
Bayesian statistics with R
8. Heterogeneity and multilevel models (aka mixed models)

Olivier Gimenez
November-December 2024

1



Multilevel (aka mixed-effect) models



What are multilevel models?

• Multilevel models include both fixed and random effects.

• Random effects are statistical parameters that attempt to explain noise caused by
clusters of the population you are trying to model.

• A multilevel model assumes that the dataset being analysed consists of a hierarchy
of different populations whose differences relate to that hierarchy.

• Measurement that come in clusters or groups.

• Come up with examples of clusters or groups.

2



What are multilevel models?

• Multilevel models include both fixed and random effects.

• Random effects are statistical parameters that attempt to explain noise caused by
clusters of the population you are trying to model.

• A multilevel model assumes that the dataset being analysed consists of a hierarchy
of different populations whose differences relate to that hierarchy.

• Measurement that come in clusters or groups.

• Come up with examples of clusters or groups.

2



What are multilevel models?

• Multilevel models include both fixed and random effects.

• Random effects are statistical parameters that attempt to explain noise caused by
clusters of the population you are trying to model.

• A multilevel model assumes that the dataset being analysed consists of a hierarchy
of different populations whose differences relate to that hierarchy.

• Measurement that come in clusters or groups.

• Come up with examples of clusters or groups.

2



What are multilevel models?

• Multilevel models include both fixed and random effects.

• Random effects are statistical parameters that attempt to explain noise caused by
clusters of the population you are trying to model.

• A multilevel model assumes that the dataset being analysed consists of a hierarchy
of different populations whose differences relate to that hierarchy.

• Measurement that come in clusters or groups.

• Come up with examples of clusters or groups.

2



What are multilevel models?

• Multilevel models include both fixed and random effects.

• Random effects are statistical parameters that attempt to explain noise caused by
clusters of the population you are trying to model.

• A multilevel model assumes that the dataset being analysed consists of a hierarchy
of different populations whose differences relate to that hierarchy.

• Measurement that come in clusters or groups.

• Come up with examples of clusters or groups.

2



Clusters might be:

• Classrooms within schools
• Students within classrooms
• Chapters within books
• Individuals within populations
• Populations within species
• Trajectories within individuals
• Fishes within tanks
• Frogs within ponds
• PhD applicants in doctoral schools
• Nations in continents
• Sex or age are not clusters per se (if we were to sample again, we would take the

same levels, e.g. male/female and young/old)

3



Why do we need multilevel models?

• Model the clustering itself.

• Interested in variance components (environmental vs. genetic variance).

• Control for bias due to pseudoreplication (time, space, individual).

4



Why do we need multilevel models?

• Model the clustering itself.

• Interested in variance components (environmental vs. genetic variance).

• Control for bias due to pseudoreplication (time, space, individual).

4



Why do we need multilevel models?

• Model the clustering itself.

• Interested in variance components (environmental vs. genetic variance).

• Control for bias due to pseudoreplication (time, space, individual).

4



McElreath’s explanation of multilevel models

• Fixed-effect models have amnesia.

• Every new cluster (individual, species, classroom) is a new world.

• No information passed among clusters.

• Multilevel models remember and pool information. They have memory.

• Properties of clusters come from a population.

• If previous clusters improve your guess about a new cluster, you want to use
pooling.

5



McElreath’s explanation of multilevel models

• Fixed-effect models have amnesia.

• Every new cluster (individual, species, classroom) is a new world.

• No information passed among clusters.

• Multilevel models remember and pool information. They have memory.

• Properties of clusters come from a population.

• If previous clusters improve your guess about a new cluster, you want to use
pooling.

5



McElreath’s explanation of multilevel models

• Fixed-effect models have amnesia.

• Every new cluster (individual, species, classroom) is a new world.

• No information passed among clusters.

• Multilevel models remember and pool information. They have memory.

• Properties of clusters come from a population.

• If previous clusters improve your guess about a new cluster, you want to use
pooling.

