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Multilevel (aka mixed-effect) models
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What are multilevel models?

Multilevel models include both fixed and random effects.

= Random effects are statistical parameters that attempt to explain noise caused
by clusters of the population you are trying to model.

= A multilevel model assumes that the dataset being analysed consists of a
hierarchy of different populations whose differences relate to that hierarchy.

= Measurement that come in clusters or groups.

= Come up with examples of clusters or groups.



Clusters might be:

= Classrooms within schools

= Students within classrooms

= Chapters within books

= [ndividuals within populations

= Populations within species

= Trajectories within individuals

= Fishes within tanks

= Frogs within ponds

= PhD applicants in doctoral schools

= Nations in continents

= Sex or age are not clusters per se (if we were to sample again, we would take the
same levels, e.g. male/female and young/old)
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Why do we need multilevel models?

= Model the clustering itself.
= Interested in variance components (environmental vs. genetic variance).

= Control for bias due to pseudoreplication (time, space, individual).



McElreath’s explanation of multilevel models

= Fixed-effect models have amnesia.



McElreath’s explanation of multilevel models

= Fixed-effect models have amnesia.

= Every new cluster (individual, species, classroom) is a new world.



McElreath’s explanation of multilevel models

» Fixed-effect models have amnesia.
= Every new cluster (individual, species, classroom) is a new world.

= No information passed among clusters.



McElreath’s explanation of multilevel models

Fixed-effect models have amnesia.

= Every new cluster (individual, species, classroom) is a new world.

= No information passed among clusters.

Multilevel models remember and pool information. They have memory.



McElreath’s explanation of multilevel models

= Fixed-effect models have amnesia.

= Every new cluster (individual, species, classroom) is a new world.

= No information passed among clusters.

= Multilevel models remember and pool information. They have memory.

= Properties of clusters come from a population.



McElreath’s explanation of multilevel models

= Fixed-effect models have amnesia.

= Every new cluster (individual, species, classroom) is a new world.

= No information passed among clusters.

= Multilevel models remember and pool information. They have memory.
= Properties of clusters come from a population.

= |f previous clusters improve your guess about a new cluster, you want to use
pooling.



Plant experiment in the field at CEFE

Courtesy of Pr Eleni Kazakou



Number of grains per species (cluster) as a function of biomass
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GLM with complete pooling

Y; ~ Distribution(mean;) [likelihood]
link(mean);, = a+ 3 x; [linear model]
a ~ to be determined [prior for intercept]
B ~ to be determined [prior for slope]

Model with complete pooling. All clusters the same.



GLM with no pooling

Y; ~ Distribution(mean,) [likelihood]
link(mean); = acLysterj] + 8 Xi [linear model]
aj ~ to be determined [prior for intercept]
[ ~ to be determined [prior for slope]

Model with no pooling. All clusters unrelated (fixed effect).



GLMM or GLM with partial pooling

Y; ~ Distribution(mean;) [likelihood]
link(mean); = acLysTerp] + B Xi [linear model]
aj ~ Normal(a, o) [prior for varying intercepts]
& ~ to be determined [prior for population mean]
o ~ to be determined [prior for standard deviation]
[ ~ to be determined [prior for slope]

Model with partial pooling. Clusters are somehow related (random effect).

10



Back to the plant example



Model with complete pooling (all species are the same)

nseeds; ~ Normal(p;, o2) [likelihood]
pi = o+ [ biomass; [linear model]
a ~ Normal(0, 1000) [prior for intercept]
B ~ Normal(0, 1000) [prior for slope]
o ~ Uniform(0, 100) [prior for standard deviation]

11



Read in and manipulate data

# read in data

VMG <- read_csv2(here::here("slides","dat","VMG.csv")) %>%
mutate(Sp = as_factor(Sp), Vm = as.numeric(Vm))

nb of seeds

<- 1log(VMG$NGrTotest)

biomass

<= VMG$Vm

<- (x - mean(x))/sd(x)

species name

Sp <- VMG$Sp

# spectes label

FHOM N R < R

species <- as.numeric(Sp)

# spectes nmame

nbspecies <- length(levels(Sp))
# total nb of measurements

n <- length(y) 12



Specify the model in Jags

model <-
paste("
modelq{
for(i in 1:n){
y[i]l ~ dnorm(mulil, tau.y)
mul[i] <- a + b * x[i]
}
tau.y <- 1 / (sigma.y * sigma.y)
sigma.y ~ dunif(0,100)
a ~ dnorm(0,0.001)
b ~ dnorm(0,0.001)
}
")

writeLines(model,here: :here("slides","code","completepooling.bug"))

