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CHAPTER 14

Bayesian approaches
to the quantitative genetic
analysis of natural populations

Michael B. Morrissey, Pierre de Villemereuil, Blandine
Doligez and Olivier Gimenez

14.1 Introduction

Evolutionary quantitative genetic analysis of nat-
ural populations is proving to be highly reward-
ing, but also comes with enormous challenges.
Parameters that have always been regarded as dif-
ficult to estimate in the laboratory, for example
genetic correlations, are even more difficult in data
that contains the ‘real’ noise of nature. It is there-
fore very important to consider the best models that
we can use for the study of data from natural pop-
ulations, but also to consider the statistical uncer-
tainty inherent to the estimates yielded by these
models. Natural populations also present the quant-
itative geneticist with additional complications; in
particular, it may become increasingly important to
explicitly consider the process of observing data in
conjunction with inferences about underlying bio-
logical processes. For example, evaluating life his-
tories when individuals are not perfectly observable
will help to be cautious about genetic inferences.
Bayesian techniques offer the empiricist some of the
most promising ways of dealing with complicated
and noisy data.
In this first section we take a very close look

at estimation of heritability in a simple breed-
ing experiment. This is not an analysis of a nat-
ural population, but provides a simple example

that illustrates a range of non-trivial details with
which any empiricist must familiarise him- or her-
self before putting Bayesian methods into prac-
tice. In short, the idea here is to turn the usual
mode of presentation of a statistical method on its
head. Rather than starting from a completely trivial
model and building toward complex and scientific-
ally interesting analyses, we are starting from an
assumption that the reader is sufficiently familiar
with the basic biological principle of inferring the
genetic basis of traits from similarity among relat-
ives (see Chapter 2, Postma). Given this biologist’s
view of the flow of phenotype data through amodel
to make genetic inferences based on similarity of
relatives, we hope that the important statistical and
Bayesian aspects of interpreting the models will be
as intuitive as possible, and we will deal with these
aspects as they arise. In doing so we hope to over-
come the biggest obstacle to realising the potential
benefits of Bayesian quantitative genetic analysis in
the wild: getting off the ground.
Our biologist’s view of a simple quantitat-

ive genetic analysis, and the subsequent more
developed applications to natural populations in
the next section, do not provide any compre-
hensive guide to either Bayesian philosophies
or methodologies. General practical texts include
Bayesian data analysis (Gelman et al. 2004), Data
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analysis using regression and multilevel/hierarchical
models (Gelman & Hill 2007), and Doing bayesian
data analysis (Kruschke 2011). Those with an eco-
logical background who are interested in incor-
porating Bayesian, ‘modular’ or hierarchical ana-
lyses, and potentially quantitative genetic methods
into their work may find Hierarchical modeling and
inference in ecology (Royle & Dorazio 2008) to be
a useful introduction to Bayesian Markov Chain
Monte Carlo (MCMC)-based analysis. An import-
ant general resource for MCMC analysis is the
book Handbook of Markov Chain Monte Carlo (Brooks
et al. 2011). A vastly more complete introduction
to Bayesian quantitative genetic analysis, which
includes many ideas that would greatly benefit
the analysis of natural populations, is Likelihood,
Bayesian, and MCMC methods in quantitative genet-
ics (Sorensen & Gianola 2002). O’Hara et al. (2008)
‘Bayesian approaches in evolutionary quantitative
genetics’ is a useful review that is less specifically
focused on evolutionary problems in natural popu-
lations, but touches on similar and complimentary
themes to ours.
In the second section, we explore some spe-

cific cases where extension of the approaches and
thinking from the first section is currently allow-
ing informative, cutting-edge quantitative genetic
analyses of natural populations. In each example,
the inherent flexibility of Bayesian approaches, and
available Bayesian tools, is particularly important
in allowing more direct inference of key evolution-
ary parameters than is often possible in frequentist
frameworks. The goal of the current section is to
suggest several ways in which Bayesian analyses
can potentially provide insight into current microe-
volutionary problems. This section is intended to be
less didactic in terms of details of implementation.
We describe several types of analyses that we expect
to become increasingly common in the near future.
Whilst we seek to explain the established aspects
of their implementation, we do not intend that our
treatment should in any way be regarded as a guide
to ‘best practices’, because these are developing at
a great pace. Rather, as before, we seek primarily
to outline the utility and flexibility that Bayesian
analysis can bring to the quantitative genetic ana-
lysis of natural populations. Each of the examples
we discuss illustrates a specific way in which the

Bayesian toolkit allows specific inference of evolu-
tionary parameters that would be very difficult (but
probably in no case impossible) to obtain otherwise.

14.2 Putting Bayesian methods
into practice: a guided tour of a simple
example

14.2.1 Heritability of morphological traits
in crickets

We will be very explicit about i) how the maths in
the example relate to quantitative genetic paramet-
ers and ii) how the specific maths can be imple-
mented, using the BUGS programming language
(Lunn et al. 2000), implemented with the software
JAGS (Plummer 2003). This depthwill subsequently
prove valuable in the next section where we refit
the model in several different ways to get a feel
for some important details about prior specification,
when we introduce the animal model in a Bayesian
implementation, and more generally, as we move
through the more interesting examples throughout
the second section of the chapter.

We analyse phenotypic data from a quantitat-
ive genetic experiment on field crickets, Teleogryllus
oceanicus, by Simmons and Garcia-Gonzalez (2007)
who mated 30 males to a total of 84 females, and
measured 378 female offspring for a range of traits,
including pronotum length and ovary mass. The
goal here is to estimate additive genetic variances,
heritabilities, and to control for and characterise any
potentially confounding sources of variances, such
as that arising from maternal effects. The main trick
is to characterise the amount of variation due to
sires. Four times the sire variance is the additive
genetic variance, and the quotient of the addit-
ive genetic variance and the phenotypic variance
is the heritability. The simplest mixed model with
which to analyze this ‘dams within sires’ breeding
experiment is

yi = µ + si + di + ei (14.1)

where yi is the phenotype of individual i, µ is the
population mean, si and di represent the effects
of the dam and sire of individual i, and e are
residual errors. Because we are interested in the
variance among s and d values, not necessarily
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the effects of each dam and sire in isolation, we
model them as random effects. What this means
is that we assume that si, di, and similarly ei val-
ues come from normal distributions, the variances
of which are the parameters of interest, and which
are estimated. This can be written si ∼ N(0, σ 2

s ), di ∼
N(0, σ 2

d ), and ei ∼ N(0, σ 2
e ), where σ 2

x represents the
variance among effects x. More fully, we could write
the full likelihood as

"i(µ, si, di, σ 2
ε ) = p(y|µ, si, di, σ 2

e )

=
Ni∏
i=1

N(yi|µ + si + di, σ 2
e )

(14.2a)

"(σ 2
d ) = p(d|σ 2

d ) =
Nd∏
j=1

N(dj|0, σ 2
d ) (14.2b)

"(σ 2
s ) = p(s|σ 2

s ) =
Ns∏
k=1

N(sk|0, σ 2
s ) (14.2c)

"(µ, σ 2
e(y), σ

2
d , σ

2
s ) = p(y|µ, si, di, σ 2

e )×p(d|σ 2
d )×p(s|σ 2

s )
(14.2d)

where " represents the likelihoods of parameters,
p represents the probability of given observed data
(i.e. yi) or effects of dams and sires, i.e. the vectors d
and s. The left-hand side of each expression in Eq.
14.2 represents the likelihood of parameter estim-
ates, which is equated to the probability of some
data, i.e. y in Eq. 14.2a or the unobservable sire and
dam effects in Eqs. 14.2b,c, or all jointly in 14.2d. The
right-most expressions in Eq. 14.2a,b,c are the core
of the model. Here the probabilities are specified in
terms of products of normal density functions asso-
ciated with each data observation or random effect.
Eq. 14.2 may seem like an unnecessarily com-

plex way of representing the mixed model that we

managed with a single line in Eq. 14.1. However,
this representation lies at the core of the problem,
either in a frequentist likelihood, or in a Bayesian
analysis. In order to analyse genetic parameters in
the cricket dataset in a Bayesian framework, we
have to do two things. First, we have to come up
with priors for the parameters, and second, we
have to think about implementation. To start with,
we will try to apply the simplest priors we can
think of. The parameter µ can in principle take
any real value, so a very wide (high variance) nor-
mal density is simple and thorough. For the vari-
ance of each effect, i.e. the sire, dam, and residual
sources of variation, any positive value is permiss-
ible. We will start by allowing all values greater
than zero, and up to some large value (ideally,
this should not be informed by the data in any
way; in this case, making sure that the upper limit
is substantially larger than the observed variance
should be pragmatic) to be equally likely, i.e. wewill
apply uniform prior densities on the standard devi-
ation (SD). Formally, we could express these prior
choices as

