using Turing, DifferentialEquations, StatsPlots, LinearAlgebra, Random
Random.seed!(2023);
# temporal
n_time_points = 100
tspan = (0, 100)
t_domain = range(tspan[1], stop = tspan[2], length = n_time_points)
0.0:1.0101010101010102:100.0
# define EDO
function logistic!(du, u, p, t)
r = p[1]
K = p[2]
@. du = r * u * (1 - u / K)
end
logistic! (generic function with 1 method)
# solve EDO
p_true = [0.1, 10.0]
u0 = [1]
prob = ODEProblem(logistic!, u0, tspan, p_true)
sol = solve(prob, Tsit5(), saveat = t_domain)
retcode: Success Interpolation: 1st order linear t: 100-element Vector{Float64}: 0.0 1.0101010101010102 2.0202020202020203 3.0303030303030303 4.040404040404041 5.05050505050505 6.0606060606060606 7.070707070707071 8.080808080808081 9.090909090909092 10.1010101010101 11.11111111111111 12.121212121212121 ⋮ 88.88888888888889 89.8989898989899 90.9090909090909 91.91919191919192 92.92929292929293 93.93939393939394 94.94949494949495 95.95959595959596 96.96969696969697 97.97979797979798 98.98989898989899 100.0 u: 100-element Vector{Vector{Float64}}: [1.0] [1.0946529911509022] [1.1970734426996166] [1.3076696377347283] [1.4268280248106984] [1.554901386510067] [1.6922009584219584] [1.8389865833825403] [1.9954459462012706] [2.161688889055803] [2.33773691342166] [2.5235089017333587] [2.71880617917435] ⋮ [9.987411858335232] [9.988622389787063] [9.98971887259961] [9.990710410412726] [9.991605771204895] [9.992413387293238] [9.993141355333503] [9.993797436320078] [9.994389055585977] [9.994923302802857] [9.995406931981] [9.995846361469324]
plot(sol)
length(sol) # nb of interpolation points
11
nb_sampling_point = 10
sol = solve(prob, Tsit5(); saveat = nb_sampling_point)
odedata = Array(sol) + 0.8 * randn(size(Array(sol)))
1×11 Matrix{Float64}: 1.08033 2.75114 4.53452 5.44553 … 9.33708 10.1415 11.5834 10.9851
length(sol)
11
size(odedata)
(1, 11)
# Plot simulation and noisy observations.
plot(sol; alpha = 0.3)
scatter!(sol.t, odedata'; label = "")
@model function fitlogistic(data, prob)
# prior for growth rate
r ~ Uniform(0,1)
# prior for carrying capacity
K ~ Uniform(5,15)
# prior for lik noise
sigma ~ InverseGamma(2,3)
# Simulate logistic model.
p = [r, K]
predicted = solve(prob, Tsit5(); p = p, saveat = nb_sampling_point)
# Observations.
for i in 1:length(predicted)
data[:, i] ~ MvNormal(predicted[i], sigma^2 * I)
end
return nothing
end
fitlogistic (generic function with 2 methods)
model = fitlogistic(odedata, prob)
DynamicPPL.Model{typeof(fitlogistic), (:data, :prob), (), (), Tuple{Matrix{Float64}, ODEProblem{Vector{Int64}, Tuple{Int64, Int64}, true, Vector{Float64}, ODEFunction{true, SciMLBase.AutoSpecialize, typeof(logistic!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}}, Tuple{}, DynamicPPL.DefaultContext}(fitlogistic, (data = [1.0803347028209778 2.7511439009477594 … 11.58337671678439 10.985141818577953], prob = ODEProblem{Vector{Int64}, Tuple{Int64, Int64}, true, Vector{Float64}, ODEFunction{true, SciMLBase.AutoSpecialize, typeof(logistic!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, SciMLBase.StandardODEProblem}(ODEFunction{true, SciMLBase.AutoSpecialize, typeof(logistic!), UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing}(logistic!, UniformScaling{Bool}(true), nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, nothing, SciMLBase.DEFAULT_OBSERVED, nothing, nothing), [1], (0, 100), [0.1, 10.0], Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}(), SciMLBase.StandardODEProblem())), NamedTuple(), DynamicPPL.DefaultContext())
# Sample 2 independent chains with forward-mode automatic differentiation (the default).
chain = sample(model, NUTS(), MCMCSerial(), 1000, 2; progress = true)
┌ Info: Found initial step size └ ϵ = 0.4 Sampling (Chain 1 of 2): 100%|██████████████████████████| Time: 0:00:00 ┌ Info: Found initial step size └ ϵ = 0.05 Sampling (Chain 2 of 2): 100%|██████████████████████████| Time: 0:00:00
Chains MCMC chain (1000×15×2 Array{Float64, 3}): Iterations = 501:1:1500 Number of chains = 2 Samples per chain = 1000 Wall duration = 3.34 seconds Compute duration = 3.05 seconds parameters = r, K, sigma internals = lp, n_steps, is_accept, acceptance_rate, log_density, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size Summary Statistics parameters mean std mcse ess_bulk ess_tail rhat ⋯ Symbol Float64 Float64 Float64 Float64 Float64 Float64 ⋯ r 0.0831 0.0079 0.0002 1106.0081 851.7571 1.0001 ⋯ K 10.7191 0.4572 0.0138 1149.4509 953.1858 1.0003 ⋯ sigma 0.8131 0.2172 0.0073 956.4978 995.1418 1.0003 ⋯ 1 column omitted Quantiles parameters 2.5% 25.0% 50.0% 75.0% 97.5% Symbol Float64 Float64 Float64 Float64 Float64 r 0.0696 0.0780 0.0825 0.0871 0.1010 K 9.8382 10.4214 10.7137 11.0033 11.6775 sigma 0.5207 0.6589 0.7751 0.9236 1.3292
plot(chain)
length(chain[:,:,2])
1000
plot(; legend=false)
posterior_samples = chain[[:r, :K]]
for p in eachrow(Array(posterior_samples))
sol_p = solve(prob, Tsit5(); p = p, saveat = nb_sampling_point)
plot!(sol_p; alpha = 0.1, color = "#BBBBBB")
end
# Plot simulation and noisy observations.
plot!(sol; linewidth=1)
scatter!(sol.t, odedata')
using Turing
using DifferentialEquations
# Load StatsPlots for visualizations and diagnostics.
using StatsPlots
using LinearAlgebra
# Set a seed for reproducibility.
using Random
Random.seed!(14);
# Define Lotka-Volterra model.
function lotka_volterra(du, u, p, t)
# Model parameters.
α, β, γ, δ = p
# Current state.
x, y = u
# Evaluate differential equations.
du[1] = (α - β * y) * x # prey
du[2] = (δ * x - γ) * y # predator
return nothing
end
# Define initial-value problem.
u0 = [1.0, 1.0]
p = [1.5, 1.0, 3.0, 1.0]
tspan = (0.0, 10.0)
prob = ODEProblem(lotka_volterra, u0, tspan, p)
# Plot simulation.
plot(solve(prob, Tsit5()))
sol = solve(prob, Tsit5(); saveat=0.1)
odedata = Array(sol) + 0.8 * randn(size(Array(sol)))
# Plot simulation and noisy observations.
plot(sol; alpha=0.3)
scatter!(sol.t, odedata'; color=[1 2], label="")
@model function fitlv(data, prob)
# Prior distributions.
σ ~ InverseGamma(2, 3)
α ~ truncated(Normal(1.5, 0.5); lower=0.5, upper=2.5)
β ~ truncated(Normal(1.2, 0.5); lower=0, upper=2)
γ ~ truncated(Normal(3.0, 0.5); lower=1, upper=4)
δ ~ truncated(Normal(1.0, 0.5); lower=0, upper=2)
# Simulate Lotka-Volterra model.
p = [α, β, γ, δ]
predicted = solve(prob, Tsit5(); p=p, saveat=0.1)
# Observations.
for i in 1:length(predicted)
data[:, i] ~ MvNormal(predicted[i], σ^2 * I)
end
return nothing
end
model = fitlv(odedata, prob)