13



Prepare ingredients for running Jags

# data
allom.data <- list(y =y, n = n, x = x)

# initial values
initl <- list(a=rnorm(1), b=rnorm(1),sigma.y=runif (1))
init2 <- list(a=rnorm(1), b=rnorm(1),sigma.y=runif (1))

inits <- list(initl,init2)

# parameters to be estimated

allom.parameters <- c("a", "b", "sigma.y")

14



Run Jags

allom.1 <- jags(allom.data,
inits,
allom.parameters,
n.iter = 2500,
model.file = here::here("slides","code","completepooling.bug"),
n.chains = 2,
n.burn = 1000)

#> Comptling model graph

#> Resolving undeclared variables

#> Allocating nodes

#> Graph information:

#> Observed stochastic nodes: 488

#> Unobserved stochastic modes: 3
#> Total graph size: 1956
#>

#> Inittalizing model 15



Display results

allom.1

#> Inference for Bugs model at "/Users/oliviergimenez/Dropbox/0G/GITHUB/bayesian-stats-wit
#> 2 chains, each with 2500 tterations (first 1000 discarded)

#> mn.sims = 3000 iterations saved

#> mu.vect sd.vect 2.5 257 507 757 97.57 Rhat
#> a 13.928 0.475 12.963 13.611  13.938 14.250  14.840 1.001
#> b 3.589  0.470 2.686 3.267 3.596 3.897 4.526 1.001
#> sigma.y 10.432 0.331 9.817 10.203  10.416  10.642 11.134 1.004
#> deviance 3671.994  2.434 3669.240 3670.196 3671.342 3673.092 3678.467 1.009
#> n.eff

#> a 3000

#> b 3000

#> sigma.y 910

#> deviance 760

#>

#> For each parameter, n.eff is a crude measure of effective sample size,

#>

16
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).



Compare with Frequentist approach

freq_lm <- 1m(y ~ x, data = allom.data)
freq_1m

#>

#> Call:

#> lm(formula = y ~ =, data = allom.data)
#>

#> Coefficients:

#> (Intercept) z

#> 13.927 3.578

17



Number of seeds
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Model with partial pooling (species random effect)

Sp1l
Sp 2

Sp3

Sp4
Nb seeds /

biomass




Model with partial pooling (all species related in some way)

nseeds; ~ Normal(y;, o°) [likelihood]
Wi = Qspecies|i] T B biomass; [linear model]

aj ~ Normal(&, 0,) [prior for varying intercepts]

a ~ Normal(0, 1000) [prior for population mean]

o4 ~ Uniform(0, 100) [prior for 0]

8 ~ Normal(0, 1000) [prior for slope]

o ~ Uniform(0, 100) [prior for o]

20



Implementation in Jags

model <- paste("
model {
for (i in 1:n){
y[i]l ~ dnorm(mul[i], tau.y)
mul[i] <- alspecies[il] + b * x[i]
}
tau.y <- 1/ (sigma.y * sigma.y)
sigma.y ~ dunif (0, 100)
for (j in 1:nbspecies)q{
alj] ~ dnorm(mu.a, tau.a)
}
mu.a ~ dnorm(0, 0.001)
tau.a <- 1/(sigma.a * sigma.a)
sigma.a ~ dunif (0, 100)
b ~ dnorm (0, 0.001)
13D 21

writeLines(model,here: :here("slides","code","varint.bug"))



Prepare ingredients for running Jags

allom.data <- list(n = n,
nbspecies = nbspecies,
X = X,
y=7,
species = species)

initl <- list(a = rnorm(nbspecies), b = rnorm(1), mu.a = rnorm(1),
sigma.y = runif(1l), sigma.a=runif (1))
init2 <- list(a = rnorm(nbspecies), b = rnorm(1), mu.a = rnorm(1),

sigma.y = runif(l), sigma.a = runif(1))
inits <- list(initl,init2)

allom.parameters <- c("b", "mu.a","sigma.y", "sigma.a")

22



Run Jags

allom.2 <- jags(allom.data,
inits,
allom.parameters,
n.iter = 2500,
model.file = here::here("slides","code","varint.bug"),
n.chains = 2,
n.burn = 1000)

#> Comptling model graph

#> Resolving undeclared variables

#> Allocating nodes

#> Graph information:

