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Credit where credit’s due

= Ruth King, Byron Morgan, Steve Brooks (our workshops and Bayesian analysis for
population ecology book).

= Richard McElreath (Statistical rethinking book and lecture videos).
= Jim Albert and Jingchen Hu (Probability and Bayesian modelling book).

= Materials shared by Tristan Marh, Jason Matthiopoulos, Francisco Rodriguez
Sanchez, Kerrie Mengersen and Mark Lai.


https://www.maths.ed.ac.uk/~rking33/Book-website/index.html
https://www.maths.ed.ac.uk/~rking33/Book-website/index.html
https://github.com/rmcelreath/statrethinking_winter2019
https://bayesball.github.io/BOOK/probability-a-measurement-of-uncertainty.html
https://www.tjmahr.com/
https://www.gla.ac.uk/researchinstitutes/bahcm/staff/jasonmatthiopoulos/
https://frodriguezsanchez.net/
https://frodriguezsanchez.net/
https://staff.qut.edu.au/staff/k.mengersen
https://quantscience.rbind.io/

Slides, code and data

= All material prepared with R.
= R Markdown used to write reproducible material.
» Dedicated website https://oliviergimenez.github.io/bayesian-stats-with-R/.


https://oliviergimenez.github.io/bayesian-stats-with-R/

= Try and demystify Bayesian statistics, and what we call MCMC.
Make the difference between Bayesian and Frequentist analyses.

Understand the Methods section of ecological papers doing Bayesian stuff.
= Run Bayesian analyses, safely hopefully.






What is on our plate?

An introduction to Bayesian inference

The likelihood

Bayesian analyses by hand

A detour to explore priors

Markov chains Monte Carlo methods (MCMC)
Bayesian analyses in R with the Jags software
Contrast scientific hypotheses with model selection
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Heterogeneity and multilevel models (aka mixed models)
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A Bayesian approach to regression, ANOVA,

mixed models and related analyses



Doing Bayesian
Data Analysis

A Tutorial with R, JAGS, and Stan

John K. Kruschke
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Texts in Statistical Science

Statistical Rethinking

A Bayesian Course
with Examples in R and Stan
SECOND EDITION
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Data Analysis

Using Regression and
Multilevel/Hierarchical
Models

ANDREW GELMAN
JENNIFER HILL

12



Bayesian Data Analysis

Third Edition
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Andrew Gelman, John B. Carlin, Hal S. Stern,
David B. Dunson, Aki Vehtari, and Donald B. Rubin

Free at http://www.stat.columbia.edu/~gelman/book/
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What is Bayesian inference?







A reminder on conditional probabilities

= Pr(A| B): Probability of A given B
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A reminder on conditional probabilities

= Pr(A| B): Probability of A given B

= The ordering matters: Pr(A | B) is not the same as Pr(B | A).

Pr(A and B)

« PrlA|B) = =55
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HOW TO CURE VAMPIRES?




Screening for vampirism

= The chance of the test being positive given you are a vampire is
Pr(+|vampire) = 0.90 (sensitivity).
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Screening for vampirism

= The chance of the test being positive given you are a vampire is
Pr(+|vampire) = 0.90 (sensitivity).

= The chance of a negative test given you are mortal is Pr(—|mortal) = 0.95
(specificity).
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What is the question?

= From the perspective of the test: Given a person is a vampire, what is the
probability that the test is positive? Pr(+4|vampire) = 0.90.
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= From the perspective of a person: Given that the test is positive, what is the
probability that this person is a vampire? Pr(vampire|+) =7
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What is the question?

= From the perspective of the test: Given a person is a vampire, what is the
probability that the test is positive? Pr(+4|vampire) = 0.90.

= From the perspective of a person: Given that the test is positive, what is the
probability that this person is a vampire? Pr(vampire|+) =7

= Assume that vampires are rare, and represent only 0.1% of the population. This
means that Pr(vampire) = 0.001.
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What is the answer? Bayes’ theorem to the rescue!
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What is the answer? Bayes’ theorem to the rescue!
+) 0.009
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Pr(vampire and +) =
Pr(vampire) Pr(4-|vampire) = 0.0009

Pr(4) = 0.0009 + 0.04995 = 0.05085

= Pr(vampire|+) = 0.0009/0.05085 =
.02

o
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Your turn: Practical 1




Bayes’ theorem

= A theorem about conditional P ( P\/I)

(P\

probabilities.

« Pr(B|A) = Pr(A| B) Pr(B) /J(A('B) e

Pr(A)
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Bayes’ theorem

= Easy to mess up with letters. Might be easier to remember when written like this:

Pr(data | hypothesis) Pr(hypothesis)
Pr(data)

Pr(hypothesis | data) =
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Bayes’ theorem

= Easy to mess up with letters. Might be easier to remember when written like this:

Pr(data | hypothesis) Pr(hypothesis)
Pr(data)

Pr(hypothesis | data) =

= The "hypothesis” is typically something unobserved or unknown. It's what you
want to learn about using the data.
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Bayes’ theorem

= Easy to mess up with letters. Might be easier to remember when written like this:

Pr(data | hypothesis) Pr(hypothesis)

Pr(hypothesis | data) = Pr(data)
r

= The "hypothesis” is typically something unobserved or unknown. It's what you
want to learn about using the data.