5



McElreath’s explanation of multilevel models

• Fixed-effect models have amnesia.

• Every new cluster (individual, species, classroom) is a new world.

• No information passed among clusters.

• Multilevel models remember and pool information. They have memory.

• Properties of clusters come from a population.

• If previous clusters improve your guess about a new cluster, you want to use
pooling.

5



McElreath’s explanation of multilevel models

• Fixed-effect models have amnesia.

• Every new cluster (individual, species, classroom) is a new world.

• No information passed among clusters.

• Multilevel models remember and pool information. They have memory.

• Properties of clusters come from a population.

• If previous clusters improve your guess about a new cluster, you want to use
pooling.

5



McElreath’s explanation of multilevel models

• Fixed-effect models have amnesia.

• Every new cluster (individual, species, classroom) is a new world.

• No information passed among clusters.

• Multilevel models remember and pool information. They have memory.

• Properties of clusters come from a population.

• If previous clusters improve your guess about a new cluster, you want to use
pooling.

5



Plant experiment in the field at CEFE

Courtesy of Pr Eleni Kazakou
6



Number of grains per species (cluster) as a function of biomass

Biomass

N
um

be
r 

of
 g

ra
in

s 
(lo

g 
tr

an
sf

or
m

ed
)

0

10

20

30

0 10 20 30 40

AGREUP ARESER

0 10 20 30 40

ARIROT AVEBAR

0 10 20 30 40

BRAPHO BROERE

0 10 20 30 40

BROMAD CALNEP

0 10 20 30 40

CENASP

CONARV CONCAN CONSUM CREFOE CYNDAC DACGLO DAUCAR DIPFUL

0

10

20

30

EROCIC
0

10

20

30

GERROT INUCON LOLITA MEDLUP MEDMIN ORLGRA PICHIE SANMIN SEDNIC

TORJAP

0 10 20 30 40

TORMAX TRIANG

0 10 20 30 40

VERPER VICHYB

0 10 20 30 40

0

10

20

30

VICSAT

7



GLM with complete pooling

Yi ∼ Distribution(meani) [likelihood]
link(mean)i = α + β xi [linear model]

α ∼ to be determined [prior for intercept]
β ∼ to be determined [prior for slope]

Model with complete pooling. All clusters the same.

8



GLM with no pooling

Yi ∼ Distribution(meani) [likelihood]
link(mean)i = αCLUSTER[i] + β xi [linear model]

αj ∼ to be determined [prior for intercept]
β ∼ to be determined [prior for slope]

Model with no pooling. All clusters unrelated (fixed effect).

9



GLMM or GLM with partial pooling

Yi ∼ Distribution(meani) [likelihood]
link(mean)i = αCLUSTER[i] + β xi [linear model]

αj ∼ Normal(ᾱ, σ) [prior for varying intercepts]
ᾱ ∼ to be determined [prior for population mean]
σ ∼ to be determined [prior for standard deviation]
β ∼ to be determined [prior for slope]

Model with partial pooling. Clusters are somehow related (random effect).

10



Back to the plant example



Model with complete pooling (all species are the same)

nseedsi ∼ Normal(µi , σ2) [likelihood]
µi = α + β biomassi [linear model]
α ∼ Normal(0, 1000) [prior for intercept]
β ∼ Normal(0, 1000) [prior for slope]
σ ∼ Uniform(0, 100) [prior for standard deviation]

11



Read in and manipulate data

# read in data
VMG <- read_csv2(here::here("slides","dat","VMG.csv")) %>%

mutate(Sp = as_factor(Sp), Vm = as.numeric(Vm))
# nb of seeds
y <- log(VMG$NGrTotest)
# biomass
x <- VMG$Vm
x <- (x - mean(x))/sd(x)
# species name
Sp <- VMG$Sp
# species label
species <- as.numeric(Sp)
# species name
nbspecies <- length(levels(Sp))
# total nb of measurements
n <- length(y)