µ ∼ N(0, 1000) (14.3a)

σs ∼ U(0, σbig) (14.3b)

σd ∼ U(0, σbig) (14.3c)

σe ∼ U(0, σbig) (14.3d)

where N() is defined as above, and U(x, y) rep-
resents a uniform density with minimum x and
maximum y; σbig is thus an arbitrarily large upper
limit.
In BUGS code, the model is thus:

1 model{
2 #priors
3 mu∼dnorm(0,0.001) # bugs works with precision, i.e., 1/variance
4 sigma_s∼dunif(0,sigma_big)
5 sigma_d∼dunif(0,sigma_big)
6 sigma_e∼dunif(0,sigma_big)
7
8 #random effects
9 for(j in 1:N_d){
10 d[j]∼dnorm(0,1/sigma_dˆ2)
11 }
12 for(k in 1:N_s){
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13 s[k]∼dnorm(0,1/sigma_sˆ2)
14 }
15
16 #data
17 for(i in 1:N_i){
18 y[i]∼dnorm(mu+s[sire[i]]+d[dam[i]],1/sigma_eˆ2)
19 }
20 }

Computer code can be as intimidating as math.
However, having already taken a moment to write
out the model in full (i.e. in Eq. 14.2), and to form-
ally define some priors on the free parameters (i.e.
in Eq. 14.3), all we have here is a statement of the
same model in a different syntax. Lines 3 to 6 state
that the priors have the normal and uniform dis-
tributions we stated. Lines 10 and 13 correspond
to the expressions in Eq. 14.2b,c, and line 18 simil-
arly correspondso Eq. 14.2a. The information about
the BUGS language thats needed to understand fully
this code is that x∼a(b,c) means ‘x is sampled
from distribution awith parameters b and c’. In the
case of the uniform distribution (dunif), the para-
meters are the upper and lower bounds of the
distribution, and for the normal distribution, the
parameters are the mean and the precision, which

Box 14.1 Bayesianism

In statistical inference, Bayesianism is a paradigm in which
(and contrary to frequentism), one consider parameters
(hereafter θ ) as random variables. In this sense, Bayesians
are not interested in infering a point estimate (based on
maximum likelihood for example) from the data Y , but a
posterior distribution P (θ |Y ). In order to do that, they
use Bayes’ inferential theorem:

P (θ |Y ) = P (Y |θ ) P (θ )
P (Y )

where P (Y |θ ) is the likelihood of the data given the model
and the parameters, P (θ ) is the prior distribution on
the parameters and P (Y ) is a scaling constant. In essence,
Bayesianism considers any inference as an update from
your prior belief of what the parameters are to your pos-
terior belief of what values are more probable now that
you have analysed the data.

Different flavours of the MCMC algorithm represent the
most popular Bayesian estimation algorithm, because they
allow posterior distributions to be sampled for very arbit-
rary models. Thus, when models are becoming too complex
for maximum likelihood estimation, Bayesianism and MCMC
sampling are often used as alternative resources. MCMC
algorithms yield samples of the parameters of a model in
proportion to their posterior probability. For example, a well-
conducted Bayesian analysis of a dataset wherein VA = 2
would ideally yield many outputs of VA in the vicinity of 2,
and relatively fewer outputs of values substantially lower
or greater than 2. The amount of evidence available will
determine just how much those ‘values substantially lower or
greater than 2’ actually differ from 2. Such samples are used
to calculate posterior properties of the parameter (mean,
median, variance, credible interval . . .), as well as to obtain
posterior distributions of derived parameters of interest, such
as h 2.

is the inverse of the variance. Looping over each
datum and random effect level is accomplished
with ‘for’ loops, where for(a in b:c){d}means
‘sequentially assign a to all inclusive integer val-
ues between b and c, and given these values of a,
do d’. Indexing of elements of vectors is accom-
plished with square brackets. In the code above,
several constants have to be provided to allow it
to run. These are the numbers of dams, sires, and
phenotypic observations (N_d, N_s, and N_i; note
that indexes remain consistent with Eq. 14.2), a vec-
tor of the phenotypic observations (y) and vectors
indicating which dam and sire is associated with
each observation (dam and sire). Box 14.1 provides
a brief overview of how models can be put
to work, once coded in this way, using MCMC
algorithms.
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14.2.2 Posterior transformation to make
inference of parameters of direct biological
interest

Our main question was: what are the heritabilit-
ies of pronotum length and ovary mass? Given the
posterior distributions of the sire models of the
traits, we need only to apply the standard rela-
tionship between the sire variance and the additive
genetic variance, and between the additive genetic
and phenotypic variances, to obtain inference of the
heritability. The most probable values of the genetic
variance and heritability will be the modal values
of their posterior distributions, and the posterior
distributions in full provide inference of the probab-
ilities, given the data, the model structure, and the

priors, that the true values of the genetic variance
and heritability take any other values. The pos-
terior distribution of the additive genetic variance,
obtained by applying σ 2

A = 4σ 2
s to each sample of

the posterior distribution is shown in Figure 14.1a,c,
and the posterior distribution heritability, based on
σ 2
P = σ 2

s + σ 2
d + σ 2

e is given in Figure 14.1b,d.
Thus, inference of genetic parameters can be very

simple, given a fitted Bayesian model (Table 14.1).
Parameter estimates are similarly easily obtained in
a frequentist framework, but inference of the stat-
istical support for estimates in a frequentist frame-
work is much harder to obtain. For example, the
implementation of a sire model with the software
ASReml-R (Gilmour et al. 1999) is

asreml(fixed = pro ∼ 1, random = ∼sire + dam, data = crickets)

which is much easier than the implementation route
we took above. Note however that Bayesian imple-
mentation with MCMCglmm (Hadfield 2010), an
R-package for fitting Bayesian generalised linear
mixed models by MCMC, would be similarly
simple. However, we would see and understand

less of what was happening under the hood, and
some of the customising of the sire model in the next
section would not be possible.
The restricted maximum likelihood (REML) solu-

tion of the model for pronotum length gives the
parameter estimates σ 2

s = 0.027, σ 2
d = 0.012, and
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Figure 14.1 Additive genetic variance (a, c)
and heritability (b, d) of pronotum length (a, b)
and ovary mass (c,d) in field crickets from
Simons and Garcia-Gonzalez’s (2007) breeding
experiment. Black lines show posterior
distributions of the parameters, and grey lines
show frequentist approximations of the
sampling error of their REML estimators, i.e.
normal distributions with SD = standard error
of each parameter.
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Table 14.1 Bayesian and frequentist parameter values from mixed model (sire model) analysis of the cricket dataset. Directly modelled parameters
are: the standard deviations associated with sire σs , dam σd , and the residual variation σe . Derived parameters are the additive genetic variance
σ 2
A, the maternal non-genetic variance σ 2

M, the total phenotypic variance σ 2
P, and the heritability h

2

Parameter Posterior mode Posterior mean SD of posterior REML estimate REML SE

(a) Directly modelled parameters; pronotum length

σ 2
s 0.024 0.030 0.020 0.027 0.015

σ 2
d <0.001 0.014 0.013 0.012 0.012

σ 2
e 0.182 0.191 0.016 0.189 0.016

(b) Derived parameters; pronotum length

σ 2
A 0.095 0.121 0.078 0.108 0.059

σ 2
M –0.022 –0.016 0.026 –0.015 0.021

σ 2
P 0.231 0.235 0.022 0.228 0.011

h 2 0.43 0.50 0.28 0.48 0.24

(c) Directly modelled parameters; ovary mass

σ 2
s 2 251 235 222 213

σ 2
d 842 837 268 778 255

σ 2
e 1985 1989 183 1961 170

(d) Derived parameters; ovary mass

σ 2
A 10 1004 942 886 853

σ 2
M 626 586 411 557 395

σ 2
P 3047 3078 310 2960 340

h 2 <0.01 0.32 0.276 0.30 0.28

SD = standard deviation; REML = restricted maximum likelihood; SE = standard error.