#> Observed stochastic nodes: 488

#> Unobserved stochastic modes: 37
#> Total graph size: 2484
#>

#> Inittalizing model 23



Display results

allom.2

#> Inference for Bugs model at "/Users/oliviergimenez/Dropbox/0G/GITHUB/bayesian-stats-wit
#> 2 chains, each with 2500 tterations (first 1000 discarded)

#> n.sims

#>

#> b

#> mu.a

#> sigma.a

#> sigma.y

#> deviance
#>

#> b

#> mu.a

#> sigma.a

#> sigma.y

#> deviance
#>

= 3000 iterations saved
mu.vect sd.vect 2.57 257 507 75% 97.5%
0.481 0.235 0.003 0.327 0.485 0.641 0.924
14.516  1.920 10.674 13.258 14.484 15.800 18.363
10.973 1.438 8.576  10.013 10.837 11.799 14.274
3.070 0.104 2.867 3.001 3.071 3.135 3.280
2478.052  8.494 2463.382 2471.939 2477.310 2483.364 2496.411
n.eff
3000
3000
970
2600
3000

N R R R

Rhat
.001
.001
.003
.001
.001

24



Compare with Frequentist approach

library(lmed)

freq_lmm <- Imer(y ~ x + (1 | species), allom.data, REML = FALSE)
freq_lmm

#> Linear mized model fit by mazimum likelihood ['lmerMod']

#> Formula: y ~ ¢ + (1 | specties)

#> Data: allom.data

#> AIC BIC logLik devtance df.resid
#> 2652.606 2669.368 -1322.303 2644.606 484
#> Random effects:

#> Groups  Name Std.Dewv.

#> species (Intercept) 10.472

#> Restdual 3.058

#> Number of obs: 488, groups: species, 33
#> Fized Effects:
#> (Intercept) &

> . o
# 14.526 0.479 -



Compare

partial poolin —
complete pooling
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Model with no pooling (all species unrelated)

nseeds; ~ Normal(p;, o2) [likelihood]
i = Qspecies[i] + 3 biomass; [linear model]
a;j ~ Normal(0, 1000) [prior for intercepts|
B ~ Normal(0, 1000) [prior for slope]
o ~ Uniform(0, 100) [prior foro]

27



Implementation in Jags

model <- paste("
model {
for (i in 1:n){
y[i] ~ dnorm (mu[i], tau.y)
mul[i] <- al[species[i]] + b * x[i]
}
tau.y <- 1 / (sigma.y * sigma.y)
sigma.y ~ dunif (0, 100)
for (j in 1:nbspecies)q{
aljl ~ dnorm(0, 0.001)
}
b ~ dnorm(0,0.1)
13D

writeLines(model,here: :here("slides","code", "nopooling.bug"))

28



Prepare ingredients

allom.data <- list(n = n,
nbspecies = nbspecies,
X = X,
y=79,
species = species)

initl <- list(a
init2 <- list(a = rnorm(nbspecies), b = rnorm(1l), sigma.y = runif(1))
inits<-list(initl, init2)

rnorm(nbspecies), b = rnorm(1), sigma.y = runif(1))

allom.parameters <- c("a","b","sigma.y")

29



Run JAGS

allom.3 <- jags(data = allom.data,
inits = inits,
parameters.to.save = allom.parameters,
n.iter = 2500,
model.file = here::here("slides","code","nopooling.bug"),
n.chains = 2,
n.burn = 1000)

#> Comptling model graph

#> Resolving undeclared variables

#> Allocating nodes

#> Graph information:

#> Observed stochastic nodes: 488

#> Unobserved stochastic modes: 35
#> Total graph size: 2481
#>

#> Inittalizing model 30



Display results

allom.3$BUGSoutput$summary[c(1:4, 32:33, 34), -c(4,6)]

#> mean sd 2.5 507 97.57% Rhat n.eff
#> al1] 8.1493032 0.8366735 6.5547332 8.1440024 9.8056666 1.001352 2200
#> a[2] 30.7663345 0.9043055 29.0363830 30.7757908 32.5596575 1.000943 3000
#> a[3] 6.6158205 1.1409685 4.3211961 6.6068844 8.8678759 1.000816 3000
#> al4] 17.6300040 0.8037752 16.0493069 17.6157091 19.2201409 1.000725 3000
#> a[32] 6.3592679 0.7903879 4.7492959 6.3570281 7.9060671 1.000668 3000
#> a[33] 6.6446541 0.8017678 5.1032418 6.6644456 8.1955637 1.002338 900
#> b 0.4387732 0.2397934 -0.0381318 0.4401736 0.9027882 1.001761 1400