12



Specify the model in Jags

model <-
paste("
model{
for(i in 1:n){

y[i] ~ dnorm(mu[i], tau.y)
mu[i] <- a + b * x[i]
}

tau.y <- 1 / (sigma.y * sigma.y)
sigma.y ~ dunif(0,100)
a ~ dnorm(0,0.001)
b ~ dnorm(0,0.001)
}
")
writeLines(model,here::here("slides","code","completepooling.bug"))

13



Prepare ingredients for running Jags

# data
allom.data <- list(y = y, n = n, x = x)

# initial values
init1 <- list(a=rnorm(1), b=rnorm(1),sigma.y=runif(1))
init2 <- list(a=rnorm(1), b=rnorm(1),sigma.y=runif(1))
inits <- list(init1,init2)

# parameters to be estimated
allom.parameters <- c("a", "b", "sigma.y")

14



Run Jags

allom.1 <- jags(allom.data,
inits,
allom.parameters,
n.iter = 2500,
model.file = here::here("slides","code","completepooling.bug"),
n.chains = 2,
n.burn = 1000)

#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 488
#> Unobserved stochastic nodes: 3
#> Total graph size: 1956
#>
#> Initializing model 15



Display results

allom.1
#> Inference for Bugs model at "/Users/oliviergimenez/Dropbox/OG/GITHUB/bayesian-stats-with-R/slides/code/completepooling.bug", fit using jags,
#> 2 chains, each with 2500 iterations (first 1000 discarded)
#> n.sims = 3000 iterations saved. Running time = 0.503 secs
#> mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat
#> a 13.916 0.469 12.958 13.613 13.929 14.230 14.829 1.001
#> b 3.570 0.479 2.634 3.246 3.576 3.895 4.496 1.002
#> sigma.y 10.429 0.334 9.811 10.195 10.417 10.652 11.076 1.001
#> deviance 3672.032 2.496 3669.232 3670.253 3671.394 3673.124 3678.600 1.001
#> n.eff
#> a 3000
#> b 1000
#> sigma.y 2400
#> deviance 3000
#>
#> For each parameter, n.eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
#>
#> DIC info (using the rule: pV = var(deviance)/2)
#> pV = 3.1 and DIC = 3675.1
#> DIC is an estimate of expected predictive error (lower deviance is better).

16



Compare with Frequentist approach

freq_lm <- lm(y ~ x, data = allom.data)
freq_lm
#>
#> Call:
#> lm(formula = y ~ x, data = allom.data)
#>
#> Coefficients:
#> (Intercept) x
#> 13.927 3.578

17



Output
complete pooling

Biomass

N
um

be
r 

of
 s

ee
ds

0

10

20

30

0 2 4 6 8

AGREUP ARESER

0 2 4 6 8

ARIROT AVEBAR

0 2 4 6 8

BRAPHO BROERE

0 2 4 6 8

BROMAD CALNEP

0 2 4 6 8

CENASP

CONARV CONCAN CONSUM CREFOE CYNDAC DACGLO DAUCAR DIPFUL

0

10

20

30

EROCIC
0

10

20

30

GERROT INUCON LOLITA MEDLUP MEDMIN ORLGRA PICHIE SANMIN SEDNIC

TORJAP

0 2 4 6 8

TORMAX TRIANG

0 2 4 6 8

VERPER VICHYB

0 2 4 6 8

0

10

20

30

VICSAT

18



Model with partial pooling (species random effect)

19



Model with partial pooling (all species related in some way)

nseedsi ∼ Normal(µi , σ2) [likelihood]
µi = αspecies[i] + β biomassi [linear model]
αj ∼ Normal(ᾱ, σα) [prior for varying intercepts]
ᾱ ∼ Normal(0, 1000) [prior for population mean]

σα ∼ Uniform(0, 100) [prior for σα]
β ∼ Normal(0, 1000) [prior for slope]
σ ∼ Uniform(0, 100) [prior for σ]