σ 2
e = 0.189. This yields similar estimates of herit-

ability to the parameter values we obtained from
the Bayesian implementation (Table 14.1, Figure
14.1). However, inference of statistical uncertainty
in the frequentist parameter estimates is much
more challenging (see also Section 14.1); software
may calculate normal approximations of standard
errors (SEs) automatically, but normal approxima-
tions to the sampling distribution do not necessarily
have sensible interpretations. The basic mechanics
require that we obtain an estimate of the sampling
variance–covariance matrix of the parameters (i.e.
the variances about the estimates of σ 2

s , σ 2
d , and σ 2

e ,
and the covariances between each estimate). This
is obtainable from the model fitted in ASReml-R
(with some difficulty; ASReml-R returns the inverse
of the average information matrix, which is a key

parameter in the algorithm that ASReml uses to
solve mixed models, for parameter estimates that
are subject to internal scaling. We do not dwell
here on the scaling, but we have done it). The
sampling variances of the estimates of the vari-
ance components are σ 2

A: 0.0034, σ 2
M: 0.0004, and

σ 2
P : 0.0001. We can obtain the sampling variance–

covariance matrix of the derived parameters σ 2
A and

σ 2
p by Aσ xAT, where σ x is the variance–covariance

matrix of σ 2
s , σ 2

d , and σ 2
e , and A contains the coef-

ficients describing the linear combination of the
estimated parameters that is required for deriva-
tion of the parameter of interest. Thus, A =

(
4 0 0
1 1 1

)
,

specifying the additive genetic variance as four
times the sire variance plus zero times each of
the other variances, and specifying the phenotypic
variance as the sum of all variance components.
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The sampling variance of the estimated heritab-

ility is approximately (
√

σ2[σ2a ]

σ2p
)2 + (−σ 2

a

√
σ2[σ2p ]

(σ2P )
2 )2 +

2σa,p
√

σ2[σ2a ]

σ2p
(

−σ2a
√

σ2[σ2p ]

(σ2p )2
), where σ 2[x] represents the

sampling variance (SE2) of x. As such, the SE (square
root of the sampling variance) of σ 2

A is 0.059 and the
SE of the heritability is 0.24, for pronotum length
(Table 14.2).
The tediously derived normal approximations to

the sampling errors of the genetic variances and
heritabilities of pronotum length and ovary mass
are plotted with the posterior distributions of the
Bayesian parameter estimates in Figure 14.1. Both
approaches to making inferences about parameter
values, and to obtaining information about how
confident we can be about those inferences, tell us
about the same thing. The data available suggest
that the heritability of pronotum length is around
0.5, and that the heritability of ovary mass is prob-
ably lower. Also, both approaches suggest that our
confidence that the real parameter values associated
with both traits are close to our best inferences is
weak. This is simply a result of the modest sample
size.
The consideration of the full posterior distribu-

tions of parameters of biological interest that one is
more inclined to do after application of a Bayesian
analysis is quite useful. First, whilst it must be kept
in mind that there are important ways in which a
given posterior distribution may be influenced by
model structure and prior specification (in addi-
tion to the data), a Bayesian posterior distribution
is more interpretable as a complete representation
of the statistical support for a given parameter
having a given value. Where data are scarce, as
is often the case for traits of ecological interest
in wild populations, consideration of the full pos-
terior distribution can lead to much more statistic-
ally sensible interpretations than might otherwise
be made. For example, one might conclude that
‘the most probable values of VA and h2 of cricket
ovary mass are very low’, but at the same time
one should note that ‘high values of VA and h2 of
cricket ovary mass cannot be ruled out’. This lat-
ter component of the interpretation is key because
there is appreciable density of the posterior distri-
bution at high values of the genetic variances and

heritabilities, even if the most probable values are
lower.
There are also important differences between

the two approaches to assessing uncertainty. First,
the Bayesian posterior distribution is exact, given
the priors, the data, and the model construction
(although the MCMC implementation is an approx-
imation, we expect it to yield the ’true’ shape of the
distribution). The frequentist approach we took to
obtain SEs from the REML analysis is very funda-
mentally approximate. There is no need to dwell on
the specific formulae applied, but the formula for
the sampling variance is a very standard approx-
imation, and more importantly, the whole process
of obtaining the REML SEs assumes that sampling
error of the directly estimated and the subsequently
derived parameters, i.e. σ 2

s , σ
2
d , and σ 2

e , and then σ 2
A,

σ 2
P and h2 are normally distributed. This assump-

tion is of course fundamentally untrue, since normal
distributions give non-zero density to all real val-
ues, whilst variance components are bounded at
zero and heritability is bounded at zero and one.
Furthermore, derivation of parameters such as σ 2

A,
σ 2
P and h2 is very simple, and more complicated

parameters that we might be interested in model-
ling will be totally intractable outside of a Bayesian
context.
By roundabout means, we have obtained our

first important message about the Bayesian quant-
itative genetic analysis of natural populations.
Transformations of posterior distributions of dir-
ectly modelled parameters yield valid posterior dis-
tributions of derived parameters. This is a powerful
and practical feature of Bayesian analysis. However,
it can also be dangerous. The details of how amodel
is specified, including prior specification, can have
substantial and even dramatic influence both on
directly modelled parameters and on derived para-
meters (for a discussion of the importance of priors,
see Box 14.2).

14.2.3 Alternate model specifications:
‘customising’ the sire model, and enter
the animal model

Inspection of the parameter estimates from the sire
model reveals two incongruous results. First, there
is non-zero posterior density (i.e. some statistical
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Box 14.2 Prior distributions

One of the most problematic issues for new users of Bayesian
inference is to deal with priors. This is for two reasons: first,
one might think that we are not allowed to have prior know-
ledge before analysing the data; second, one can struggle
to find which prior is the more sensible for one’s analysis.
Although a full Bayesian analysis includes constructing priors
from previous experience, it is not the most popular practice
because it requires that previous data exists, and objective
rules to construct prior distributions from them.
Common practice is to seek analyses that have only weak

prior influence, by seeking non-informative prior dis-
tributions, which in some cases can include flat priors
assigning every event the same probability or diffuse or
vague priors which are also very flat due to low pre-
cision (commonly: Gaussian prior with huge variance for
fixed effects). The idea of weakly informative priors may

be a more generally useful concept (Gelman et al. 2008).
However, regardless of prior specification, it is good practice
to check the sensitivity to the prior distribution, by run-
ning several concurrent priors and checking their influence
on the posterior distributions. An example of prior sensitivity
analysis applied to heritability is presented in de Villemereuil
et al. (2013) Appendix B.

It is impossible to provide simple and general advice
to beginner Bayesian analysts, but here are a couple of
hints. Especially when using BUGS (or JAGS) one would
be well advised to read Gelman (2006), as it is espe-
cially useful for understanding prior influence on variance
components. If conducting quantitative genetic analyses of
modest datasets using MCMCglmm (Hadfield 2010), it will
be useful to consult the documentation for information
about ‘parameter-expanded priors’ for variance components.

support) for values of heritability that exceed one
(Figure 14.1) for both traits. Second, the dam vari-
ance is less than the sire variance (Table 14.1).
Neither of these makes biological sense (in the lat-
ter case, assuming paternal effects are absent or
are much smaller than maternal effects), and both
occur despite the fact that the sire and dam sources
of phenotypic variance have very simple biological
interpretations. Being a proportion, heritability can-
not exceed one; and the dam variance is the sum
of genes and environments of mothers, and neither
of these is likely to cause full sibs to resemble one
another less than at random (assuming that unmod-
elled processes such as varying maternal allocation
with birth order, or asymmetric sibling competition
are not happening). However, the mixed model is
blind to the biological interpretations, and since we
have specified it in a way that the sire variance
can exceed one quarter (which is not biologically
meaningful as Vsire = 1

4VA, and VA ≤ VP) of the
phenotypic variance, and where the dam variance
does not have a lower bound at the sire vari-
ance, the curious outcomes are not mathematically
unsound.
If we have prior belief that we have conducted

our analysis appropriately with regard to the inter-
pretation of the sire and dam variances, we can
reparameterise the sire model to reflect this belief.

