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A detour to explore priors



Influence of the prior



Prior Beta(0.5,0.5) and posterior survival Beta(19.5,38.5)
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Prior Beta(20,1) and posterior survival Beta(39, 49)
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The role of the prior

= In biological applications, the prior is a convenient means of incorporating expert
opinion or information from previous or related studies that would otherwise need
to be ignored. We'll get back to that.
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= In biological applications, the prior is a convenient means of incorporating expert
opinion or information from previous or related studies that would otherwise need
to be ignored. We'll get back to that.

= With sparse data, the role of the prior can be to enable inference on key parameters
that would otherwise be impossible.

= With sufficiently large and informative datasets the prior typically has little effect on
the results.

= Always perform a sensitivity analysis.
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How to incorporate prior
information?
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Estimating survival using capture-recapture data

A bird might captured, missed and recaptured; this is coded 101.

Simplest model relies on constant survival ¢ and detection p probabilities.

Likelihood for that particular bird:

Pr(101) = ¢(1 - p)op

= We assume a vague prior:

Gprior ~ Beta(1,1) = Uniform(0, 1)



» y;+ = Lif individual i detected at occasion t and 0 otherwise
= z;: = 1 if individual i alive between occasions t and t + 1 and 0 otherwise

it | zi,t ~ Bernoulli(p z +) [likelihood (observation eq.)]
Zj 41| zir ~ Bernoulli(¢ z; ¢) [likelihood (state eq.)]
¢ ~ Beta(1,1) [prior for ¢]

p ~ Beta(1,1) [prior for p]



European dippers in Eastern France (1981-1987)
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How to incorporate prior information?

= If no information, mean posterior survival is @posterior = 0.56 with credible interval
[0.51,0.61].
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How to incorporate prior information?

= If no information, mean posterior survival is @posterior = 0.56 with credible interval
[0.51,0.61].

= Using information on body mass and annual survival of 27 European passerines, we
can predict survival of European dippers using only body mass.

= For dippers, body mass is 59.8g, therefore ¢ = 0.57 with sd = 0.073.
= Assuming an informative prior ¢pior ~ Normal(0.57,0.0732).
= Mean posterior ¢posterior = 0.56 with credible interval [0.52,0.60].

= No increase of precision in posterior inference.
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How to incorporate prior information?

= Now if you had only the three first years of data, what would have happened?
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How to incorporate prior information?

= Now if you had only the three first years of data, what would have happened?
= Width of credible interval is 0.47 (vague prior) vs. 0.30 (informative prior).

= Huge increase of precision in posterior inference (40% gain)!
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Compare

—— with prior info
—— without prior info

probability density
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survival
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1.0
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Prior elicitation via moment
matching




Remember the Beta distribution

= Recall that the Beta distribution is a continuous distribution with values between 0
and 1. Useful for modelling survival or detection probabilities.
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Remember the Beta distribution

= Recall that the Beta distribution is a continuous distribution with values between 0
and 1. Useful for modelling survival or detection probabilities.

= If X ~ Beta(a, ), then the first and second moments of X are:

«
MZEM)ZQ+5
02 = Var(X) = ap

(a+B)%(a+B+1)
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Moment matching

= In the capture-recapture example, we know a priori that the mean of the probability
we're interested in is u = 0.57 and its variance is 0? = 0.0732.
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Moment matching

In the capture-recapture example, we know a priori that the mean of the probability

we're interested in is u = 0.57 and its variance is 0? = 0.0732.
Parameters . and 02 are seen as the moments of a Beta(c, 3) distribution.
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Moment matching

= In the capture-recapture example, we know a priori that the mean of the probability

we're interested in is u = 0.57 and its variance is 0? = 0.0732.
= Parameters p and o2 are seen as the moments of a Beta(a, 3) distribution.

= Now we look for values of o and 3 that match the observed moments of the Beta
distribution (1 and o).

= We need another set of equations:
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= For our model, that means:

(alpha <- ( (1 - 0.57)/(0.073%0.073) - (1/0.57) )*0.57°2)
#> [1] 25.64636

(beta <- alpha * ( (1/0.57) - 1))

#> [1] 19.34726
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= For our model, that means:

(alpha <- ( (1 - 0.57)/(0.073%0.073) - (1/0.57) )*0.57°2)
#> [1] 25.64636

(beta <- alpha * ( (1/0.57) - 1))

#> [1] 19.34726

= Now use ¢prior ~ Beta(aw = 25.6, 5 = 19.3) instead of
Gprior ~ Normal(0.57,0.0732)
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Your turn: Practical 3




Prior predictive checks




Linear regression

Unreasonable prior 3 ~ N(0, 1000?) Reasonable prior 3 ~ N(2,0.5?)
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Logistic regression

Unreasonable logit(¢) = 3 ~ N(0,10?) Reasonable logit(¢) = 8 ~ N(0,1.5%)
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