20



Implementation in Jags

model <- paste("
model {

for (i in 1:n){
y[i] ~ dnorm(mu[i], tau.y)
mu[i] <- a[species[i]] + b * x[i]

}
tau.y <- 1/ (sigma.y * sigma.y)
sigma.y ~ dunif(0, 100)
for (j in 1:nbspecies){

a[j] ~ dnorm(mu.a, tau.a)
}
mu.a ~ dnorm(0, 0.001)
tau.a <- 1/(sigma.a * sigma.a)
sigma.a ~ dunif(0, 100)
b ~ dnorm (0, 0.001)

}")
writeLines(model,here::here("slides","code","varint.bug"))

21



Prepare ingredients for running Jags

allom.data <- list(n = n,
nbspecies = nbspecies,
x = x,
y = y,
species = species)

init1 <- list(a = rnorm(nbspecies), b = rnorm(1), mu.a = rnorm(1),
sigma.y = runif(1), sigma.a=runif(1))

init2 <- list(a = rnorm(nbspecies), b = rnorm(1), mu.a = rnorm(1),
sigma.y = runif(1), sigma.a = runif(1))

inits <- list(init1,init2)
allom.parameters <- c("b", "mu.a","sigma.y", "sigma.a")

22



Run Jags

allom.2 <- jags(allom.data,
inits,
allom.parameters,
n.iter = 2500,
model.file = here::here("slides","code","varint.bug"),
n.chains = 2,
n.burn = 1000)

#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 488
#> Unobserved stochastic nodes: 37
#> Total graph size: 2484
#>
#> Initializing model 23



Display results

allom.2
#> Inference for Bugs model at "/Users/oliviergimenez/Dropbox/OG/GITHUB/bayesian-stats-with-R/slides/code/varint.bug", fit using jags,
#> 2 chains, each with 2500 iterations (first 1000 discarded)
#> n.sims = 3000 iterations saved. Running time = 0.507 secs
#> mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat
#> b 0.478 0.240 -0.009 0.318 0.480 0.644 0.938 1.001
#> mu.a 14.447 1.954 10.652 13.160 14.437 15.700 18.219 1.001
#> sigma.a 11.126 1.503 8.684 10.103 10.952 11.979 14.592 1.001
#> sigma.y 3.075 0.104 2.881 3.004 3.074 3.147 3.274 1.003
#> deviance 2478.387 8.681 2463.208 2472.329 2477.759 2483.696 2498.167 1.001
#> n.eff
#> b 3000
#> mu.a 3000
#> sigma.a 3000
#> sigma.y 670
#> deviance 3000
#>
#> For each parameter, n.eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
#>
#> DIC info (using the rule: pV = var(deviance)/2)
#> pV = 37.7 and DIC = 2516.1
#> DIC is an estimate of expected predictive error (lower deviance is better).

24



Compare with Frequentist approach

library(lme4)
freq_lmm <- lmer(y ~ x + (1 | species), allom.data, REML = FALSE)
freq_lmm
#> Linear mixed model fit by maximum likelihood ['lmerMod']
#> Formula: y ~ x + (1 | species)
#> Data: allom.data
#> AIC BIC logLik deviance df.resid
#> 2652.606 2669.368 -1322.303 2644.606 484
#> Random effects:
#> Groups Name Std.Dev.
#> species (Intercept) 10.472
#> Residual 3.058
#> Number of obs: 488, groups: species, 33
#> Fixed Effects:
#> (Intercept) x
#> 14.526 0.479 25