The statistical parameters that we directly modelled
pertain to the variation associated with dam, sire
and individuals. We can redefine these in terms of
how the biologically interesting parameters about
different sources of variation must be related to one
another by

σP ∼ U(0, σbig) (14.4a)

h2 ∼ U(0, 1) (14.4b)

ωd ∼ U(0, 1) (14.4c)

σs =
√

h2σ2P
4

(14.4d)

σd =
√

h2σ2P
4 + ωd(1 − h2)σ 2

P
(14.4e)

σe =
√

σ 2
P − h2σ2P

2 − ωd(1 − h2)σ 2
P

(14.4f)

For lack of a standardised symbol to denote the pro-
portion of the non-genetic phenotypic variance that
is attributable to maternal identity, we denote this
parameter ωd. Expressions 14.5a,b,c simply define
the biologically meaningful parameters as having
reasonable ranges. The heritability is some frac-
tion of the phenotypic variance, and the maternal
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variance is some fraction of the non-genetic vari-
ance. Eq. 14.5 simply translates these biologically
more sensible parameters into the parameters of the
sire model above. This small modification of the
sire model to improve biological interpretability is
straight-forward given available Bayesian MCMC
tools.
Another alternative parameterisation, and ulti-

mately one that is very valuable and general,
would be to directly model the process of inherit-
ance of a multivariate trait, rather than modelling
dam and sire effects, knowing that they repres-
ent some fraction of the genetic variation. This is
the approach taken by the ‘animal model’. In the
animal model, variances associated with parental
effects are replaced with a direct model of the
effects of an individual’s genes, i.e. a model of
variation in breeding values. A breeding value is
defined as twice the expected deviation of an indi-
vidual’s offspring’s phenotype from the population
mean. More intuitively, it can be thought of as the
sum of the effects on an individual’s phenotype
of the genetic variants carried in that individual’s

genome. Specifically, an individual’s breeding
value is

ai ∼ N
(adi + asi

2
,
σ 2
A

2

)
(14.5)

i.e. an individual’s expected breeding value is the
mean of the breeding values of its parents, and its
realized breeding value comes from a distribution
with a variance that is half the additive genetic vari-
ance in the population. This additional variance is
the segregational variance—it can be thought of as
reflecting the fact that full siblings are not identical,
i.e. full sibs differ in their particular proportional
composition of grandparental alleles at different
points in their genome, because of the segregation
of these alleles into gametes that occurred in their
parents. The animal model can still account for
maternal effects: we include a dam effect as in the
sire model (Eq. 14.1); but this effect is now directly
interpretable as the non-(direct) genetic component
of the maternal effect, because the genetic compon-
ent is represented in Eq. 14.5.
Implementing the animal model in BUGS code can

be relatively easy:

1 model{
2 #priors
3 mu∼dnorm(0,0.001)
4 sigma_a∼dunif(0,sigma_big)
5 sigma_m∼dunif(0,sigma_big)
6 sigma_e∼dunif(0,sigma_big)
7
8 #random effects
9 for(j in 1:N_d){
10 a_d[j]∼dnorm(0,1/sigma_aˆ2)
11 m_d[j]∼dnorm(0,1/sigma_mˆ2)
12 }
13 for(k in 1:N_s){
14 a_s[k]∼dnorm(0,1/sigma_aˆ2)
15 }
16
17 #data
18 for(i in 1:N_i){
19 a_i[i]∼dnorm((a_d[dam[i]]+a_s[sire[i]])/2,1/(0.5*sigma_aˆ2))
20 y[i]∼dnorm(mu+a_i[i]+m_d[dam[i]],1/sigma_eˆ2)
21 }
22 }
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The key lines are: 10, 11 and 14, where dams
and sires are given genetic and non-genetic values
sampled from normal distributions with estimated
variances on lines 4 and 5; line 19, where offspring
breeding values are modelled based on the mid-
parent breeding value and the segregational vari-
ance following Eq. 14.5; and line 20, where offspring
phenotypes are modelled based on the population
mean, genetic and maternal effects, and the residual
variance.
The posterior distributions of heritability and

variance components for cricket pronotum length
based on the sire model, the constrained sire
model, and the animal model are shown in Figure
14.2. These distributions are all obtained from an
identical dataset, with identical sets of assumptions
for modelling the relationship between resemblance

of relatives and genetic variation, i.e. the infinites-
imal model (Chapter 2, Postma; Falconer & Mackay
1996). In analysis of data from single generation, the
animal model uses no more information about the
genetic basis of variation than does the sire model.
This is because variation due to maternal genes, and
variation due to maternal identity are perfectly con-
founded in a single generation study. Thus, a closer
look at the differences in the posterior distributions
of the parameter estimates in Figure 14.2 provides
an opportunity to better understand themodels that
we have implemented.

Two aspects of the posterior distribution of the
heritability of pronotum length differ between the
original sire model, and the constrained sire model
and the animal model. In the first, there is non-zero
posterior density at values greater than one, and
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Figure 14.2 Posterior distributions of variance components for cricket pronotum heritability. Black lines represent estimates made with a sire
model (as per Eqs. 14.1–3), red lines represent estimates made with a constrained sire model (reparameterisation following Eq. 14.4), and blue
lines represent estimates made with an animal model (additive genetic effects directly modelled following Eq. 14.5). The residual variance in a sire
model includes segregational variance, whilst it does not in an animal model; the dotted blue line shows the posterior distribution of the sum of the
residual and the segregational variance.
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the heritability estimates (and the estimates of the
genetic variance) are lower in the latter two. The
zero density for values of heritability greater than
one is due to biologically reasonable structural con-
straints specifically built into the constrained sire
model and inherent in the animal model. However,
the lower estimates of σ 2

A and h2 do not necessar-
ily reflect a shift in the posterior distributions to
the left. Rather, because of the different structures
of the models, more information is coming into
play. Because the reparameterised models expli-
citly include information about maternal identity in
the terms that we relate to genetic variation, and
because maternal sibs covary less than paternal sibs
(as discussed above, this does not have a simple
biological interpretation, but even with the more
biologically interpretable models, σd<σs remains
a property of the data), this lower covariance of
maternal sibs results in inference of lower genetic
variation.
The final very noticeable difference among the

models is that the constrained sire model has a
much narrower posterior distribution of the resid-
ual variance than the other models. This occurs
despite the fact that the constrained sire model and
the animal model have similar posterior distribu-
tions for all of the other parameters. The reason
is simple: in the sire model, genetic variance is
derived represented by the sire effect, but only in
one quarter proportion—the rest is in the resid-
ual; whereas in the re-parameterisations, the genetic
variance is fully attributed to the parents, and so
in no part represented in the residual. In these
relatively simple models, this does not complicate
the implementation or interpretation of the mod-
els. However, in other analyses, sampling correla-
tions (i.e. non-zero expected error in the estimate of
one parameter, given error in another) can become
important considerations. We will not dwell on this
beyond pointing it out as one of the ways in which
simple alternative model parameterisations to ana-
lyse the same data can have different properties.
A main take home point from this section is that

different model parameterisations can be important
for allowing models to be constructed with struc-
tures that reflect either classical statistical models,
or biological parameters, to a range of different
degrees. Sometimes, this is essentially a matter of

setting up the priors on the model in different
ways. For example, deriving a sire variance from
a phenotypic variance, a heritability, and a know-
ledge that variation due to sires represents one
quarter of the additive genetic variance, can be
seen as different specifications of the priors: essen-
tially, the constrained sire model reflects the abso-
lute prior belief, i.e. a very strong prior belief, that
the heritability cannot exceed one. In other situ-
ations, different ways of setting up a model might
be viewed more as a different model, rather than as
re-parameterisations. In our simple example, ana-
lysing a quantitative genetic breeding experiment
with a single generation of data, the animal model
can be thought of either as a reparameterisation of
the constrained sire model, or it can be seen as a dif-
ferent model. In a general pedigree with multiple
generations, the animal model would fundament-
ally make use of more data than a sire model, and
so would in fact be a different model beyond prior
specification. From a practical perspective in our
example analysis, though, the difference is unim-
portant. The message is the flexibility of Bayesian
models, given the availability of tools such as the
BUGS language.

14.3 Bayesian quantitative genetic
analysis of natural populations:
the present and beyond

14.3.1 Quantitative genetic analysis
of non-normal quantitative traits

Of the current problems in evolutionary quantit-
ative genetic analysis that will be most fruitfully
pursued with the Bayesian toolkit, the analysis
of non-normal traits is currently most developed.
Traits of evolutionary and ecological significance
can take a wide range of statistical distributions,
such as binomial, exponential, Poisson (see for
example Kruuk et al., this volume) or gamma dis-
tributions. Furthermore, trait distributions may be
censored, truncated or zero-inflated. The analysis of
variation in non-normal traits falls into the Bayesian
realm largely by default. Non-Bayesian approaches
for fitting generalisedmixedmodels are not yet well
developed, as they need to explicitly calculate, or
accurately approximate the likelihood, which can
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be extremely tricky when for non-normal distri-
butions of response variables (Bolker et al., 2009).
The Bayesian framework has the advantage of the
MCMC algorithm (see Box 14.1), which is one of
the most adaptable estimation algorithm of current
statistics. In theory, as long as one can sample from
a distribution (even ‘exotic’ ones like t-distribution,
or censored or zero-inflated ones), MCMC can be
used to sample a Bayesian model. As we saw in the
first part of this chapter, the flexibility of Bayesian
MCMC-based methods can be a great advantage,
leading one to Bayesianism as much due to flexibil-
ity as due to philosophy. Here we highlight the use
of BayesianMCMC for quantitative genetic analysis
of the types of non-normal data that are often of par-
ticular interest in realistic ecological scenarios (e.g.
survival, fecundity).
The generalised animal model assumes a hypo-

thetical latent trait θ , which is normally distrib-
uted and leads to the observable non-normal trait
y through a ‘link function’ g. The model assumed
for θ is identical to a ‘classical’ animal model