# Sample 3 independent chains with forward-mode automatic differentiation (the default).
chain = sample(model, NUTS(), MCMCSerial(), 1000, 3; progress=false)
┌ Info: Found initial step size └ ϵ = 0.05 ┌ Info: Found initial step size └ ϵ = 0.025 ┌ Info: Found initial step size └ ϵ = 0.05
Chains MCMC chain (1000×17×3 Array{Float64, 3}): Iterations = 501:1:1500 Number of chains = 3 Samples per chain = 1000 Wall duration = 32.79 seconds Compute duration = 32.75 seconds parameters = σ, α, β, γ, δ internals = lp, n_steps, is_accept, acceptance_rate, log_density, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size Summary Statistics parameters mean std mcse ess_bulk ess_tail rhat e ⋯ Symbol Float64 Float64 Float64 Float64 Float64 Float64 ⋯ σ 1.1956 0.5937 0.2409 9.5768 75.9085 1.6641 ⋯ α 1.3888 0.1314 0.0470 9.7442 134.3824 1.6522 ⋯ β 0.9531 0.0972 0.0282 15.2170 80.9827 1.3103 ⋯ γ 2.4526 0.9556 0.3867 9.6552 110.7208 1.6632 ⋯ δ 0.8818 0.2356 0.0936 9.6099 73.4278 1.6633 ⋯ 1 column omitted Quantiles parameters 2.5% 25.0% 50.0% 75.0% 97.5% Symbol Float64 Float64 Float64 Float64 Float64 σ 0.7108 0.7653 0.8046 1.9535 2.1785 α 1.0802 1.2923 1.4404 1.4837 1.5503 β 0.7186 0.9091 0.9796 1.0176 1.0891 γ 1.0090 1.1603 3.0206 3.1626 3.4021 δ 0.4783 0.5939 1.0067 1.0570 1.1459
plot(chain)
plot(; legend=false)
posterior_samples = sample(chain[[:α, :β, :γ, :δ]], 300; replace=false)
for p in eachrow(Array(posterior_samples))
sol_p = solve(prob, Tsit5(); p=p, saveat=0.1)
plot!(sol_p; alpha=0.1, color="#BBBBBB")
end
# Plot simulation and noisy observations.
plot!(sol; color=[1 2], linewidth=1)
scatter!(sol.t, odedata'; color=[1 2])
@model function fitlv2(data::AbstractVector, prob)
# Prior distributions.
σ ~ InverseGamma(2, 3)
α ~ truncated(Normal(1.5, 0.5); lower=0.5, upper=2.5)
β ~ truncated(Normal(1.2, 0.5); lower=0, upper=2)
γ ~ truncated(Normal(3.0, 0.5); lower=1, upper=4)
δ ~ truncated(Normal(1.0, 0.5); lower=0, upper=2)
# Simulate Lotka-Volterra model but save only the second state of the system (predators).
p = [α, β, γ, δ]
predicted = solve(prob, Tsit5(); p=p, saveat=0.1, save_idxs=2)
# Observations of the predators.
data ~ MvNormal(predicted.u, σ^2 * I)
return nothing
end
model2 = fitlv2(odedata[2, :], prob)
# Sample 3 independent chains.
chain2 = sample(model2, NUTS(0.45), MCMCSerial(), 5000, 3; progress=false)
┌ Info: Found initial step size └ ϵ = 0.0125 ┌ Info: Found initial step size └ ϵ = 0.2 ┌ Info: Found initial step size └ ϵ = 0.0125
Chains MCMC chain (5000×17×3 Array{Float64, 3}): Iterations = 1001:1:6000 Number of chains = 3 Samples per chain = 5000 Wall duration = 40.97 seconds Compute duration = 40.53 seconds parameters = σ, α, β, γ, δ internals = lp, n_steps, is_accept, acceptance_rate, log_density, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size Summary Statistics parameters mean std mcse ess_bulk ess_tail rhat e ⋯ Symbol Float64 Float64 Float64 Float64 Float64 Float64 ⋯ σ 0.8213 0.0563 0.0061 80.8510 103.0733 1.0577 ⋯ α 1.6039 0.2068 0.0226 79.1243 90.9290 1.1160 ⋯ β 1.1146 0.1562 0.0162 87.8429 163.0698 1.0976 ⋯ γ 3.0183 0.3169 0.0362 78.0404 102.3699 1.1276 ⋯ δ 0.8897 0.2503 0.0280 81.9192 96.0406 1.1075 ⋯ 1 column omitted Quantiles parameters 2.5% 25.0% 50.0% 75.0% 97.5% Symbol Float64 Float64 Float64 Float64 Float64 σ 0.7244 0.7846 0.8144 0.8549 0.9449 α 1.2824 1.4553 1.5579 1.7340 2.0589 β 0.8673 1.0052 1.0870 1.2067 1.4707 γ 2.4245 2.7783 3.0395 3.2433 3.6498 δ 0.4403 0.7025 0.9023 1.0526 1.3893
plot(; legend=false)
posterior_samples = sample(chain2[[:α, :β, :γ, :δ]], 300; replace=false)
for p in eachrow(Array(posterior_samples))
sol_p = solve(prob, Tsit5(); p=p, saveat=0.1)
plot!(sol_p; alpha=0.1, color="#BBBBBB")
end
# Plot simulation and noisy observations.
plot!(sol; color=[1 2], linewidth=1)
scatter!(sol.t, odedata'; color=[1 2])
using MethodOfLines,
ModelingToolkit,
DomainSets,
OrdinaryDiffEq,
Plots,
LaTeXStrings,
SciMLBase
@parameters t x
@parameters r D
@variables u(..)
1-element Vector{Symbolics.CallWithMetadata{SymbolicUtils.FnType{Tuple, Real}, Base.ImmutableDict{DataType, Any}}}: u⋆
Dt = Differential(t)
Dx = Differential(x)
Dxx = Differential(x)^2
Differential(x) ∘ Differential(x)
eq = Dt(u(t, x)) ~ r * u(t,x) * (1-u(t,x)) + D * Dxx(u(t,x))
x_max = 30.0
t_max = 14.0
14.0
domain = [x ∈ Interval(0.0, x_max),
t ∈ Interval(0.0, t_max)]
2-element Vector{Symbolics.VarDomainPairing}: Symbolics.VarDomainPairing(x, 0.0 .. 30.0) Symbolics.VarDomainPairing(t, 0.0 .. 14.0)
ic_bc = [u(0.0, x) ~ 0.0, # initial condition
u(t, 0.0) ~ 1.0, # boundary condition
u(t, x_max) ~ 0.0] # boundary condition
@named sys = PDESystem(eq, ic_bc, domain, [t, x], [u(t,x)], [r => 1.0, D => 1.0])
┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154 ┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154
?MOLFiniteDifference
search: MOLFiniteDifference
MOLFiniteDifference(dxs, time=nothing;
approx_order = 2, advection_scheme = UpwindScheme(),
grid_align = CenterAlignedGrid(), kwargs...)
A discretization algorithm.
dxs
: A vector of pairs of parameters to the grid step in this dimension, i.e. [x=>0.2, y=>0.1]
. For a non-uniform rectilinear grid, replace any or all of the step sizes with the grid you'd like to use with that variable, must be an AbstractVector
but not a StepRangeLen
.time
: Your choice of continuous variable, usually time. If time = nothing
, then discretization yields a NonlinearProblem
. Defaults to nothing
.approx_order
: The order of the derivative approximation.advection_scheme
: The scheme to be used to discretize advection terms, i.e. first order spatial derivatives and associated coefficients. Defaults to UpwindScheme()
. WENOScheme() is also available, and is more stable and accurate at the cost of complexity.grid_align
: The grid alignment types. See CenterAlignedGrid()
and EdgeAlignedGrid()
.use_ODAE
: If true
, the discretization will use the ODAEproblem
constructor. Defaults to false
.kwargs
: Any other keyword arguments you want to pass to the ODEProblem
.dx = 0.5
discretization = MOLFiniteDifference([x => dx], t)
MOLFiniteDifference{MethodOfLines.CenterAlignedGrid, MethodOfLines.ScalarizedDiscretization}(Dict{Num, Float64}(x => 0.5), t, 2, UpwindScheme(1), MethodOfLines.CenterAlignedGrid(), true, false, MethodOfLines.ScalarizedDiscretization(), true, Any[], Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}())
?discretize
search: discretize symbolic_discretize discretization discretediag
No documentation found.
SciMLBase.discretize
is a Function
.
# 1 method for generic function "discretize" from SciMLBase:
[1] discretize(pdesys::PDESystem, discretization::PDEBase.AbstractEquationSystemDiscretization; analytic, kwargs...)