L L L N U
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Compare with Frequentist approach

Im(y ~ -1 + as.factor(species) + x, data = allom.data) %>%
broom: :tidy () %>%
slice(c(1:4, 32:33, 34))

#> # A tibble: 7Tz 5

#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 as. factor(species)1 8.17 0.824 9.92 3.92e- 21
#> 2 as. factor(species)2 30.8 0.895 34.4 1.67e-128
#> 3 as. factor(species)3 6.67 1.16 5.76 1.56e- 8
#> 4 as. factor(species)y 17.6 0.791 22.3 b5.32e- 75
#> 5 as. factor(species)32 6.38 0.797 8.01 9.95e- 15
#> 6 as. factor(species)33 6.63 0.800 8.29 1.33e- 15
7 0.441 0.243 1.81 7.06e- 2 2



Compare

partial poolin —
complete pooling ——
no pooling
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Bonus: Model with varying
intercept and varying slope




model <-
paste("
# varying-intercept, varying-slope allometry model

# with Vm as a species predictor

model {
for (i in 1:n){
y[i] ~ dnorm (muli], tau.y)

mul[i] <- alspecies[i]] + blspecies[i]] * x[i]

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (O, 100) 34



for (j in 1:nbspecies){
aljl] ~ dnorm (mu.a, tau.a)
b[j] ~ dnorm (mu.b, tau.b)
}

mu.a ~ dnorm (O, .001)
tau.a <- pow(sigma.a, -2)
sigma.a ~ dunif (0, 100)
mu.b ~ dnorm (0, .001)
tau.b <- pow(sigma.b, -2)
sigma.b ~ dunif (0, 100)

"y



Prepare ingredients

initl <- list(a = rnorm(nbspecies), b = rnorm(nbspecies),
mu.a = rnorm(1), mu.b = rnorm(1),
sigma.y = runif(l), sigma.a = runif(1l), sigma.b
init2 <- list(a = rnorm(nbspecies), b = rnorm(nbspecies),
mu.a = rnorm(1), mu.b = rnorm(1l),
sigma.y = runif(l), sigma.a = runif(1l), sigma.b
inits <- list(initl, init2)

allom.parameters <- ¢ ("a","b","mu.a","mu.b","sigma.y","sigma.

runif (1))

runif (1))

a","sigma.b"

36



Run Jags

allom.4 <- jags(data = allom.data,
inits = inits,
parameters.to.save = allom.parameters,
n.iter = 2500,
model.file = here::here("slides","code","varintvarslope.bug"),
n.chains = 2,
n.burn = 1000)

#> Comptling model graph

#> Resolving undeclared variables

#> Allocating nodes

#> Graph information:

#> Observed stochastic nodes: 488

#> Unobserved stochastic nodes: 71
#> Total graph size: 2521
#>

#> Inittalizing model 37



Display results

round(allom.4$BUGSoutput$summary[c(1:2, 32:33, 34:35, 65:66, 68:72), -c(4,6)]1,2)
#> mean sd 2.5) 507 97.5% Rhat n.eff

#> al1] 777 1.27  5.29 7.77 10.29 1.00 2300
#> al[2]  25.26 6.09 12.40 25.85 35.59 1.47 7
#> a[32]  8.31 1.92 4.67 8.27 11.89 1.03 57
#> a[33] 13.47 3.84 5.92 13.61 21.18 1.07 140
#> b[1] 1.63 2.75 -3.76 1.64 7.01 1.00 1000
#> b[2]  -9.07 10.59 -31.56 -8.02 8.63 1.50 6
#> b[32]  5.07 4.42 -3.27 5.06 13.48 1.04 47
#> b[33] 13.72 7.41 -0.89 14.03 28.46 1.05 720
#> mu.a  16.62 1.95 12.67 16.61 20.39 1.00 3000
#> mu.b 4.97 2.40 0.34 4.90 9.82 1.01 430
#> sigma.a 10.70 1.46 8.25 10.56 13.97 1.00 3000
#> sigma.b 12.21 2.58 8.23 11.81 18.28 1.32 9
#> sigma.y 2.66 0.09 2.49 2.66 2.86 1.01 120

38



Compare with Frequentist approach

freq_1mm2 <- Imer (y ~ x + (1 + x | species), allom.data, REML = FALSE)
freq_lmm2

#> Linear mized model fit by mazimum likelihood ['lmerMod']