θ = µ + a+ e (14.6a)

a ∼ N(0,Aσ 2
A) (14.6b)

e ∼ N(0, Iσ 2
R) (14.6c)

whereA is the relatedness matrix (generally derived
from a pedigree). Letting y follow any distribution,
noted π , which has parameters g−1(θ ) and ϕ, we can
write

y ∼ π (g−1(θ ),ϕ) (14.7)

Note that ϕ is often just a ‘nuisance’ parameter (for
example the data dispersion parameter for a negat-
ive binomial distribution), in which we have little
interest. Note that with this model, the data have
a dispersion linked to the π distribution used, and
that σR is in fact an ‘overdispersion’ parameter.
For example, for a Poisson distribution (hereafter

noted P), we will define Eq. 14.8 as

y ∼ P(log−1(θ )) ⇐⇒ y ∼ P(exp(θ ))
(14.8)

using the canonical logarithm link function for
the Poisson distribution. Note that no specific
dispersion parameter ϕ (beyond over dispersion,

or the variance in e in Eq. 14.6c) is typically
applied in the case of the Poisson responses:
the variance is equal to the mean for a Poisson
distribution.

In addition to statistical convenience, a model
such as defined above is very often justifiable,
or even desirable, on biological grounds. The lat-
ent trait θ represents the additivity of many small
sources of variance, including additive genetic
effects, as assumed by the infinitesimal model and
most of its quantitative genetic applications. Eq.
14.7, however, may be somewhat more arbitrary, in
the sense that the link function may be merely a
transformation that will be consistent with the dis-
tribution of our data, with often little attention to
a biological justification. However, sometimes the
link function will make good biological sense as
well, for example the logarithmic link function for
a Poisson trait implies multiplicative effects on the
data scale, which may often be natural for skewed
count variables.

A further advantage of the model defined above
is that it is easily expanded to be multivariate.
Indeed, since Eq. 14.6 is defined just as a non-
generalised animal model, the multivariate version
would be just as easily defined for each latent trait
θk. Then, each θk can be independently transformed
into the biological trait yk via Eq. 14.7. Thus, a mul-
tivariate version of this model allows us to estimate
the genetic correlation between several traits hav-
ing different data distribution (for example a binary
and a Gaussian trait). For the sake of simplicity
and conciseness, we will continue with a univariate
model.

When using the generalised animal model to
study a quantitative trait, one question arises: on
which ‘scale’ do you want to estimate the heritab-
ility? Indeed, regarding Eqs. 14.6 and 14.7, we have
three ‘traits’ on which we can calculate heritability:
the data scale y obviously, but also the latent (or lin-
ear predictor) scale θ and the link scale g−1(θ ). Each
case can be justified: measuring the heritability on
the data scale yields the most biologically sensible
measure, but with the drawback that it will strongly
depend on the distribution of the trait (it does not
allow for comparison between Poisson and bino-
mial traits, for example). Because one of the major
interests in quantifying heritability lies in its ease for
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comparison between traits, it is rarely measured on
this scale.
How does one calculate heritability on the differ-

ent scales? On the data scale, there is actually no
easy way to calculate heritability, since we need to
have access to the additive genetic variance on this
scale, which is not the same as the one on the other
scales. The calculation of heritability on the latent
scale is however pretty straightforward:

h2θ = σ 2
A

σ 2
A + σ 2

R
(14.9)

In order to calculate the heritability on the link scale,
we need to take into account the additional variance
due to the link function:

h2
g−1(θ )

= σ 2
A

σ 2
A + σ 2

R + σ 2
link

(14.10)

Note that, in the case of the above formulated
model, the therm σ 2

R can be seen as an additive
overdispersion parameter (the true residual dis-
persion being the link-specific variance). Neither
scale of calculation of the heritability is either right
or wrong. Heritability on the link scale if often
sought (e.g. Nakagawa & Schielzeth, 2010; 2013;
although the authors use the term ‘latent scale’ for
the here-defined link scale), and may be most nat-
ural in many circumstances. To avoid confusion,
explicit reporting of formulae used to calculate her-
itabilities in any particular study will be highly
desirable.
We illustrate the study of non-normal traits with

the special case of binary traits (such as pres-
ence/absence of a character or dichotomous beha-
viors like allo-/philopatry). We chose binary traits,
because they are both a common and a quite diffi-
cult type of non-normal trait data, the main issue
being the fact that a binary data point conveys
little information (because it can only be 0 or 1).
Dichotomous phenotypes do not always have a
simple Mendelian genetic source, but may be (and
most of the time are) the product of a large number
of quantitative trait loci. In this case, they fall in the
domain of quantitative genetics. The usual model
for this kind of traits is the so-called ‘threshold
model’, in which an underlying trait is normally
distributed and a threshold is set to separate the
dichotomous phenotypes (see Figure 14.3). In a

Alternative
phenotype

Threshold

`Normal´
phenotype

Latent trait θ

Figure 14.3 A threshold trait is assumed to be produced from a
threshold effect depending on the value of the latent trait θ : when θ is
below the threshold, the expressed phenotype would be the ‘normal’
one; when θ is above the threshold, the expressed phenotype would
the ‘alternative’ one.

generalised mixed model context, we assume for
these traits a normally distributed latent trait θ

and a binomial distribution for the actual binary
trait:

y ∼ B(probit−1(θ )) (14.11)

where B is the binomial distribution and the link
function used is the probit function1. Note that, in
this case, the transformation has a straightforward
biological meaning. Indeed, when Wright (1934)
first introduced the threshold model, he called the
latent trait ‘liability’ with the idea that when this
liability was too high (too many deleterious muta-
tions), then the ‘alternative’ phenotype, which he
considered as the ‘sick’ one, was expressed.
For the sake of comparison between models, the

heritability is often estimated on the link scale:

h2 = σ 2
A

σ 2
A + σ 2

R + σ 2
link

= σ 2
A

σ 2
A + 1 + 1

(14.12)

When using binary data, the (overdispersion) resid-
ual variance σ 2

R in Eq. 14.6 is not identifiable.

1 Defined as the cumulative density function of a stand-
ard normal distribution and, in practice, close to the canonical
logit link. The choice of a probit link function is to ensure the
continuity with the usual threshold model, which assumes a
Gaussian distribution for the ‘liability’.
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Table 14.2 Comparison of σ 2
A and h 2 estimates for a model with

residual variance σ 2
r fixed to 1 or 2. A probit link was used in the

model; thus the heritability is calculated as h 2 = σ 2
A

σ 2
A+σ 2

R +1

Fixed σ 2
R σ 2

A h2

1 2.00 (0.83) 0.53 (0.080)
2 2.96 (1.07) 0.497 (0.076)

Indeed, binary data cannot be ‘overdispersed’ in the
sense that their variance is solely defined by the
proportions p and 1 − p of each phenotype: V(y) =
p(1 − p). Thus, the total phenotypic variance is con-
strained for binary data. Therefore, we can estimate
σ 2
A for a given σ 2

R, but not both at the same time.
Is this a problem? For a unique simulated data set
(h2 = 0.5 and 1000 individuals), we compared the
MCMC outputs with residual variance fixed to one
or two during the estimation process. The results
(Table 14.2 ) show different estimated values for σ 2

A,
but consistent results for h2 (remember that both
estimations are on the same data set). Indeed the
actual estimated parameter in these models is more
the intra-class coefficients which is a class of coeffi-
cients the heritability belongs to. Thus the estimate
of h2 is invariant to the arbitrarily chosen fixed
value for σ 2

R.
You don’t necessarily need Bayesian tools to fit

this kind of model. Approximate solutions can be
obtained, for example, with the software ASReml
(Gilmour et al., 2006). However, when this kind of
model is fitted outside of the Bayesian approach,
the likelihood is too complex to be easily com-
puted. Thus, two different workarounds are used:
i) first consider the binary trait as normally dis-
tributed, estimate the heritability using REML, then
use a correction (hereafter called corrected REML
(REMLc); see Dempster & Lerner, 1950; Lynch &
Walsh, 1998); or ii) approximate the likelihood, for
example by using penalized quasi-likelihood (PQL;
Breslow & Clayton, 1993). de Villemereuil et al.
(2013) presented a study of the difference in distri-
bution of estimates between these two frequentist
and a Bayesian (MCMC) estimation method, based
on simulated datasets. Simulations consisted of
1000 replicates of pedigrees and data, for each scen-
ario. Each scenario consisted of one of three true

levels of heritability (0.5, 0.3 or 0.1) and two levels
of sample size (n = 1000 and n = 200). As illus-
trated by Figure 14.4, the PQL estimates are very
biased (underestimation of the heritability). This
is a known result for binary traits (Goldstein &
Rasbash, 1996). TheMCMC is a bit more biased than
REMLc for small sample size, but is also more pre-
cise. The MCMC estimation method is here biased
for small sample size because it becomes too sensit-
ive to the particular form of prior used in this study
(which was a bit informative; see Box 14.2 on prior
sensitivity). Is the high imprecision of the REMLc
an issue for estimating heritability? After all, if
the standard error and the confidence interval are
correctly calculated during the estimation process,
we should prefer a non-biased estimator, such as
REMLc. However when we calculate the coverage2

associated with confidence intervals for REMLc
and their Bayesian equivalents (credible intervals;
CI) for MCMC, we see that MCMC has a better
coverage (Figure 14.5, values should lie closely to
95%). Thus, REMLc is altogether imprecise and very
confident around its estimation, which is a bad
combination.