@ PDEBase ~/.julia/packages/PDEBase/jX5Yp/src/discretization_state.jl:55
prob = discretize(sys, discretization)
┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154 ┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154 ┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154 ┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154
ODEProblem with uType Vector{Float64} and tType Float64. In-place: true timespan: (0.0, 14.0) u0: 59-element Vector{Float64}: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ⋮ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
sol = solve(prob, Tsit5(), saveat = 1)
retcode: Success Interpolation: Dict{Num, Interpolations.GriddedInterpolation{Float64, 2, Matrix{Float64}, Interpolations.Gridded{Interpolations.Linear{Interpolations.Throw{Interpolations.OnGrid}}}, Tuple{Vector{Float64}, Vector{Float64}}}} t: 15-element Vector{Float64}: 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0ivs: 2-element Vector{SymbolicUtils.BasicSymbolic{Real}}: t xdomain:([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0], 0.0:0.5:30.0) u: Dict{Num, Matrix{Float64}} with 1 entry: u(t, x) => [1.0 0.0 … 0.0 0.0; 1.0 0.793196 … 9.86053e-49 0.0; … ; 1.0 0.9998…
gridx = sol[x]
gridt = sol[t]
solu = sol[u(t,x)]
# 15 time points, 61 interpolation points
15×61 Matrix{Float64}: 1.0 0.0 0.0 0.0 … 0.0 0.0 0.0 1.0 0.793196 0.587955 0.399581 2.19667e-47 9.86053e-49 0.0 1.0 0.898236 0.791246 0.674697 -9.01408e-34 -9.36527e-35 0.0 1.0 0.946895 0.888317 0.82511 8.73613e-25 1.51342e-25 0.0 1.0 0.971749 0.942264 0.906885 1.706e-19 3.99891e-20 0.0 1.0 0.985661 0.970287 0.952693 … 7.14033e-16 1.99978e-16 0.0 1.0 0.993099 0.984709 0.97714 3.78234e-13 1.19721e-13 0.0 1.0 0.996465 0.992847 0.988455 5.45083e-11 1.88743e-11 0.0 1.0 0.998158 0.996845 0.99408 3.22553e-9 1.196e-9 0.0 1.0 0.999147 0.998467 0.997252 1.00578e-7 3.93426e-8 0.0 1.0 0.999727 0.99903 0.999071 … 1.9397e-6 7.91999e-7 0.0 1.0 0.999938 0.999419 0.999756 2.5707e-5 1.08759e-5 0.0 1.0 0.999915 0.999841 0.999726 0.000250523 0.000109311 0.0 1.0 0.999882 1.00008 0.999648 0.0018625 0.000836584 0.0 1.0 1.00001 0.999912 1.00002 0.0106078 0.00491323 0.0
anim = @animate for i in eachindex(gridt)
plot(gridx, solu[i, :],
xlabel = "position "*L"$x$",
ylabel = "population density "*L"$u$",
label = L"$u(x,t)$",
title = "t=$(gridt[i])")
end
Animation("/var/folders/ln/jf2twlj12snbq000z6qq5y7m0000gn/T/jl_ivMUFj", ["000001.png", "000002.png", "000003.png", "000004.png", "000005.png", "000006.png", "000007.png", "000008.png", "000009.png", "000010.png", "000011.png", "000012.png", "000013.png", "000014.png", "000015.png"])
gif(anim, "fisherKPP.gif", fps = 10)
[ Info: Saved animation to /Users/oliviergimenez/Desktop/julia/fisherKPP.gif
using MethodOfLines,
ModelingToolkit,
DomainSets,
OrdinaryDiffEq,
Plots,
LaTeXStrings,
SciMLBase
@parameters t x
@parameters r D
@variables u(..)
Dt = Differential(t)
Dx = Differential(x)
Dxx = Differential(x)^2
eq = Dt(u(t, x)) ~ r * u(t,x) * (1-u(t,x)) + D * Dxx(u(t,x))
x_max = 30.0
t_max = 14.0
domain = [x ∈ Interval(0.0, x_max),
t ∈ Interval(0.0, t_max)]
ic_bc = [u(0.0, x) ~ 0.0,
u(t, 0.0) ~ 1.0,
u(t, x_max) ~ 0.0]
@named sys = PDESystem(eq, ic_bc, domain, [t, x], [u(t,x)], [r => 1.0, D => 1.0])
┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154 ┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154
dx = 0.5
discretization = MOLFiniteDifference([x => dx], t)
prob = discretize(sys, discretization)
┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154 ┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154 ┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154 ┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154
ODEProblem with uType Vector{Float64} and tType Float64. In-place: true timespan: (0.0, 14.0) u0: 59-element Vector{Float64}: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ⋮ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
sol = solve(prob, Tsit5(), saveat = .5)
gridx = sol[x]
gridt = sol[t]
solu = sol[u(t,x)]
29×61 Matrix{Float64}: 1.0 0.0 0.0 0.0 … 0.0 0.0 0.0 1.0 0.661949 0.372533 0.175506 6.36016e-65 1.0246e-66 0.0 1.0 0.793196 0.587955 0.399581 2.19667e-47 9.86053e-49 0.0 1.0 0.857935 0.710259 0.559605 5.20224e-38 4.1406e-39 0.0 1.0 0.898236 0.791246 0.674697 -9.01408e-34 -9.36527e-35 0.0 1.0 0.925729 0.848894 0.759092 … 7.91174e-29 1.00709e-29 0.0 1.0 0.946895 0.888317 0.82511 8.73613e-25 1.51342e-25 0.0 1.0 0.96109 0.919607 0.871737 7.70032e-22 1.59349e-22 0.0 1.0 0.971749 0.942264 0.906885 1.706e-19 3.99891e-20 0.0 1.0 0.980155 0.957806 0.934215 1.53587e-17 3.97838e-18 0.0 1.0 0.985661 0.970287 0.952693 … 7.14033e-16 1.99978e-16 0.0 1.0 0.989662 0.979299 0.966091 2.00321e-14 5.99415e-15 0.0 1.0 0.993099 0.984709 0.97714 3.78234e-13 1.19721e-13 0.0 ⋮ ⋱ ⋮ 1.0 0.998978 0.997344 0.996606 1.92884e-8 7.35733e-9 0.0 1.0 0.999147 0.998467 0.997252 1.00578e-7 3.93426e-8 0.0 1.0 0.999411 0.998956 0.998106 4.65473e-7 1.8623e-7 0.0 1.0 0.999727 0.99903 0.999071 … 1.9397e-6 7.91999e-7 0.0 1.0 0.999628 0.9997 0.998843 7.36361e-6 3.06279e-6 0.0 1.0 0.999938 0.999419 0.999756 2.5707e-5 1.08759e-5 0.0 1.0 0.999819 0.999877 0.999437 8.31451e-5 3.57382e-5 0.0 1.0 0.999915 0.999841 0.999726 0.000250523 0.000109311 0.0 1.0 0.999991 0.999796 0.999954 … 0.000705812 0.000312476 0.0 1.0 0.999882 1.00008 0.999648 0.0018625 0.000836584 0.0 1.0 1.00008 0.999747 1.00021 0.00460091 0.00209759 0.0 1.0 1.00001 0.999912 1.00002 0.0106078 0.00491323 0.0
anim = @animate for i in eachindex(gridt)
plot(gridx, solu[i, :],
xlabel = "position "*L"$x$",
ylabel = "population density "*L"$u$",
label = L"$u(x,t)$",
title = "t=$(gridt[i])")
end
gif(anim, "fisherKPP.gif", fps = 10)
[ Info: Saved animation to /Users/oliviergimenez/Desktop/julia/fisherKPP.gif
at_sampling_point = .8
sol = solve(prob, Tsit5(); saveat = at_sampling_point)
gridx = sol[x]
gridt = sol[t]
solu = sol[u(t,x)]
Array(solu)
# 19 census points, 61 interpolation points
19×61 Matrix{Float64}: 1.0 0.0 0.0 0.0 … 0.0 0.0 0.0 1.0 0.753873 0.518324 0.318332 7.8167e-53 2.57243e-54 0.0 1.0 0.867396 0.728965 0.585646 1.58775e-37 1.28038e-38 0.0 1.0 0.922432 0.836307 0.746962 1.07168e-29 1.34476e-30 0.0 1.0 0.953199 0.901813 0.845635 1.61957e-23 3.03844e-24 0.0 1.0 0.971749 0.942264 0.906885 … 1.706e-19 3.99891e-20 0.0 1.0 0.983483 0.96611 0.94555 1.64623e-16 4.47242e-17 0.0 1.0 0.990759 0.979937 0.969403 3.71211e-14 1.12438e-14 0.0 1.0 0.994762 0.988579 0.982718 3.13995e-12 1.03343e-12 0.0 1.0 0.996891 0.993917 0.989884 1.31102e-10 4.60893e-11 0.0 1.0 0.998158 0.996845 0.99408 … 3.22553e-9 1.196e-9 0.0 1.0 0.998986 0.998262 0.996744 5.27513e-8 2.04347e-8 0.0 1.0 0.999537 0.998869 0.998478 6.24212e-7 2.50799e-7 0.0 1.0 0.99986 0.999164 0.99949 5.6787e-6 2.35356e-6 0.0 1.0 0.999942 0.999511 0.999778 4.14758e-5 1.7661e-5 0.0 1.0 0.999915 0.999841 0.999726 … 0.000250523 0.000109311 0.0 1.0 0.999885 1.00005 0.999653 0.00127332 0.000568626 0.0 1.0 0.999892 1.00012 0.99968 0.00546839 0.00250074 0.0 1.0 1.00001 0.999912 1.00002 0.0106078 0.00491323 0.0
odedata = Array(solu) + 0.1 * randn(size(Array(solu)))