#> Formula: y ~ x + (1 + © | species)

#> Data: allom.data

#> AIC BIC logLik deviance df.resid
#> 2609.941 2635.083 -1298.971 2597.941 482
#> Random effects:

#> Groups  Name Std.Dev. Corr

#> species (Intercept) 10.409

#> T 11.325 0.22

#> Restdual 2.652

#> Number of obs: 488, groups: species, 33
#> Fized Effects:
#> (Intercept) &

#> 16.866 5.244 2



Compare with Frequentist approach - with no correlation

freq_lmm_wocorr <- lmer(y ~ x + (1 | species) +
(0 + x | species), allom.data, REML = FALSE)
freq_lmm_wocorr
#> Linear mized model fit by mazimum likelihood ['lmerMod']
#> Formula: y ~ ¢ + (1 | species) + (0 + ¢ | species)
#> Data: allom.data

#> AIC BIC logLtk deviance df.resid
#> 2609.086 2630.037 -1299.543 2599.086 483
#> Random effects:

#> Groups Name Std.Dev.

#> specties (Intercept) 10.203

#> species.l x 10.632

#> Residual 2.661

#> Number of obs: 488, groups: species, 33
#> Fized Effects:

#> (Intercept) &z

#> 16.688 4.929

40



Shrinkage results from pooling of information

= Varying effect estimates shrink towards mean (&).
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Shrinkage results from pooling of information
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Shrinkage results from pooling of information

= Varying effect estimates shrink towards mean (&).

= Avoids underfitting as in complete pooling model (null variance) or overfitting as
in no pooling model (infinite variance).

= Varying effects: adaptive regularization through cluster variance estimation.
= Further from mean, more shrinkage.

= Fewer data in cluster, more shrinkage.

41



Multilevel models are awesome!




Multilevel models in a nutshell

= Shrinkage via pooling is desirable. The no-pooling model overstates variation
among clusters and makes the individual clusters look more different than they are
(overfitting). The complete-pooling model simply ignores the variation among
clusters (underfitting).
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= We may consider varying slopes. We'd need to deal with correlations between
intercept and slope random effects. Open a whole new world with spatial (or time)
autocorrelation, phylogenetic regressions, quantitative genetics, network models.
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Multilevel models in a nutshell

= Shrinkage via pooling is desirable. The no-pooling model overstates variation
among clusters and makes the individual clusters look more different than they are
(overfitting). The complete-pooling model simply ignores the variation among

clusters (underfitting).

= We can generalize to a wider population. Is there an allometry relationship
between number of seeds and biomass?

= We may consider varying slopes. We'd need to deal with correlations between
intercept and slope random effects. Open a whole new world with spatial (or time)
autocorrelation, phylogenetic regressions, quantitative genetics, network models.

= We may include predictors at the cluster level. Imagine we know something
about functional traits, and wish to determine whether some species-to-species

variation in the allometry relationship is explained by these traits.
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Your turn: Practical 8




Conclusions




Take-home messages about Bayesian statistics

= Frees the modeler in you (M. Kéry)
= Uses probability to quantify uncertainty for everything (propagation of uncertainty).
= Allows use of prior information (‘better’ estimates).
= Can fit complex (hierarchical) models with same MCMC algorithms.
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= Can fit complex (hierarchical) models with same MCMC algorithms.

= With great tools come great responsabilities
= Checking convergence is painful.
= Specifying priors might be tricky.
= Model adequacy should be checked (posterior predictive checks - not covered).
= Computational burden can be high (see function R2jags: : jags.parallel() and
package ‘jagsUl".

43


https://github.com/kenkellner/jagsui

Take-home messages about Bayesian statistics

= Frees the modeler in you (M. Kéry)
= Uses probability to quantify uncertainty for everything (propagation of uncertainty).
= Allows use of prior information (‘better’ estimates).
= Can fit complex (hierarchical) models with same MCMC algorithms.

= With great tools come great responsabilities
= Checking convergence is painful.
= Specifying priors might be tricky.
= Model adequacy should be checked (posterior predictive checks - not covered).
= Computational burden can be high (see function R2jags: : jags.parallel() and
package ‘jagsUl".
= So what?
= Make an informed and pragmatic choice.

= Are you after complexity, speed, uncertainties, etc?
= Talk to colleagues. 43
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Chelsea Parlett-Pelleriti

Why did you become a Bayesian, wrong answers only



https://twitter.com/ChelseaParlett/status/1282798645453000704
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