Bayesian estimation methods (and especially
MCMC) are very useful for the study of non-
Gaussian traits for two main reasons: i) the MCMC
algorithm is flexible enough to allow for almost any
kind of distribution to be used as data distribution;
and ii), the behaviour of the estimates is always ‘cor-
rect’ according to the model and the prior used (no
asymptotic assumptions or approximations have to
be made), which means that SEs and associated
credible intervals are always a relevant estimation
of the imprecision of the estimate3. However, as
we saw with the binary example, the other side
of the coin is that we should be very cautious
with the choice of the prior, since for small sample

2 The coverage is the proportion of time the confidence
or credible interval contains the true value of the estimated
parameter (here the heritability). The expected coverage cor-
responds to its nominal value, e.g. 95% for 95% confidence
interval.

3 Again, this is ‘according to the prior’, which means that
a prior too informative might lead to overconfidence in the
estimates; but for a Bayesian this is relevant: if you already
are quite certain a priori of the results, then you’re pretty
confident on the estimates you get.
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Figure 14.4 Comparison of the heritability estimates distributions for three estimation methods in a simulation study: REMLc, PQL and Bayesian
MCMC. Lines show the average value for estimates, boxes show the interquartile interval and whiskers show 95% interquantile interval.
Distributions are given for three levels of heritability (0.5, 0.3 and 0.1) and two sample sizes (1000 or 200 individuals).

size, it can have an effect on bias and precision of
the estimate (more on this in de Villemereuil et al.
(2013), Appendix B; Gelman (2006) also provides a
useful discussion of the effects of priors for variance
components).

14.3.2 Combining quantitative genetic
and evolutionary inference

Evolutionary problems, as they play out under
real ecological conditions, are inherently complex.
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Figure 14.5 Coverage for frequentist REMLc and Bayesian MCMC methods in a simulation study. PQL is not shown, because its coverage is null.
Heavy colored bars are for the large sample size (1000 individuals) and light colored bars are for the small sample size (200 individuals).

Consequently, even simplified empirical models
will often have to account for more than one pro-
cess in order to be useful. Bayesian analysis can
greatly facilitate the simultaneous evaluation of
multiple models, essentially allowing the researcher
to break complex problems down into simpler hier-
archical levels or ‘modules’. In this section, we
describe a hierarchical modelling (HM) approach to
carry out inference in quantitative genetics. As an
example, we illustrate how to calculate the herit-
ability of survival for free–ranging populations in
which individuals cannot exhaustively be seen or
captured (Lebreton et al. 1992; Gimenez et al. 2008).
Note that survival is intrinsically a non-normal trait
and most of the material presented in the pre-
vious section applies here. This section is based
on work by Papaix et al. (2010). In practice, we

show how the HM framework allows combining a
capture–recapturemodel to estimate survival whilst
accounting for imperfect detection and an animal
model to make the decomposition of variance in
survival.

Hierarchical modelling (HM) is a powerful
approach for analysing complex biological phenom-
ena (Royle & Dorazio 2008; Cressie et al. 2009; Buoro
et al. 2012). One of the most useful applications of
HM is when observed data are influenced both by
biological processes (e.g. survival probability) and
and observation processes (e.g. capture probability).
In such a case, a HM can be defined according to
three levels: the data at hand Y, the underlying pro-
cess of interest X and the parameters governing this
process. The process X has some distribution gov-
erned by a set of parameters θX and is generally
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not directly or fully observable, e.g. due to issues
of detectability or measurement error. Data Y have
some distribution that depends on the process X
and on a set of parameters θY governing the rela-
tionship between Y and X. HM allows modelling
the randomness both in the data and in the underly-
ing process via the joint conditional distribution of
Y and X given the set of associated parameters θY
and θX:

p(Y,X| θX, θY) = p(Y| X, θX) × p(X| θX) (14.13)

where p(A|B) stands for the probability ofA given B.
This HM formulation is generic and covers a wide
variety of models, including so-called state-space
models when the process of interest X has a tem-
poral dynamic (e.g. Gimenez et al. 2012). HM offers
a clear distinction between the biological process
and its observation, and so it allows a focus on the
former while accommodating uncertainties in the
latter.
As an example of HM, let us consider the

estimation of survival in capture–recapture mod-
els, with the aim of making inferences about the
genetic control of variation in survival probability.
In free-ranging populations, individual detectabil-
ity is often less than one. This issue generates data
generally collected in the form of 1s and 0s cor-
responding to a detection or not of I individuals
over T sampling occasions. HM has been proposed
as a flexible framework to deal with such capture–
recapture data (Rivot & Prevost 2002; Gimenez et al.
2007; Royle 2008).
In this example, the process X is a binary ran-

dom variable which represents the demography,
with Xi,t = 1 if individual i is alive and available for
detection at time t and 0 if it is dead. If individual
i is alive at time t− 1, it survives until time t with
survival probability φi,t or dies with a probability
1 − φi,t; in other words,

p(Xi,t| Xi,t−1,φi,t−1) = Bernoulli(Xi,t−1 × φi,t−1)
(14.14)

Here, survival probability plays the role of θX in
Eq. 14.13. Now the data Y is a binary random vari-
able, with Yi,t = 1 if the individual i is detected at
time t and 0 otherwise. These observations are gen-
erated from the underlying demographic process,
which is partially hidden from the observer, since

when an individual is not detected, it is not pos-
sible to say whether it is alive or not. If individual
i is alive at time t, then it has a probability pi,t of
being encountered and a probability 1 − pi,t other-
wise; in other words, the link between survival and
the detection of individuals is made through the
observation equation:

[
Yi,t| Xi,t, pt

]
= Bernoulli(Xi,t × pt) (14.15)

Here, the detection probability (pt) corresponds to
the θY in Eq. 14.13.
We have now developed one module: a Bayesian

formulation of a simple version of the mark–
recapture problem. We can combine this with a
secondmodule containing an animalmodel to bring
in quantitative genetic inference based on simil-
arity of relatives. To do so, we follow what was
presented in Section 14.3.1. We assume that the ran-
dom survival process X is related to a continuous
underlying latent variable li,t, which, given Xi,t−1 =
1, satisfies:

Xi,t =
{
1 if li,t > κ

0 if li,t ≤ κ
(14.16)

for t = fi + 1, . . . ,T, where fi is the first time indi-
vidual i is detected, κ is a threshold value, and T
is the index of the last interval in time. We assume
that the so-called liability li,t is normally distributed
with mean µi,t and variance σe. To ensure identifi-
ability (because the residual variance of a Bernoulli
variable is entirely determined by the mean), and
without loss of generality, σe is set to 1 and κ to 0.
From this construction (see also Section 14.3.1),

we have

φi,t−1 = Pr(Xi,t = 1|Xi,t−1 = 1) = F(µi,t) (14.17)

where F is the cumulative function of a normal dis-
tribution with mean 0 and variance 1. Noting that
F−1 is the probit function often used to analyse bin-
ary data, we can specify an animal model on the
mean of the liability:

µi,t = probit(φi,t−1) = η + bt + ei + ai (14.18)

where η is a constant term for the mean survival
on the probit scale, bt is a random yearly effect
(i.e. year specific), ei is an individual random effect
which has no genetic basis and ai is the genetic
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value for individual i. Note that the random effect
ei is random among individuals, but not among
individuals at different time intervals, because this
level of residual variance would be unobservable,
i.e. totally confounded with the latent intercept for
a Bernoulli response. Covariates can be incorpor-
ated as fixed effects possibly affecting survival, e.g.
climate effects (Grosbois et al. 2008). We assume
that the temporal effect bt is normally distributed
with mean zero and variance σ 2

t , ei normally dis-
tributed with mean 0 and variance σ 2

e whilst the
distribution of a, the vector of the ai’s, is multivari-
ate normal with mean 0 and variance–covariance
matrix σ 2

AA, where σ 2
A is the additive genetic vari-

ance and A the additive genetic relationship matrix
(see previous sections). Heritability is calculated as
the ratio of the additive genetic variance to the total
variance:

h2 = σ 2
A

σ 2
t + σ 2

e + σ 2
A + 1

(14.19)

In order to completely specify the Bayesian
model, we provide prior distributions for all para-
meters. All priors can be selected as sufficiently
vague in order to induce little prior knowledge. For
the purposes of demonstration, we chose p ∼ U[0, 1]
and η ∼ N(0, 100). We assigned uniform distribu-
tions to the SD of the random effects, σt ∼ U[0, 10],
σe ∼ U[0, 10] and σA ∼ U[0, 10].