19×61 Matrix{Float64}: 0.989752 0.0778797 0.0746815 … 0.113776 0.0631454 -0.176798 1.0509 0.90523 0.411123 0.0304264 0.0416632 -0.0339602 1.01977 0.877469 0.712312 -0.0351814 -0.0758791 -0.00308122 1.15073 1.01585 0.828484 0.0428092 0.0914753 -0.0317942 0.92498 0.806051 0.825529 -0.0902627 0.116982 -0.0385188 1.07422 0.901465 0.922472 … 0.0267386 0.0320955 -0.0178308 1.05138 0.804692 0.901744 -0.0123798 -0.145651 0.0135973 1.09534 1.00046 1.00135 0.113913 0.0612186 0.0186058 0.962075 1.12602 0.923846 0.133212 0.0116924 0.131681 1.11779 0.869601 1.0252 -0.130973 0.0922549 0.0786482 1.06434 0.877431 1.01072 … -0.0299408 0.221045 -0.00228316 1.24258 0.970654 1.08794 -0.0783689 -0.107579 0.0717179 1.11515 1.1261 1.02682 -0.0226427 -0.0910225 -0.0556359 1.02211 0.861719 0.980845 -0.0399948 0.250509 0.12574 1.0611 0.976917 0.945676 0.059925 0.21983 -0.0709906 1.09812 0.962736 0.952698 … -0.0141279 -0.0850423 0.0344704 0.911526 0.934957 1.08402 -0.0776497 0.0303778 0.059643 1.10892 0.939184 1.04715 -0.0322169 0.158816 -0.106315 0.989208 0.898613 0.948759 0.195565 0.0946008 0.075303
sol.t
19-element Vector{Float64}: 0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0 8.8 9.6 10.4 11.2 12.0 12.8 13.6 14.0
odedata
19×61 Matrix{Float64}: 0.989752 0.0778797 0.0746815 … 0.113776 0.0631454 -0.176798 1.0509 0.90523 0.411123 0.0304264 0.0416632 -0.0339602 1.01977 0.877469 0.712312 -0.0351814 -0.0758791 -0.00308122 1.15073 1.01585 0.828484 0.0428092 0.0914753 -0.0317942 0.92498 0.806051 0.825529 -0.0902627 0.116982 -0.0385188 1.07422 0.901465 0.922472 … 0.0267386 0.0320955 -0.0178308 1.05138 0.804692 0.901744 -0.0123798 -0.145651 0.0135973 1.09534 1.00046 1.00135 0.113913 0.0612186 0.0186058 0.962075 1.12602 0.923846 0.133212 0.0116924 0.131681 1.11779 0.869601 1.0252 -0.130973 0.0922549 0.0786482 1.06434 0.877431 1.01072 … -0.0299408 0.221045 -0.00228316 1.24258 0.970654 1.08794 -0.0783689 -0.107579 0.0717179 1.11515 1.1261 1.02682 -0.0226427 -0.0910225 -0.0556359 1.02211 0.861719 0.980845 -0.0399948 0.250509 0.12574 1.0611 0.976917 0.945676 0.059925 0.21983 -0.0709906 1.09812 0.962736 0.952698 … -0.0141279 -0.0850423 0.0344704 0.911526 0.934957 1.08402 -0.0776497 0.0303778 0.059643 1.10892 0.939184 1.04715 -0.0322169 0.158816 -0.106315 0.989208 0.898613 0.948759 0.195565 0.0946008 0.075303
anim = @animate for i in eachindex(sol.t)
plot(gridx, solu[i, :],
alpha = 0.3,
ylim = (-0.5,1.5))
scatter!(gridt, odedata[i,:]; label = "")
end
gif(anim, "fisherKPP.gif", fps = 5)
[ Info: Saved animation to /Users/oliviergimenez/Desktop/julia/fisherKPP.gif
size(solu)
(19, 61)
@model function fitfisherKPP1D(data, prob)
# prior for growth rate
r ~ Uniform(0,2)
# prior for carrying capacity
D ~ Uniform(0,2)
# prior for lik noise
sigma ~ InverseGamma(2,3)
# Simulate logistic model.
p = [r, D]
predicted = solve(prob, Tsit5(); p = p, saveat = at_sampling_point)
gridx = predicted[x]
gridt = predicted[t]
solu = predicted[u(t,x)]
# Observations.
for i in 1:size(solu)[1]
data[i,:] ~ MvNormal(solu[i,:], sigma^2 * I)
end
return nothing
end
fitfisherKPP1D (generic function with 2 methods)
model = fitfisherKPP1D(odedata, prob)
chain = sample(model, NUTS(), MCMCSerial(), 1000, 2; progress = true)
plot(chain)
┌ Info: Found initial step size └ ϵ = 0.05 Sampling (Chain 1 of 2): 100%|██████████████████████████| Time: 0:00:34 ┌ Info: Found initial step size └ ϵ = 0.05 Sampling (Chain 2 of 2): 100%|██████████████████████████| Time: 0:00:36
using MethodOfLines,
ModelingToolkit,
DomainSets,
OrdinaryDiffEq,
Plots,
LaTeXStrings
@parameters t x y
@parameters r D
@variables u(..)
1-element Vector{Symbolics.CallWithMetadata{SymbolicUtils.FnType{Tuple, Real}, Base.ImmutableDict{DataType, Any}}}: u⋆
Dt = Differential(t)
Dx = Differential(x)
Dxx = Differential(x)^2
Dy = Differential(y)
Dyy = Differential(y)^2
Differential(y) ∘ Differential(y)
eq = Dt(u(t, x, y)) ~ r * u(t,x, y) * (1-u(t,x, y)) + D * (Dxx(u(t,x,y)) + Dyy(u(t,x,y)))
x_max = 30.0
y_max = 30.0
t_max = 14.0
14.0
domain = [x ∈ Interval(0.0, x_max),
y ∈ Interval(0.0, y_max),
t ∈ Interval(0.0, t_max)]
3-element Vector{Symbolics.VarDomainPairing}: Symbolics.VarDomainPairing(x, 0.0 .. 30.0) Symbolics.VarDomainPairing(y, 0.0 .. 30.0) Symbolics.VarDomainPairing(t, 0.0 .. 14.0)
ic_bc = [u(0.0, x, y) ~ 0.0,
u(t, 0.0, y) ~ 1.0,
u(t, x, 0.0) ~ 1.0]
# à revoir surement...
# u(t, 0.0) ~ 1.0,
# u(t, x_max) ~ 0.0]
@named sys = PDESystem(eq, ic_bc, domain, [t, x, y], [u(t,x, y)], [r => 1.0, D => 1.0])
┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154 ┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154
dx = 1.5
dy = 1.5
discretization = MOLFiniteDifference([x => dx, y => dy], t)
MOLFiniteDifference{MethodOfLines.CenterAlignedGrid, MethodOfLines.ScalarizedDiscretization}(Dict{Num, Float64}(y => 1.5, x => 1.5), t, 2, UpwindScheme(1), MethodOfLines.CenterAlignedGrid(), true, false, MethodOfLines.ScalarizedDiscretization(), true, Any[], Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}())
prob = discretize(sys, discretization)
┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154 ┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154 ┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154 ┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154
ODEProblem with uType Vector{Float64} and tType Float64. In-place: true timespan: (0.0, 14.0) u0: 400-element Vector{Float64}: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ⋮ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
sol = solve(prob, Tsit5(), saveat = 1)
retcode: Success Interpolation: Dict{Num, Interpolations.GriddedInterpolation{Float64, 3, Array{Float64, 3}, Interpolations.Gridded{Interpolations.Linear{Interpolations.Throw{Interpolations.OnGrid}}}, Tuple{Vector{Float64}, Vector{Float64}, Vector{Float64}}}} t: 15-element Vector{Float64}: 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0ivs: 3-element Vector{SymbolicUtils.BasicSymbolic{Real}}: t x ydomain:([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0], 0.0:1.5:30.0, 0.0:1.5:30.0) u: Dict{Num, Array{Float64, 3}} with 1 entry: u(t, x, y) => [0.0 1.0 … 1.0 1.0; 0.0 1.0 … 1.0 1.0; … ; 0.0 1.0 … 1.0 1.0; 0…
gridx = sol[x]
gridy = sol[y]
gridt = sol[t]
solu = sol[u(t,x,y)];
?heatmap
search: heatmap heatmap! plots_heatmap plots_heatmap! HYPREAlgorithm
heatmap(x,y,z)
heatmap!(x,y,z)
Plot a heatmap of the rectangular array z
.
aspect_ratio::Union{Real, Symbol}
: Plot area is resized so that 1 y-unit is the same size as aspect_ratio
x-units. With :none
, images inherit aspect ratio of the plot area. Use :equal
for unit aspect ratio. Aliases: (:aspectratios, :aspectratio, :aspectratios, :axisratio, :axisratio, :ratio).julia> heatmap(randn(10,10))
anim = @animate for i in eachindex(gridt)
heatmap(gridx, gridy, solu[i, :, :], label = L"$u(x,y,t)$", xlabel="position "*L"$x$", ylabel="position "*L"$y$", title="population density at t=$(gridt[i])", color=:viridis)
end
Animation("/var/folders/ln/jf2twlj12snbq000z6qq5y7m0000gn/T/jl_Xd9ffV", ["000001.png", "000002.png", "000003.png", "000004.png", "000005.png", "000006.png", "000007.png", "000008.png", "000009.png", "000010.png", "000011.png", "000012.png", "000013.png", "000014.png", "000015.png"])
gif(anim, "fisherKPP2D.gif", fps = 10)
[ Info: Saved animation to /Users/oliviergimenez/Desktop/julia/fisherKPP2D.gif
using MethodOfLines,
ModelingToolkit,
DomainSets,
OrdinaryDiffEq,
Plots,
LaTeXStrings
@parameters t x y
@parameters r D
@variables u(..)
