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A detour to explore priors



Influence of the prior



Prior Beta(0.5, 0.5) and posterior survival Beta(19.5, 38.5)
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Prior Beta(2, 2) and posterior survival Beta(21, 40)
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Prior Beta(20, 1) and posterior survival Beta(39, 49)
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The role of the prior

• In biological applications, the prior is a convenient means of incorporating expert
opinion or information from previous or related studies that would otherwise need
to be ignored. We’ll get back to that.

• With sparse data, the role of the prior can be to enable inference on key parameters
that would otherwise be impossible.

• With sufficiently large and informative datasets the prior typically has little effect on
the results.

• Always perform a sensitivity analysis.
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Informative priors vs. no information

• Informative priors aim to reflect information available to the analyst that is gained
independently of the data being studied.

• In the absence of any prior information on one or more model parameters we wish
to ensure that this lack of knowledge is properly reflected in the prior.

• Always perform a sensitivity analysis.
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How to incorporate prior
information?



Estimating survival using capture-recapture data

• A bird might captured, missed and recaptured; this is coded 101.

• Simplest model relies on constant survival ϕ and detection p probabilities.

• Likelihood for that particular bird:

Pr(101) = ϕ(1 − p)ϕp

• We assume a vague prior:

ϕprior ∼ Beta(1, 1) = Uniform(0, 1)
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Notation

• yi ,t = 1 if individual i detected at occasion t and 0 otherwise
• zi ,t = 1 if individual i alive between occasions t and t + 1 and 0 otherwise

yi ,t | zi ,t ∼ Bernoulli(p zi ,t) [likelihood (observation eq.)]
zi ,t+1 | zi ,t ∼ Bernoulli(ϕ zi ,t) [likelihood (state eq.)]

ϕ ∼ Beta(1, 1) [prior for ϕ]
p ∼ Beta(1, 1) [prior for p]
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European dippers in Eastern France (1981-1987)
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How to incorporate prior information?

• If no information, mean posterior survival is ϕposterior = 0.56 with credible interval
[0.51, 0.61].

• Using information on body mass and annual survival of 27 European passerines, we
can predict survival of European dippers using only body mass.

• For dippers, body mass is 59.8g, therefore ϕ = 0.57 with sd = 0.073.

• Assuming an informative prior ϕprior ∼ Normal(0.57, 0.0732).

• Mean posterior ϕposterior = 0.56 with credible interval [0.52, 0.60].

• No increase of precision in posterior inference.
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How to incorporate prior information?

• Now if you had only the three first years of data, what would have happened?

• Width of credible interval is 0.47 (vague prior) vs. 0.30 (informative prior).

• Huge increase of precision in posterior inference (40% gain)!
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Compare vague vs. informative prior
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Prior elicitation via moment
matching



Remember the Beta distribution

• Recall that the Beta distribution is a continuous distribution with values between 0
and 1. Useful for modelling survival or detection probabilities.

• If X ∼ Beta(α, β), then the first and second moments of X are:

µ = E(X ) = α

α + β

σ2 = Var(X ) = αβ

(α + β)2(α + β + 1)
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Moment matching

• In the capture-recapture example, we know a priori that the mean of the probability
we’re interested in is µ = 0.57 and its variance is σ2 = 0.0732.

• Parameters µ and σ2 are seen as the moments of a Beta(α, β) distribution.

• Now we look for values of α and β that match the observed moments of the Beta
distribution (µ and σ2).

• We need another set of equations:

α =
(1 − µ

σ2 − 1
µ

)
µ2

β = α

( 1
µ

− 1
)
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• For our model, that means:

(alpha <- ( (1 - 0.57)/(0.073*0.073) - (1/0.57) )*0.57ˆ2)
#> [1] 25.64636
(beta <- alpha * ( (1/0.57) - 1))
#> [1] 19.34726

• Now use ϕprior ∼ Beta(α = 25.6, β = 19.3) instead of
ϕprior ∼ Normal(0.57, 0.0732)
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Your turn: Practical 3



Prior predictive checks



Linear regression

Unreasonable prior β ∼ N(0, 10002)
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Logistic regression

Unreasonable logit(ϕ) = β ∼ N(0, 102)
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Your turn: Practical 4
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