We illustrate this section by estimating the her-
itability of survival using data from a 29-year
study of individually marked blue tits (Cyanistes
caeruleus) monitored at Pirio, Corsica (see Papaix
et al. 2010 for more details). The data comprises a
total of 614 breeding individuals that were banded,
released and recaptured in spring during breeding
seasons between 1979 and 2007. The posterior dis-
tributions are displayed in Figure 14.6, and the res-
ulting summary estimates are presented in Papaix
et al. (2010). Detection probability p was high (p =
0.77, 95% CI: 0.71–0.82). Survival probability was in
agreement with what we were expecting for a small
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Figure 14.6 Posterior density distributions for parameters of the capture–recapture animal model used for the blue tit data. Notation: η is the
mean survival on the probit scale, probit−1(η) is the mean survival after back-transformation, σ2t is the variance of the yearly random effect, σ2e is

the variance of the non-genetic individual effect, σ2A is the additive genetic variance and h2 is the heritability.
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passerine. The additive genetic variance σ 2
A was low,

resulting in a low heritability h2 (Figure 14.6). The
environmental variance σ 2

t was moderate, suggest-
ing temporal variation in survival should not be
neglected.
Overall, one can see the HM implementation

of this capture–recapture animal model as simple
‘modules’ being run simultaneously: one module
is for the demographic process which is connec-
ted to an animal model to decompose variability
in survival; the other module is for the observation
process and is driven by the detection probabilit-
ies. Here, the flow of information is quite intuitive.
It is easy to see how longitudinal individual-based
data informs the inference of survival probabil-
ity, and how variation in relatedness provides the
basis for genetic inference. It is possible however,
and indeed relatively easy, to code arbitrary models
where the flow of information through the model
structure is not so obvious. Dangerous situations
arise easily if model complexity exceeds the intuit-
ivity of the flow of information. Prior information,
even if specified in a way that seems uninformat-
ive, can easily mask problems in multi-parameter
models (Lele 2010, and Lavine 2010, generally); it
is possible for innocuous priors to lead to apparent
high precision (marked peaks) in posterior distri-
butions of parameters for which there is actually
no information. Whilst we generally avoid technical
details here, it is worth noting that convergence
(the desirable situation where an MCMC algorithm
is collecting samples in the model’s true region of
highest probability density) can be difficult to dia-
gnose as well in complex models. The first line of
defence should be biological common sense: follow
the flow of information from the data through the
model to the parameters.

14.3.3 Towards comprehensive consideration
of uncertainty in complex evolutionary analyses

In many empirical studies, multiple statistical pro-
cedures are applied to a given dataset. Often the
outputs of some procedures serve as inputs for sub-
sequent statistical tests or mathematical procedures.
Consideration of statistical uncertainty, e.g. calcu-
lation of standard errors, and statistical hypothesis
tests are then often conducted assuming that inputs

to the very last statistical procedure represent error-
free (i.e. statistical sampling error) observations,
when in fact they are often themselves statistical
parameters or summary statistics that may only be
estimated with error. In general ‘doing statistics on
statistics’ will not thoroughly account for statistical
uncertainty in any but the last analytical proced-
ures, and so will lead to anticonservative statistical
inference. Furthermore, ‘doing statistics on statist-
ics’, even if the ‘statistics upon which statistics are
done’ are simple, i.e. means from multiple meas-
ures at some level of replication, can lead to very
severe statistical biases, even when the first steps of
statistical analysis seem to be very simple and prag-
matic procedures. In this subsection, we present
several illustrations of evolutionary quantitative
genetic studies (not all exclusively about estimat-
ing genetic parameters) where Bayesian approaches
have been demonstrated to provide robust analyses
in complex problems.
The previous section lays out one potentially

comprehensive way of avoiding ‘doing statistics
on statistics’. Bayesian methods will often facilitate
explicit combination of two or more simple mod-
els into one more comprehensive model of critically
related biological phenomena. More immediately
though, samples of posterior distributions of fitted
models obtained by MCMC methods have some
very convenient properties. They can represent a
complete description of (un)certainty of parameter
values, and the ways in which uncertainty in one
value correlates with uncertainty in another, given
the data, the model structure, and the prior spe-
cifications. This is a very convenient feature of an
applied Bayesian analysis.
A striking recent application in which consider-

ation of the full uncertainty greatly changed the
interpretation of a biological result was described
by Hadfield et al. (2010). Given a fitted animal
model, the predicted breeding values can be extrac-
ted. Several studies have extracted breeding val-
ues from animal model-based analysis of long-term
studies, and used them to describe features of the
genetics of those populations. A particularly inter-
esting application is to conduct a test of whether or
not mean breeding value has changed over time:
simply, the regression of breeding values on time
provides a test for microevolution.
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Figure 14.7 Animal model-based inference of
microevolution in Soay sheep on St Kilda. (a)
shows best linear unbiased predictions (BLUPs) of
breeding values of individuals born 1985 to
2005, and their regression on birth year. (b)
shows the same regression, but accounting for
the fact that each BLUP, i.e. each point in (a), is
not a known value, but rather an estimate with
uncertainty. Grey points show the BLUP for one
randomly chosen individual from each cohort,
with 95% CI. The line (with 95% CI of the
prediction, integrating over all uncertainty) is the
regression corresponding to that in (a); note that
this line represents a regression based on all
individuals, as in (a), the selection of a single
individual per cohort was conducted only for the
purpose of plotting. In this example, 18.9% of
the posterior distribution of the regression of
breeding value on time has a negative slope,
corresponding roughly to a two-tailed P value of
0.378. Note that Hadfield et al. 2010 considered
the regression of mean cohort breeding value on
time, and we consider the regression of individual
breeding value on birth year. The analyses are
similar but not identical; our alternative
presentation is presented to highlight uncertainty
in individual breeding values.

Figure 14.7 shows two regressions. Plot (a) shows
the regression of the predicted breeding value of leg
length of each Soay sheep (Ovis aries) from the ongo-
ing study on the island of Hirta, St Kilda, Outer
Hebrides, Scotland (Clutton-Brock & Pemberton
2004), born between 1985 and 2005. In plot (b), the
breeding value of a randomly selected individual
from each year is plotted with its associated 95%
CI for illustration, along with the regression over
all individuals in the population (the same line as
in plot a). This prediction interval in (b) contains
95% of the density of predictions from regressions
of breeding value on year, conducted for each of

1000 samples of the posterior distribution of the
same (Bayesian) animal model that was used to get
the breeding values in plot (a).