1-element Vector{Symbolics.CallWithMetadata{SymbolicUtils.FnType{Tuple, Real}, Base.ImmutableDict{DataType, Any}}}: u⋆
Dt = Differential(t)
Dx = Differential(x)
Dxx = Differential(x)^2
Dy = Differential(y)
Dyy = Differential(y)^2
Differential(y) ∘ Differential(y)
eq = Dt(u(t, x, y)) ~ r * u(t,x, y) * (1-u(t,x, y)) + D * (Dxx(u(t,x,y)) + Dyy(u(t,x,y)))
x_max = 30.0
y_max = 30.0
t_max = 14.0
14.0
domain = [x ∈ Interval(0.0, x_max),
y ∈ Interval(0.0, y_max),
t ∈ Interval(0.0, t_max)]
3-element Vector{Symbolics.VarDomainPairing}: Symbolics.VarDomainPairing(x, 0.0 .. 30.0) Symbolics.VarDomainPairing(y, 0.0 .. 30.0) Symbolics.VarDomainPairing(t, 0.0 .. 14.0)
ic_bc = [u(0.0, x, y) ~ 0.0,
u(t, 0.0, y) ~ 1.0,
u(t, x, 0.0) ~ 1.0]
# à revoir surement...
# u(t, 0.0) ~ 1.0,
# u(t, x_max) ~ 0.0]
@named sys = PDESystem(eq, ic_bc, domain, [t, x, y], [u(t,x, y)], [r => 1.0, D => 1.0])
┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154 ┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154
dx = 1.5
dy = 1.5
discretization = MOLFiniteDifference([x => dx, y => dy], t)
MOLFiniteDifference{MethodOfLines.CenterAlignedGrid, MethodOfLines.ScalarizedDiscretization}(Dict{Num, Float64}(y => 1.5, x => 1.5), t, 2, UpwindScheme(1), MethodOfLines.CenterAlignedGrid(), true, false, MethodOfLines.ScalarizedDiscretization(), true, Any[], Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}())
prob = discretize(sys, discretization)
┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154 ┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154 ┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154 ┌ Warning: : no method matching get_unit for arguments (Pair{Num, Float64},). └ @ ModelingToolkit ~/.julia/packages/ModelingToolkit/BsHty/src/systems/validation.jl:154
ODEProblem with uType Vector{Float64} and tType Float64. In-place: true timespan: (0.0, 14.0) u0: 400-element Vector{Float64}: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ⋮ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
sol = solve(prob, Tsit5(), saveat = 1)
retcode: Success Interpolation: Dict{Num, Interpolations.GriddedInterpolation{Float64, 3, Array{Float64, 3}, Interpolations.Gridded{Interpolations.Linear{Interpolations.Throw{Interpolations.OnGrid}}}, Tuple{Vector{Float64}, Vector{Float64}, Vector{Float64}}}} t: 15-element Vector{Float64}: 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0ivs: 3-element Vector{SymbolicUtils.BasicSymbolic{Real}}: t x ydomain:([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0], 0.0:1.5:30.0, 0.0:1.5:30.0) u: Dict{Num, Array{Float64, 3}} with 1 entry: u(t, x, y) => [0.0 1.0 … 1.0 1.0; 0.0 1.0 … 1.0 1.0; … ; 0.0 1.0 … 1.0 1.0; 0…
gridx = sol[x]
gridy = sol[y]
gridt = sol[t]
solu = sol[u(t,x,y)];
?heatmap
search: heatmap heatmap! plots_heatmap plots_heatmap! HYPREAlgorithm
heatmap(x,y,z)
heatmap!(x,y,z)
Plot a heatmap of the rectangular array z
.
aspect_ratio::Union{Real, Symbol}
: Plot area is resized so that 1 y-unit is the same size as aspect_ratio
x-units. With :none
, images inherit aspect ratio of the plot area. Use :equal
for unit aspect ratio. Aliases: (:aspectratios, :aspectratio, :aspectratios, :axisratio, :axisratio, :ratio).julia> heatmap(randn(10,10))
anim = @animate for i in eachindex(gridt)
heatmap(gridx, gridy, solu[i, :, :], label = L"$u(x,y,t)$", xlabel="position "*L"$x$", ylabel="position "*L"$y$", title="population density at t=$(gridt[i])", color=:viridis)
end
Animation("/var/folders/ln/jf2twlj12snbq000z6qq5y7m0000gn/T/jl_VZfVyL", ["000001.png", "000002.png", "000003.png", "000004.png", "000005.png", "000006.png", "000007.png", "000008.png", "000009.png", "000010.png", "000011.png", "000012.png", "000013.png", "000014.png", "000015.png"])
gif(anim, "fisherKPP2D.gif", fps = 10)
[ Info: Saved animation to /Users/oliviergimenez/Desktop/julia/fisherKPP2D.gif
at_sampling_point = .8
sol = solve(prob, Tsit5(); saveat = at_sampling_point)
retcode: Success Interpolation: Dict{Num, Interpolations.GriddedInterpolation{Float64, 3, Array{Float64, 3}, Interpolations.Gridded{Interpolations.Linear{Interpolations.Throw{Interpolations.OnGrid}}}, Tuple{Vector{Float64}, Vector{Float64}, Vector{Float64}}}} t: 19-element Vector{Float64}: 0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0 8.8 9.6 10.4 11.2 12.0 12.8 13.6 14.0ivs: 3-element Vector{SymbolicUtils.BasicSymbolic{Real}}: t x ydomain:([0.0, 0.8, 1.6, 2.4, 3.2, 4.0, 4.8, 5.6, 6.4, 7.2, 8.0, 8.8, 9.6, 10.4, 11.2, 12.0, 12.8, 13.6, 14.0], 0.0:1.5:30.0, 0.0:1.5:30.0) u: Dict{Num, Array{Float64, 3}} with 1 entry: u(t, x, y) => [0.0 1.0 … 1.0 1.0; 0.0 1.0 … 1.0 1.0; … ; 0.0 1.0 … 1.0 1.0; 0…
gridx = sol[x]
gridy = sol[y]
gridt = sol[t]
solu = sol[u(t,x,y)]
Array(solu)
# 19 census points, 21*21 interpolation points
19×21×21 Array{Float64, 3}: [:, :, 1] = 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 [:, :, 2] = 1.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 1.0 0.559054 0.384487 0.350534 0.346311 0.345896 0.345896 0.345896 1.0 0.814714 0.678964 0.622467 0.607534 0.604219 0.604219 0.604219 1.0 0.917541 0.840417 0.791423 0.770824 0.762914 0.762914 0.762914 1.0 0.961399 0.921355 0.888666 0.869677 0.858315 0.858315 0.858315 1.0 0.981442 0.961299 0.942275 0.928458 … 0.916382 0.916382 0.916382 1.0 0.990966 0.980962 0.970681 0.961997 0.951469 0.951469 0.951469 1.0 0.995579 0.99064 0.985304 0.980317 0.972293 0.972293 0.972293 1.0 0.997832 0.995402 0.992694 0.989985 0.98441 0.98441 0.98441 1.0 0.998937 0.997744 0.996388 0.994965 0.991334 0.991334 0.991334 1.0 0.999479 0.998894 0.99822 0.99749 … 0.99523 0.99523 0.99523 1.0 0.999745 0.999458 0.999125 0.998755 0.997396 0.997396 0.997396 1.0 0.999875 0.999735 0.999571 0.999385 0.998588 0.998588 0.998588 1.0 0.999939 0.99987 0.99979 0.999697 0.999238 0.999238 0.999238 1.0 0.99997 0.999936 0.999898 0.999851 0.999591 0.999591 0.999591 1.0 0.999986 0.999969 0.99995 0.999926 … 0.999781 0.999781 0.999781 1.0 0.999992 0.999987 0.999973 0.999966 0.999883 0.999883 0.999883 1.0 0.999998 0.99999 0.999991 0.999979 0.999938 0.999938 0.999938 1.0 0.999993 1.0 0.999981 0.999998 0.999955 0.999955 0.999955 [:, :, 3] = 1.0 0.0 0.0 0.0 … 0.0 0.0 0.0 1.0 0.384487 0.124168 0.0719502 0.0647253 0.0647253 0.0647253 1.0 0.678964 0.408445 0.2839 0.241355 0.241355 0.241355 1.0 0.840417 0.667673 0.541568 0.460143 0.460143 0.460143 1.0 0.921355 0.829086 0.742555 0.650158 0.650158 0.650158 1.0 0.961299 0.91497 0.865512 … 0.786296 0.786296 0.786296 1.0 0.980962 0.958183 0.932221 0.874461 0.874461 0.874461 1.0 0.99064 0.979519 0.96642 0.928248 0.928248 0.928248 1.0 0.995402 0.989985 0.983496 0.959787 0.959787 0.959787 1.0 0.997744 0.995106 0.99192 0.977779 0.977779 0.977779 1.0 0.998894 0.997609 0.996051 … 0.987848 0.987848 0.987848 1.0 0.999458 0.998833 0.998072 0.993406 0.993406 0.993406 1.0 0.999735 0.99943 0.999059 0.996443 0.996443 0.996443 1.0 0.99987 0.999722 0.999541 0.998091 0.998091 0.998091 1.0 0.999936 0.999865 0.999776 0.998979 0.998979 0.998979 1.0 0.999969 0.999935 0.99989 … 0.999456 0.999456 0.999456 1.0 0.999987 0.999964 0.999951 0.999711 0.999711 0.999711 1.0 0.99999 0.999989 0.999968 0.999847 0.999847 0.999847 1.0 1.0 0.999974 1.0 0.999888 0.999888 0.999888 ;;; … [:, :, 19] = 1.0 0.0 0.0 0.0 … 0.0 0.0 1.0 0.345896 0.0647253 0.00788989 1.45658e-24 -3.25297e-38 1.0 0.604219 0.241355 0.0631452 2.86787e-19 -2.76006e-33 1.0 0.762914 0.460143 0.196617 5.7399e-16 -2.49504e-30 1.0 0.858315 0.650158 0.39047 1.25007e-13 2.43956e-26 1.0 0.916382 0.786296 0.587555 … 7.8881e-12 1.24427e-22 1.0 0.951469 0.874461 0.743678 2.39049e-10 5.20194e-20 1.0 0.972293 0.928248 0.849434 4.40722e-9 2.20936e-17 1.0 0.98441 0.959787 0.914692 5.59838e-8 3.9378e-15 1.0 0.991334 0.977779 0.952764 5.34941e-7 3.64465e-13 1.0 0.99523 0.987848 0.974228 … 4.08108e-6 2.06348e-11 1.0 0.997396 0.993406 0.986075 2.58925e-5 7.87919e-10 1.0 0.998588 0.996443 0.992526 0.0001405 2.16672e-8 1.0 0.999238 0.998091 0.996008 0.000663968 4.47192e-7 1.0 0.999591 0.998979 0.997876 0.00275525 6.86006e-6 1.0 0.999781 0.999456 0.998873 … 0.0100105 7.24576e-5 1.0 0.999883 0.999711 0.999403 0.031365 0.000463161 1.0 0.999938 0.999847 0.999685 0.0817955 0.00053777 1.0 0.999955 0.999888 0.999771 0.121013 -0.00365209 [:, :, 20] = 1.0 0.0 0.0 0.0 … 0.0 0.0 1.0 0.345896 0.0647253 0.00788989 1.50965e-40 -1.45658e-24 1.0 0.604219 0.241355 0.0631452 1.78864e-35 -2.86787e-19 1.0 0.762914 0.460143 0.196617 -4.51688e-32 -5.7399e-16 1.0 0.858315 0.650158 0.39047 -4.18357e-28 -1.25007e-13 1.0 0.916382 0.786296 0.587555 … -4.02437e-24 -7.8881e-12 1.0 0.951469 0.874461 0.743678 -1.90414e-21 -2.39049e-10 1.0 0.972293 0.928248 0.849434 -8.75294e-19 -4.40722e-9 1.0 0.98441 0.959787 0.914692 -1.96715e-16 -5.59838e-8 1.0 0.991334 0.977779 0.952764 -2.36613e-14 -5.34941e-7 1.0 