated with different analyses. Estimates obtained with the
integrated analyses are shown as circles (three data sets) and as squares (two data sets); estimates obtained with separate analyses
are shown with triangles. Closed symbols represent independent data; open symbols represent dependent data.
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coming from the integrated population model that used
explicit data on fecundity. As for the other parameters,

this strongly depended on sample size. If sample size was

medium or large, then the performances of the two
models were not very different.

Assumption of independence

Bias, precision, and accuracy of the parameter
estimates originating from the independent and the

dependent data were nearly the same, regardless of

sample size (Fig. 1; Table B1 in Appendix B). Accuracy
for the independent data tended to be slightly higher

than for the dependent data in the case of small sample

size and almost the same with large sample size,
indicating that the violation of the assumption of

independence does not have a strong impact on the

performance of the estimators.

DISCUSSION

Using extensive simulations, we show that integrated

population models performed better than separate

analyses as the parameter estimates were more accurate

and because integrated population models allow esti-

mating parameters for which no explicit data were

collected (Besbeas et al. 2005). Moreover, the violation

of the assumption of independence had only minor

consequences on the precision and accuracy of the

parameter estimates. These are very encouraging results

for the practical application of integrated population

models (IPMs).

Empirical studies have stressed that the main advan-

tages of integrated compared to separate analyses are

that parameter precision is increased and that they

provide estimates for parameters that cannot be

estimated when using each data set in isolation. Our

simulation study shows that integrated analyses provide

more precise parameter estimates, but that the difference

compared to separate analyses is slight only, even if

sample size is low. These results are in agreement with

the empirical findings of Besbeas et al. (2002) and

Brooks et al. (2004). In their work, estimated precision

of survival was slightly increased when coming from an

integrated analysis (ring-recovery and census data)

compared to when coming from a separate ring-recovery

model. The reason for this only slight increase of

precision is that most information about survival and

fecundity comes from the capture–recapture and repro-

ductive-success data, respectively. Borysiewicz et al.

(2009) demonstrated that the improvement in precision

is much more pronounced for multi-site compared to

single-site integrated population models. This suggests

that the integration of additional information has an

effect on parameter accuracy, when the content of

information in the original data source is low. We expect

therefore that the benefit is largest when complicated

models with many parameters, as needed in ecological

studies, are used. Increased precision of parameter

estimates can be of importance if temporal patterns in

the parameter estimates will be evaluated, because the

power to detect patterns is enhanced. However, given

the small increase in precision restricted basically to

small data sets, it appeared that the gain of precision was

an advantage of practical relevance only when data sets

are small. Still, it is exactly in such small data sets, for

instance stemming from localized and small populations

of conservation concern, that we would be most likely to

want to apply an integrated analysis.

By contrast, the possibility of being able to estimate

additional demographic parameters is an important

advantage of integrated compared to separate analyses

(e.g., Besbeas et al. 2003, Schaub et al. 2007). Using an

integrated analysis, our simulations showed that fecun-

dity could be accurately estimated even if only capture–

recapture data and population-survey data are available.

Accuracy very strongly increased with sample size. If the

sample size was medium, the accuracy of the fecundity

estimate was almost similar to that from separate

analyses, regardless of whether data on fecundity were

available. For demographic monitoring with limited

PLATE 1. The evaluated integrated populationmodel is useful
to study the dynamics of populations of short-lived species, such
as Hoopoes (Upupa epops). Photo credit: R. Arlettaz.
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financial resources our result suggests that sampling

data on fecundity is not necessary provided that sample

size of the other data is large enough. Using the

simulations as performed in this paper allows one to

identify the necessary sample size of different sources of

data to find the most efficient monitoring strategy for

the desired precision of parameter estimates.

It is currently not known whether other combinations

of available information still allow estimating all

relevant demographic parameters. For example, one

might envision constructing an integrated population

model when only population-survey data and data on

fecundity are available. However, because in that case

no explicit data are available for two parameters

( juvenile and adult survival), there may be more

problems to get accurate estimates. Future studies might

investigate the minimal data required to estimate

demographic processes.

The violation of the assumption of independence does

not appear to have strong effects on the parameter

estimates. This was true despite the fact that the degree

of dependence in our data was strong, with the majority

of individuals appearing in all three or two data sets, and

even if the sample size was low. This result is very

important for the practical application of integrated

population models, since in most cases individuals

appear in several data sets. This means that samples

from the same population can be used, and hence it is

less important to sample from different populations and

to assume that their dynamics are the same. In this

study, we specified high detection probabilities and this

led to a strong dependency in the data. Had we specified

lower detection probabilities, the degree of dependency

would have been lower and hence less subject to the

violation of the assumption of independence. A likely

reason why the violation of the independence assump-

tion did not had a strong impact on parameter accuracy

is that most of the information about survival and

fecundity originates from capture–recapture and fecun-

dity data, respectively, and only little information about

these parameters is taken from the survey data (Besbeas

et al. 2009). Besbeas et al. (2009) showed that the

accuracy of the parameter estimates decreased when

there was a dependency between ring-recovery and

census data. Unlike capture–recapture data, ring-recov-

ery data do not dominate survey data to provide

information about common parameters, and in this

case the violation of the independence assumption has a

stronger impact on parameter accuracy. It is possible to

envision another, more extreme level of dependence. In

our study we assumed that the different data sets were

obtained independently from each other, but that

individuals could be present in different data sets. One

might consider that exactly the same data are exploited

two or several times. For example, instead of conducting

a separate population survey, the number of captured

individuals derived from the capture–recapture data

might be used as an index of population size. Although

we have not studied this kind of dependence, we expect

that in this case the consequences in terms of parameter

performance would be serious.

We used a relatively simple model in our simulations,

since one of the main goals was the assessment of the

violation-of-independence assumption and not the

performance of differently complicated models. More-

over, the life history that we used and the type of data

that we simulated reflect a frequent situation, at least in

ornithological studies. However, since integrated popu-

lation modeling is a very general and flexible framework,

many more different scenarios could be envisioned (e.g.,

life history with delayed maturity, inclusion of density

dependence) and simulated, and we here discuss some

possible extensions. A frequent situation is time

dependence in demographic parameters. We have

conducted a few simulations in this regard, and our

preliminary findings indicate that the violation of the

assumption of independence was not a serious concern

in estimating time-dependent demographic parameters.

In our study all individuals are assumed to have the

same vital rates, but in reality vital rates differ

individually. If individual variation is strong and not

accounted for in the integrated analysis, we expect a

greater effect of data dependence on the precision of the

parameter estimates. Finally, capture–recapture data

could be used to estimate population size (Schwarz and

Seber 1999). It would thus be possible to use informa-

tion about population size not only from the population

surveys, but also from the capture–recapture data. In

that case we would expect a greater effect of data

dependence on the parameter estimates, because more

common information stemming from two data sets are

treated as independent.

To sum up, the findings of this study provide support

for the use of integrated population models even if the

assumption of independence is violated. Integrated

population models give slightly more precise parameter

estimates and allow estimating demographic parameters

for which no specific data have been sampled. These

properties are indeed important in assessing the status of

wildlife populations and in identifying factors that affect

their demography. We therefore expect that integrated

population models will become frequently used in future.
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APPENDIX A

A figure illustrating the life histories of individuals in the population (Ecological Archives E091-001-A1).

APPENDIX B

Detailed summary of the relative bias, standard error, and mean-square error of the integrated and conventional analyses
(Ecological Archives E091-001-A2).

SUPPLEMENT

The R and WinBUGS codes used in the paper (Ecological Archives E091-001-S1).
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