= For regression models, the “hypothesis” is a parameter (intercept, slopes or error
terms).

= Bayes theorem tells you the probability of the hypothesis given the data.
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What is doing science after all?

How plausible is some hypothesis given the data?

Pr(data | hypothesis) Pr(hypothesis)

Pr(hypothesis | data) = Pr(data)
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Why is Bayesian statistics not the default?

= Due to practical problems of implementing the Bayesian approach, and some wars
of male statisticians's egos, little advance was made for over two centuries.
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Why is Bayesian statistics not the default?

= Due to practical problems of implementing the Bayesian approach, and some wars

of male statisticians's egos, little advance was made for over two centuries.

= Recent advances in computational power coupled with the development of new
methodology have led to a great increase in the application of Bayesian methods

within the last two decades.
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Frequentist versus Bayesian

= Typical stats problems involve estimating parameter 6 with available data.
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the parameters are fixed, but have unknown values to be estimated.
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Frequentist versus Bayesian

= Typical stats problems involve estimating parameter 6 with available data.

= The frequentist approach (maximum likelihood estimation — MLE) assumes that
the parameters are fixed, but have unknown values to be estimated.

= Classical estimates generally provide a point estimate of the parameter of interest.

= The Bayesian approach assumes that the parameters are not fixed but have some
fixed unknown distribution - a distribution for the parameter.

24



What is the Bayesian approach?

= The approach is based upon the idea that the experimenter begins with some prior
beliefs about the system.
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What is the Bayesian approach?

= The approach is based upon the idea that the experimenter begins with some prior
beliefs about the system.

= And then updates these beliefs on the basis of observed data.
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What is the Bayesian approach?

= The approach is based upon the idea that the experimenter begins with some prior
beliefs about the system.

= And then updates these beliefs on the basis of observed data.

= This updating procedure is based upon the Bayes' Theorem:

Pr(B | A) Pr(A)

Pr(A|B) = =~
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What is the Bayesian approach?

= Schematically if A= 60 and B = data, then
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What is the Bayesian approach?

= Schematically if A= 60 and B = data, then

= The Bayes' theorem

Pr(B | A) Pr(A)
Pr(B)

Pr(A| B) =
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What is the Bayesian approach?

= Schematically if A= 60 and B = data, then

= The Bayes' theorem

Pr(B | A) Pr(A)
Pr(B)

Pr(A| B) =
= Translates into:

Pr(data | ) Pr(6)
Pr(data)

Pr(6 | data) =
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Bayes’ theorem

0
Pr(0 | data) Pr(data | 8) Pr(0)
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Bayes’ theorem

Pr(data | 6) Pr(0)

Pr(0 | data) =

= Posterior distribution: Represents what you know after having seen the data. The
basis for inference, a distribution, possibly multivariate if more than one parameter

(0).
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Bayes’ theorem

Pr(data | 6) Pr(0)

Pr(0 | data) =

= Posterior distribution: Represents what you know after having seen the data. The
basis for inference, a distribution, possibly multivariate if more than one parameter

(0).

= Likelihood: We know that quantity, same as in the MLE approach.
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Bayes’ theorem

Pr(data | 6) Pr(0
Pr(0 | data) = ek | §) P

= Posterior distribution: Represents what you know after having seen the data. The
basis for inference, a distribution, possibly multivariate if more than one parameter

(9).
= Likelihood: We know that quantity, same as in the MLE approach.

= Prior distribution: Represents what you know before seeing the data. The source of
much discussion about the Bayesian approach.
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Bayes’ theorem

Pr(data | 6) Pr(0
Pr(0 | data) = ek | §) P

= Posterior distribution: Represents what you know after having seen the data. The
basis for inference, a distribution, possibly multivariate if more than one parameter

(0).

= Likelihood: We know that quantity, same as in the MLE approach.

= Prior distribution: Represents what you know before seeing the data. The source of
much discussion about the Bayesian approach.

" . Possibly high-dimensional integral, difficult if
not impossible to calculate. This is one of the reasons why we need simulation

(MCMC) methods - more soon.
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GIVEN THESE PREVALENCES,
IS 1T LIKELY THAT THE TEST
RESULT IS A FALSE POSITWE?

WELL, THIS CHAPTER IS ON
BAYES' THEOREM, SO YES.

-

SOMETIMES, IF YOU UNDERSTAND
BAYES' THEOREM WELL ENOUGH,
YOU DON'T NEED IT.
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