0.99523 0.987848 0.974228 … -1.75094e-12 -4.08109e-6 1.0 0.997396 0.993406 0.986075 -8.76724e-11 -2.5893e-5 1.0 0.998588 0.996443 0.992526 -3.19529e-9 -0.000140518 1.0 0.999238 0.998091 0.996008 -9.02349e-8 -0.000664457 1.0 0.999591 0.998979 0.997876 -2.03461e-6 -0.00276557 1.0 0.999781 0.999456 0.998873 … -3.476e-5 -0.0101739 1.0 0.999883 0.999711 0.999403 -0.00044906 -0.0333351 1.0 0.999938 0.999847 0.999685 -0.00479958 -0.101483 1.0 0.999955 0.999888 0.999771 -0.0150025 -0.180724 [:, :, 21] = 1.0 0.0 0.0 0.0 … 0.0 0.0 1.0 0.345896 0.0647253 0.00788989 -1.45658e-24 -2.91316e-24 1.0 0.604219 0.241355 0.0631452 -2.86787e-19 -5.73573e-19 1.0 0.762914 0.460143 0.196617 -5.7399e-16 -1.14798e-15 1.0 0.858315 0.650158 0.39047 -1.25007e-13 -2.50014e-13 1.0 0.916382 0.786296 0.587555 … -7.8881e-12 -1.57762e-11 1.0 0.951469 0.874461 0.743678 -2.39049e-10 -4.78098e-10 1.0 0.972293 0.928248 0.849434 -4.40722e-9 -8.81444e-9 1.0 0.98441 0.959787 0.914692 -5.59838e-8 -1.11968e-7 1.0 0.991334 0.977779 0.952764 -5.34941e-7 -1.06988e-6 1.0 0.99523 0.987848 0.974228 … -4.08109e-6 -8.16222e-6 1.0 0.997396 0.993406 0.986075 -2.5893e-5 -5.17872e-5 1.0 0.998588 0.996443 0.992526 -0.000140518 -0.000281071 1.0 0.999238 0.998091 0.996008 -0.000664457 -0.00132967 1.0 0.999591 0.998979 0.997875 -0.00276557 -0.00554433 1.0 0.999781 0.999456 0.998872 … -0.0101739 -0.0205193 1.0 0.999883 0.999711 0.999403 -0.0333351 -0.0683191 1.0 0.999938 0.999847 0.999685 -0.101483 -0.216655 1.0 0.999955 0.999888 0.999771 -0.180724 -0.404268
odedata = Array(solu) + 0.1 * randn(size(Array(solu)))
19×21×21 Array{Float64, 3}: [:, :, 1] = 0.00162764 0.974478 1.04812 0.941642 … 1.08336 0.951266 1.03695 -0.1171 1.00731 0.890001 1.08171 0.879244 0.938406 1.12653 -0.0306385 1.16354 0.880585 0.957811 1.20552 0.818104 0.984274 0.128517 1.00752 0.909556 1.02746 1.07032 1.01479 0.838147 -0.172447 1.00516 0.980018 0.894918 1.06492 1.05474 0.934836 -0.14719 1.01731 1.04208 1.06218 … 1.05459 0.954874 0.777825 0.0540765 1.00464 0.805922 1.02141 0.9877 1.20122 1.09788 0.0228466 1.04676 1.01426 1.02206 1.08539 1.08925 0.884514 0.0854729 0.866774 0.951809 0.992776 0.750344 1.04042 0.891792 0.0821194 1.01367 1.0308 0.813084 0.94074 0.953924 0.936898 0.194426 1.01039 0.916651 0.979928 … 1.15141 0.914585 1.05135 -0.14301 0.892655 1.06088 0.912304 1.06246 0.987147 1.04775 -0.0273272 1.00907 1.12555 0.989477 1.03712 1.08243 1.19537 0.083578 0.974022 1.05669 0.968664 0.997792 1.00951 1.13059 -0.0690747 1.05873 1.00599 1.05078 1.00592 0.90011 0.904914 0.12672 1.23566 0.822348 0.954122 … 0.976523 0.993405 1.04323 -0.0228982 1.10871 1.14357 1.08867 1.07744 0.916757 1.04424 0.028504 0.934869 0.790801 1.10096 1.03149 1.08244 0.898205 0.0310409 0.832585 0.816817 0.868321 1.01231 1.2554 0.991658 [:, :, 2] = 1.09621 0.00376418 -0.00592898 … -0.163545 -0.182267 -0.0368365 1.02455 0.592183 0.348741 0.337143 0.364651 0.311236 0.998524 0.762131 0.71427 0.788556 0.687557 0.53032 1.04268 0.960997 0.92286 0.795277 0.796861 0.738824 1.07585 0.897117 0.916126 0.781864 0.822871 0.734971 1.2465 1.04295 1.00802 … 0.923412 0.847194 0.993276 1.08342 1.04167 0.890156 1.11944 0.929622 0.996438 0.931798 1.04727 0.977237 0.900608 0.972423 0.978974 0.97808 1.10163 1.23788 0.944347 1.03158 0.904947 0.981533 0.947037 1.01602 1.07704 0.798499 1.03373 1.19057 1.01893 0.891291 … 1.05824 1.04425 0.80059 0.862904 1.1463 0.8896 1.05626 0.898941 0.890312 0.850238 0.920053 1.11869 1.03499 0.987482 1.07509 0.989097 0.918865 1.1627 0.985734 1.01421 1.11704 1.11 1.05183 1.14081 0.912554 0.888553 1.01477 1.17747 0.85998 0.950533 … 0.848222 1.02875 1.09276 1.05697 1.24865 1.04148 0.902834 1.18071 1.18238 0.822026 1.00391 1.08892 1.15553 0.996365 1.10421 0.961409 1.02243 1.06379 0.986683 1.15281 1.06286 [:, :, 3] = 0.915278 -0.00703432 -0.0256252 … 0.0579765 -0.0708409 -0.0654784 0.847313 0.24124 0.0252586 -0.0330279 0.145752 0.128789 1.14816 0.59298 0.363227 0.119061 0.178117 0.205472 0.931436 0.909359 0.615694 0.49946 0.606728 0.36803 0.949877 0.891392 0.770894 0.592039 0.622208 0.61392 0.924844 0.810842 0.909603 … 0.73356 0.870661 0.675851 1.0209 0.871972 0.918234 0.928345 0.961929 0.823108 0.872645 0.92403 0.806925 0.898255 0.889463 0.944547 0.936764 0.968117 1.05693 0.920561 0.934398 0.994607 0.976492 0.826169 1.0079 0.792981 0.752176 0.948154 1.1174 0.885656 0.9929 … 1.05306 0.972395 0.986714 1.08402 1.21706 1.02589 1.06297 1.00282 0.904834 0.976414 0.978013 0.959398 1.07524 1.21313 0.931887 0.994951 1.13206 1.08296 0.901782 1.03354 0.910493 1.03135 0.925702 0.90776 0.9834 0.896765 1.07876 0.964017 1.03603 1.04725 … 1.09206 0.955873 0.9558 1.26564 1.03836 0.935626 0.970259 0.81464 0.859407 1.05616 0.988257 0.974057 1.0643 1.21536 1.10426 1.14294 0.980428 1.00937 1.08068 1.09972 1.00819 ;;; … [:, :, 19] = 1.08266 0.0385152 -0.141312 0.0793918 … 0.0696863 -0.0571675 1.0588 0.357847 0.0326733 -0.0194556 0.00423977 0.0928062 0.754626 0.622011 0.183391 0.0736987 -0.0251202 0.0258325 0.803745 0.715575 0.497181 0.159209 -0.137326 0.116847 0.910479 0.911024 0.672961 0.55506 0.155897 -0.211949 1.02922 0.779323 0.672776 0.578306 … -0.00438036 -0.0291863 1.11987 0.854895 0.671611 0.730069 0.0590853 0.0756228 0.865968 0.916991 0.83009 0.87797 0.190064 -0.00112363 0.807199 1.11388 0.939005 0.938308 -0.0492921 -0.121785 0.882337 1.04294 0.927812 0.872466 -0.0479356 0.0485393 1.08282 1.03882 0.982853 0.853506 … 0.158406 0.0475262 0.964321 1.02064 0.981601 1.19156 -0.0346448 -0.0533896 0.994587 1.00502 1.06259 0.875574 -0.0223614 0.134164 1.03003 0.991624 0.995524 1.02835 0.0331695 -0.00910703 1.13656 0.959947 1.03311 1.01744 0.0566212 0.0215347 0.946448 1.17219 0.941604 0.957135 … -0.140788 -0.105425 1.005 0.959273 1.10296 0.946316 -0.027893 -0.0888065 0.92507 0.972154 1.0837 1.07715 0.241965 -0.0861849 1.16965 0.990163 0.755945 0.90719 0.178831 0.000918931 [:, :, 20] = 1.07329 0.0510271 -0.144653 -0.0585976 … 0.0980998 0.0329803 0.829933 0.339881 0.0824159 0.055867 0.0386706 0.0116841 0.979772 0.44066 0.250721 0.0702411 0.0635789 0.0619767 1.09524 0.669306 0.403863 0.432422 -0.0121681 -0.0421898 0.978232 1.00495 0.667461 0.399355 -0.0159924 0.0304505 0.967849 0.951266 0.826928 0.611718 … 0.0793844 -0.181902 1.02008 1.01999 0.919644 0.805356 -0.072264 0.163098 1.04548 0.99711 0.786865 1.08049 -0.107595 -0.0746302 1.15172 1.04476 0.948656 1.06547 0.0838329 0.123451 1.20537 1.1362 1.12465 1.0116 -0.0122148 0.0404888 0.951517 0.985286 0.969784 1.04597 … -0.106676 -0.260573 0.980721 1.20898 0.95057 0.985225 -0.0446763 -0.0630855 0.845356 1.07717 1.09117 1.01672 -0.0447715 -0.135571 1.07821 1.12117 0.881719 0.95643 0.0482068 -0.0139626 0.982725 0.991064 1.01225 1.01965 0.0396152 -0.0164634 0.990003 0.948372 1.0927 1.10812 … -0.00117869 0.0726262 1.01047 1.05789 0.955887 0.859025 -0.087388 0.0649876 0.927401 1.08492 0.818578 1.26923 -0.0501889 -0.168617 1.13129 1.14503 0.830961 1.00597 0.10915 -0.0864821 [:, :, 21] = 0.929424 -0.00232714 0.0816634 -0.0122763 … -0.0404799 -0.0743381 0.980573 0.390384 0.125723 -0.00366673 -0.0909082 0.0589135 0.808328 0.584711 0.336156 0.262947 -0.0705182 -0.0125436 1.00442 0.810066 0.591596 0.116188 -0.000353983 -0.0689899 0.936897 0.913736 0.65637 0.539257 0.0785304 0.0107934 0.938643 0.945128 0.858474 0.426089 … -0.176629 -0.0674974 0.916379 0.805655 0.758988 0.710252 -0.0610596 -0.0518067 1.11722 1.10389 0.954771 0.859596 0.0236237 -0.0566386 0.999448 0.975049 1.07469 0.844678 -0.232723 -0.0743865 1.06061 1.0391 0.87634 0.902288 -0.0997095 -0.164866 1.01181 0.878423 0.894428 0.998321 … 0.0879376 0.0763844 0.960846 1.03066 1.12684 0.93269 0.0964963 -0.0113453 0.885472 1.03748 1.03078 1.03878 -0.0614122 -0.0456767 0.871232 0.944102 0.977217 1.01726 -0.162224 0.147784 1.09824 0.762658 0.902143 1.01331 -0.0522773 0.031517 1.08178 0.959997 1.09198 0.919501 … -0.0731342 0.107547 0.954489 1.02728 0.92303 1.03684 0.0956195 0.0954915 0.928189 0.80548 1.02485 1.00461 -0.156725 -0.0717271 0.921548 1.01002 1.08168 1.08183 -0.0912831 -0.367832
sol.t
19-element Vector{Float64}: 0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0 8.8 9.6 10.4 11.2 12.0 12.8 13.6 14.0
odedata
size(odedata)
(19, 21, 21)
size(solu)
(19, 21, 21)
solu[1,:,:]
21×21 Matrix{Float64}: 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
@model function fitfisherKPP2D(data, prob)
# prior for growth rate
r ~ Uniform(0,2)
# prior for carrying capacity
D ~ Uniform(0,2)
# prior for lik noise
sigma ~ InverseGamma(2,3)
# Simulate logistic model
p = [r, D]
predicted = solve(prob, Tsit5(); p = p, saveat = at_sampling_point)
gridx = predicted[x]
gridy = predicted[y]
gridt = predicted[t]
solu = predicted[u(t,x,y)]
# Observations
for i in 1:size(solu)[1]
for j in 1:size(solu)[2]
for k in 1:size(solu)[3]
data[i,j,k] ~ Normal(solu[i,j,k], sigma^2)