The difference between the two ascertainments of
uncertainty in the regression of breeding value on
year is very stark. In plot (a), the predicted breed-
ing values are taken to be known values, but as the
representative posterior distributions of breeding
value in plot (b) show, they are anything but known.
Furthermore, individuals that are alive in any given
year tend to be closer relatives to other individu-
als alive at that time, or around that time, than to
individuals that lived much earlier or later in the
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study. Therefore the very feature of the study that
allows genetic parameters to be estimated, the pedi-
gree, causes complex patterns of covariance both in
similarity among individuals, but also causes com-
plex patterns of uncertainty in the breeding values
of individuals. Integrating over the full posterior
distribution of the breeding values in the regression
of breeding value on time acknowledges all of the
complex patterns of uncertainty in breeding values.
More broadly, there is little tradition in quantit-

ative genetics of considering and reporting uncer-
tainty in estimates of many types of paramet-
ers. This is a little bit surprising, given that the
field is necessarily so fundamentally statistical.
However, it is also a natural result of the predom-
inantly frequentist methods that have dominated
the field, and the difficulties that can arise in even
approximately describing statistical uncertainty in
derived parameters (see Section 14.2.1). Parameters
for which SEs, or any other assessment of statist-
ical uncertainty, are rarely provided in quantitative
genetic studies include predictions of evolution-
ary trajectories based on the breeder’s or Lande
equations (Lande 1979), and descriptions of the geo-
metry of G-matrices (reviewed in Walsh & Blows
2009) such as the direction or length of Gmax (the
dominant eigenvector of the G-matrix), and the
constraints that G may impose on adaptive evol-
ution, as potentially described by evolvability and
respondability (Hansen &Houle 2008), or metrics of
constraint based on the effect of genetic correlations
on the rate of adaptation (Stinchcombe andAgrawal
2009). As meta-analysis becomes more important in
ecology, genetics, and evolutionary biology in gen-
eral, there will be an increasing need for estimates
of such parameters to be accompanied by metrics of
their uncertainty.
Teplitsky et al. (2011) inferred the extent to which

genetic correlations constrain the rate of adaptation
of breeding traits in barn swallows (Hirundo rustica),
and used Bayesian methods to evaluate the uncer-
tainty in their estimate. One of their goals was to
evaluate Agrawal and Stinchcombe ’s (2009) met-
ric of constraint due to genetic correlations, which
is defined as

R = +W̄G

+W̄I
(14.20)

where +W̄ is the change in population absolute fit-
ness due to one generation of response to selection,
and subscripts G and I denote the change in mean
fitness accounting for and discounting genetic cor-
relations, respectively. +z̄ is obtained in the stand-
ard way according to the Lande (1979) equation
+z̄ = Gβ, and the change in absolute fitness due to
evolution is +W(+z̄) = +z̄Tβ + 1

2+z̄Tγ+z̄ where β

and γ are vectors and matrices of directional and
quadratic selection differentials, respectively.
Clearly, R is a very useful statistic (see also

Chapter 12, Teplitsky et al.), as it boils down the
influences and interactions of multiple aspects of
genetic variation, covariation, and their complex
relationship with fitness, into a single statistic with
a straightforward evolutionary meaning. However,
the equations involved in obtaining R represent a
rather complex, if biologically highly interpretable,
transformation of estimates of genetics and selec-
tion, and critically, these estimates are all made with
error. Indeed, these estimates, i.e. genetic paramet-
ers and aspects of the phenotype–fitness map, are
some of the most notoriously difficult parameters
to characterise with precision in ecological studies.
Teplitsky et al. (2011) estimated all of the para-
meters using Bayesian mixed and ordinary linear
models, fitted using the R-package MCMCGLMM
(Hadfield 2010), and applied the calculation of R to
many effectively independent samples of the pos-
terior solution of mixed models characterising G, β,
and γ . The posterior distributions of each compon-
ent parameter of genetics and selection are shown in
Figures 14.8 and 14.9, respectively, and the posterior
distribution of R is given in Figure 14.10a.
Morrissey et al. (2012) conducted a similar exer-

cise to characterise the effect of genetic correlations
on the rate of adaptation of female life-histories in
red deer (Cervus elaphus). In their analysis, Bayesian
techniques allowed demographic theory to be com-
bined with quantitative genetic inferences in order
to simultaneously evaluate genetic and selective
parameters. As in Teplitsky et al. (2011), this allowed
inference to be made of the full posterior distri-
bution of R. The inference of R was remarkably
similar to that in barn swallows (Figure 14.10),
but somewhat less precise. Additionally, Morrissey
et al. (2012) calculated R under the assumption
of the phenotypic gambit, i.e. that phenotypic
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Figure 14.8 Posterior distributions of quantitative genetic parameters of breeding traits in Spanish barn swallows. Traits (top to bottom and left to
right) are standardised arrival date, delay before breeding, and clutch size. Diagonal plots are genetic variances, below and above diagonal plots
are genetic covariances and correlations, respectively. Posterior distributions are provided by C. Teplitsky from analyses reported in Teplitsky et al.
(2011).

patterns are substitutable for genetic patterns,
and showed that phenotypic correlations do not
reveal the influence of genetics on evolutionary
trajectories.
The evolutionary constraint metric R, and other

such parameters, are difficult to characterise with
certainty, and also are fundamentally paramet-
ers of particular populations at particular times
and places, and in particular ecological condi-
tions. Publishing the uncertainty in such metrics
will ultimately be necessary to facilitate robust
meta-analysis. In turn, meta-analysis will ultimately
allow inferences about the general importance of
different hypothesised processes, or the mean and
range of values of parameters that are difficult to

characterise, and that are specific to case studies.
In support of meta-analysis, standardised reporting
of features of posterior distributions will become
highly worthwhile. At the very least, it would be
useful if the SDs of the posterior distributions of
important parameters were more generally repor-
ted (slightly turning a blind eye to philosophy, these
may be used as SEs when implementing meta-
analyses). Future developments in meta-analysis
may allow the complexity of posterior distributions
of parameters in individual studies to be accom-
modated, and so reporting of posterior means,
modes, and quantiles (quartiles and 95% ranges
may be generally useful) may also eventually prove
beneficial.
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Figure 14.9 Posterior distributions of standardised selection gradients of breeding traits in Spanish barn swallows. Top and middle rows are (left
to right) directional and quadratic gradients for arrival date, delay before breeding, and clutch size. Bottom row (left to right) are correlational
selection gradients for arrival date and breeding delay, arrival date and clutch size, and breeding delay and clutch size. Posterior distributions are
provided by C. Teplitsky from analyses reported in Teplitsky et al. (2011).
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(b) Red deer

Figure 14.10 The influence of genetic correlations on the rate of adaptation of (a) breeding traits in Spanish barn swallows and (b) female
life-history traits in red deer. In (b), the blue function represents the posterior distribution of the constraint metric R, and the red curve represents R
calculated under the assumption that P is substitutable for G. The constraint metric R from Agrawal and Stinchcombe (2009) describes the
proportion by which genetic correlations change the rate of adaptation (increase of population mean absolute fitness) relative to the rate of
adaptation that would occur based on selection gradients and additive genetic variances if genetic correlations were zero. The posterior distribution
in (a) is provided by C. Teplitsky from analyses reported in Teplitsky et al. (2011).
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14.4 Conclusion

We hope that our first section’s work through a
simple problem highlighted some aspects of the
flexibility of Bayesian approaches and currently
available associated tools. Our sections on the cur-
rent applications of Bayesian methodologies are not
much more than scattered reports from the frontier
of the quantitative genetic analysis of wild popula-
tions. For example, Bayesian methods are also con-
tributing greatly to pedigree reconstruction, both
in judging uncertainties in pedigrees, and allow-
ing for complex patterns of missingness, whereby
sibling relationships can be inferred despite miss-
ing the genetic information from the parents. Both
of these desirable features of parentage analysis are
obtainable without Bayesian methods, but particu-
larly elegant Bayesian solutions have been provided
in the software packages MasterBayes (Hadfield
et al. 2006) and Colony2 (Wang 2004, Jones and
Wang 2009). Our theme, throughout both the initial
practical demonstration and the subsequent more
cutting-edge examples, that Bayesian tools provide
pragmatic ways forward in the complex realities of
nature, is motivated by a belief that there is much
more to come. Other areas where Bayesian methods
may provide further benefits for wild quantitative
genetics include:

(1) Incorporation of spatial and temporal structure.
Relatives may generally vary in space for non-
genetic reasons, and for reasons that may
not be entirely explainable with available data
(Stopher et al. 2012). Bayesian methods may
facilitate much more widespread incorporation
of spatial structure in quantitative genetic ana-
lyses of data from wild populations.

(2) Robust modelling. Data from natural populations
tend to contain many outliers. Bayesian meth-
ods can generally allow incorporation of very
general models of the distribution of any para-
meters, and this could include the use of thick-
tailed distributions where outliers may exist.
For example, t-distributions may generally be
usable where normal distributions are currently
more typical. Sorensen and Gianola (2002) dis-
cuss robust Bayesian quantitative genetic mod-
elling in some detail.

(3) More general models of the observation process.
Wild animals are notorious for moving around,
and this creates problems for wild quantitative
genetics beyond ascertainment of survival (as
discussed in Section 14.2). Reproductive success
is probably also generally underestimated in
nature, and models of the process of observing
reproduction (i.e. detectability of mating events
and offspring; uncertainty in pedigrees; infer-
ence of survival on non-breeders when breeders
are most easily censused) could be particularly
beneficial. This will be beneficial both for under-
standing the quantitative genetics of reproduc-
tion, and also, considering quantitative genetics
more broadly, for ascertainment of fitness in
analyses of the selection of quantitative traits in
nature.
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