end
end
end
return nothing
end
fitfisherKPP2D (generic function with 2 methods)
model = fitfisherKPP2D(odedata, prob)
chain = sample(model, NUTS(), MCMCSerial(), 1000, 2; progress = true)
plot(chain)
┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.046973225526246, and step error estimate = 383.2947284711625. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.047434474312848, and step error estimate = 285.15110560349206. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.047434474312848, and step error estimate = 285.15110560349206. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.736737807105625, and step error estimate = 285.150996535252. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.420173282741256, and step error estimate = 285.1508988484901. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.138045890597244, and step error estimate = 285.15081256274954. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.060143704009667, and step error estimate = 285.150719894218. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.064719547967302, and step error estimate = 285.15094832663095. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.067272388430814, and step error estimate = 285.1509209450945. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.068615167123472, and step error estimate = 285.1510831906309. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.069303162869595, and step error estimate = 285.1509202409809. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.069651315929681, and step error estimate = 285.1509507203251. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.069826430018017, and step error estimate = 285.15097445638145. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.069914248134438, and step error estimate = 285.1510643326107. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.069958219730381, and step error estimate = 285.15095298302157. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.069980225146804, and step error estimate = 285.1511693175875. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.069991229709276, and step error estimate = 285.15112480147195. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.069996732814458, and step error estimate = 285.1510252083566. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.069999485347964, and step error estimate = 285.150828349895. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.07000086123973, and step error estimate = 285.15041417839893. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070001549528572, and step error estimate = 285.15100050511865. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070001892921294, and step error estimate = 285.151177587371. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002065079526, and step error estimate = 285.15095127382654. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002151454059, and step error estimate = 285.1507822319657. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002194908124, and step error estimate = 285.15107526057136. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.07000221647871, and step error estimate = 285.1507007401804. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002226637069, and step error estimate = 285.15101751135035. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.07000223207419, and step error estimate = 285.1507248723677. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002234803699, and step error estimate = 285.1508987533194. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002236059507, and step error estimate = 285.15100197851734. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002236730144, and step error estimate = 285.1507813672547. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.0700022370744, and step error estimate = 285.1505934372174. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.07000223726244, and step error estimate = 285.1510907590674. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237348335, and step error estimate = 285.15088139431225. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.07000223738929, and step error estimate = 285.1508603543451. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237404863, and step error estimate = 285.1510296759142. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237415144, and step error estimate = 285.1507330676338. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237420255, and step error estimate = 285.1505154973106. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237422868, and step error estimate = 285.15101141030215. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237424132, and step error estimate = 285.15066504920105. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237424797, and step error estimate = 285.1511735128948. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425072, and step error estimate = 285.1511478668741. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425257, and step error estimate = 285.1508670397692. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425358, and step error estimate = 285.1508521502875. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.07000223742538, and step error estimate = 285.15104527334387. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425381, and step error estimate = 285.1508981925692. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425411, and step error estimate = 285.1507556058965. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425378, and step error estimate = 285.1506624636588. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.07000223742542, and step error estimate = 285.15110064956104. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.07000223742542, and step error estimate = 285.15110064956104. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425415, and step error estimate = 285.1511217839178. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425415, and step error estimate = 285.1511217839178. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425415, and step error estimate = 285.1511217839178. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425415, and step error estimate = 285.1511217839178. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425415, and step error estimate = 285.1511217839178. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.070002237425435, and step error estimate = 285.1511361788306. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Info: Found initial step size └ ϵ = 2.44140625e-5 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.047434474312848, and step error estimate = 285.15110560349206. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.069685631360096, and step error estimate = 285.1510131161731. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.069685631360096, and step error estimate = 285.1510131161731. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.069685631360096, and step error estimate = 285.1510131161731. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.230523865423182, and step error estimate = 285.15101950875743. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.069685631360096, and step error estimate = 285.1510131161731. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.07374283048159, and step error estimate = 285.1510705029576. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.07374283048159, and step error estimate = 285.1510705029576. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.091603390608329, and step error estimate = 285.1506068776965. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.091493317223085, and step error estimate = 285.15098341492796. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.130057455700257, and step error estimate = 285.15083612540644. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.091493317223085, and step error estimate = 285.15098341492796. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.164260364197663, and step error estimate = 285.1511223720566. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.2733781347517, and step error estimate = 285.1510637782874. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.402607167676603, and step error estimate = 285.1508176877533. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.548400250147589, and step error estimate = 285.15056411489394. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.708014292006345, and step error estimate = 285.1507843949821. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.882436892131418, and step error estimate = 285.1509638201984. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.164260364197663, and step error estimate = 285.1511223720566. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.21641417555636, and step error estimate = 285.15111837702705. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.332466968036535, and step error estimate = 285.15062268005664. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.48971888331806, and step error estimate = 285.1507157840791. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.678452593346517, and step error estimate = 285.1508023904209. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.894287247846378, and step error estimate = 285.150974315026. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.48971888331806, and step error estimate = 285.1507157840791. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.522909449798203, and step error estimate = 285.15084280802927. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.522909449798203, and step error estimate = 285.15084280802927. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.802334127850818, and step error estimate = 285.1509031954605. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.522909449798203, and step error estimate = 285.15084280802927. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.527001551899248, and step error estimate = 285.1504906417533. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.527001551899248, and step error estimate = 285.1504906417533. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.568055791510957, and step error estimate = 285.1508013507294. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.68410928634596, and step error estimate = 285.1508566665281. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.862994577765763, and step error estimate = 285.15124596320464. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.568055791510957, and step error estimate = 285.1508013507294. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.608462759702789, and step error estimate = 285.1508779320258. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.608462759702789, and step error estimate = 285.1508779320258. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.95777592906492, and step error estimate = 285.15089194813714. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.608462759702789, and step error estimate = 285.1508779320258. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.613081196460502, and step error estimate = 285.15112126425873. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.613201764208702, and step error estimate = 285.1506101858842. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.630177745665696, and step error estimate = 285.15078768903646. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.630177745665696, and step error estimate = 285.15078768903646. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.677013304190769, and step error estimate = 285.1505723370749. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.679984835158987, and step error estimate = 285.1508863082951. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.8184862712789, and step error estimate = 285.1508423853708. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.677013304190769, and step error estimate = 285.1505723370749. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.723584361060727, and step error estimate = 285.15083860190634. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.723584361060727, and step error estimate = 285.15083860190634. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.105423194194886, and step error estimate = 285.15106928905914. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.101860835929138, and step error estimate = 285.15081506650705. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.105423194194886, and step error estimate = 285.15106928905914. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.397078307755187, and step error estimate = 285.15049336036196. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.37879359848386, and step error estimate = 285.15105823747933. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.977736452752417, and step error estimate = 285.15107578385584. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.37879359848386, and step error estimate = 285.15105823747933. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 1 of 2): 3%|▊ | ETA: 0:15:28┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.487024638283245, and step error estimate = 285.15109457138055. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 1 of 2): 4%|█▏ | ETA: 0:16:49┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.11341662959405, and step error estimate = 285.150709185368. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 1 of 2): 7%|█▉ | ETA: 0:21:27┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.022884949751576, and step error estimate = 285.15099671701194. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 1 of 2): 10%|██▌ | ETA: 0:20:20┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.68108206379126, and step error estimate = 285.1510173328301. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 1 of 2): 15%|████ | ETA: 0:17:36┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.849790234706282, and step error estimate = 285.15115970375547. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 1 of 2): 17%|████▍ | ETA: 0:17:08┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=11.756760561051024, and step error estimate = 285.1506624634524. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 1 of 2): 18%|████▊ | ETA: 0:16:48┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.597216373293339, and step error estimate = 285.1508284927901. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 1 of 2): 24%|██████▎ | ETA: 0:15:42┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.672226119138225, and step error estimate = 285.15111800818084. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 1 of 2): 30%|███████▊ | ETA: 0:13:52┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=11.834337041113324, and step error estimate = 285.151061289413. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 1 of 2): 31%|████████ | ETA: 0:13:49┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=11.54406575217546, and step error estimate = 285.1507899276882. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 1 of 2): 100%|██████████████████████████| Time: 0:21:36 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.795834708010691, and step error estimate = 285.1520209203952. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.795834708010691, and step error estimate = 285.1520209203952. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 ┌ Info: Found initial step size └ ϵ = 0.00625 ┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=11.109795208106057, and step error estimate = 285.1512116796909. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 2 of 2): 4%|█ | ETA: 0:09:53┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.509449688436984, and step error estimate = 285.15060426262846. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 2 of 2): 10%|██▌ | ETA: 0:15:28┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=12.372387695370824, and step error estimate = 285.15078928814137. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 2 of 2): 17%|████▌ | ETA: 0:15:19┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.398387836796907, and step error estimate = 285.15101676680615. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 2 of 2): 20%|█████▏ | ETA: 0:15:29┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=11.773397362302642, and step error estimate = 285.150659821492. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 2 of 2): 21%|█████▌ | ETA: 0:15:06┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.678583176431468, and step error estimate = 285.151155689673. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 2 of 2): 22%|█████▊ | ETA: 0:15:14┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.819399142609841, and step error estimate = 285.150940552796. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 2 of 2): 23%|██████ | ETA: 0:15:02┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.93693323729982, and step error estimate = 285.15070471150517. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 2 of 2): 31%|████████ | ETA: 0:13:25┌ Warning: dt(1.7763568394002505e-15) <= dtmin(1.7763568394002505e-15) at t=13.027311807938988, and step error estimate = 285.15091274597756. Aborting. There is either an error in your model specification or the true solution is unstable. └ @ SciMLBase ~/.julia/packages/SciMLBase/szsYq/src/integrator_interface.jl:599 Sampling (Chain 2 of 2): 100%|██████████████████████████| Time: 0:23:40