Compare complete pooling vs partial pooling

Biomass

N
um

be
r 

of
 s

ee
ds

0

10

20

30

0 2 4 6 8

AGREUP ARESER

0 2 4 6 8

ARIROT AVEBAR

0 2 4 6 8

BRAPHO BROERE

0 2 4 6 8

BROMAD CALNEP

0 2 4 6 8

CENASP

CONARV CONCAN CONSUM CREFOE CYNDAC DACGLO DAUCAR DIPFUL

0

10

20

30

EROCIC
0

10

20

30

GERROT INUCON LOLITA MEDLUP MEDMIN ORLGRA PICHIE SANMIN SEDNIC

TORJAP

0 2 4 6 8

TORMAX TRIANG

0 2 4 6 8

VERPER VICHYB

0 2 4 6 8

0

10

20

30

VICSAT

partial pooling
complete pooling

26



Model with no pooling (all species unrelated)

nseedsi ∼ Normal(µi , σ2) [likelihood]
µi = αspecies[i] + β biomassi [linear model]
αj ∼ Normal(0, 1000) [prior for intercepts]
β ∼ Normal(0, 1000) [prior for slope]
σ ∼ Uniform(0, 100) [prior forσ]

27



Implementation in Jags

model <- paste("
model {

for (i in 1:n){
y[i] ~ dnorm (mu[i], tau.y)
mu[i] <- a[species[i]] + b * x[i]

}
tau.y <- 1 / (sigma.y * sigma.y)
sigma.y ~ dunif(0, 100)
for (j in 1:nbspecies){

a[j] ~ dnorm(0, 0.001)
}
b ~ dnorm(0,0.1)

}")
writeLines(model,here::here("slides","code","nopooling.bug"))

28



Prepare ingredients

allom.data <- list(n = n,
nbspecies = nbspecies,
x = x,
y = y,
species = species)

init1 <- list(a = rnorm(nbspecies), b = rnorm(1), sigma.y = runif(1))
init2 <- list(a = rnorm(nbspecies), b = rnorm(1), sigma.y = runif(1))
inits<-list(init1, init2)
allom.parameters <- c("a","b","sigma.y")

29



Run JAGS

allom.3 <- jags(data = allom.data,
inits = inits,
parameters.to.save = allom.parameters,
n.iter = 2500,
model.file = here::here("slides","code","nopooling.bug"),
n.chains = 2,
n.burn = 1000)

#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 488
#> Unobserved stochastic nodes: 35
#> Total graph size: 2481
#>
#> Initializing model 30



Display results

allom.3$BUGSoutput$summary[c(1:4, 32:33, 34), -c(4,6)]
#> mean sd 2.5% 50% 97.5% Rhat n.eff
#> a[1] 8.1886261 0.8185522 6.62396963 8.1864755 9.8189046 1.000750 3000
#> a[2] 30.7316032 0.8899398 29.05420239 30.7338143 32.4747557 1.002763 720
#> a[3] 6.6552896 1.1669822 4.43517720 6.6533508 9.0051123 1.001328 3000
#> a[4] 17.6224399 0.7857028 16.02560200 17.6325943 19.1593966 1.000878 3000
#> a[32] 6.3811281 0.8173090 4.77163480 6.3820607 8.0252336 1.001332 2200
#> a[33] 6.5981116 0.8124098 5.02335729 6.5979696 8.1669467 1.000697 3000
#> b 0.4516762 0.2398144 -0.03511515 0.4544029 0.9215743 1.001444 3000

31



Compare with Frequentist approach

lm(y ~ -1 + as.factor(species) + x, data = allom.data) %>%
broom::tidy() %>%
slice(c(1:4, 32:33, 34))

#> # A tibble: 7 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 as.factor(species)1 8.17 0.824 9.92 3.92e- 21
#> 2 as.factor(species)2 30.8 0.895 34.4 1.67e-128
#> 3 as.factor(species)3 6.67 1.16 5.76 1.56e- 8
#> 4 as.factor(species)4 17.6 0.791 22.3 5.32e- 75
#> 5 as.factor(species)32 6.38 0.797 8.01 9.95e- 15
#> 6 as.factor(species)33 6.63 0.800 8.29 1.33e- 15
#> 7 x 0.441 0.243 1.81 7.06e- 2 32



Compare complete pooling vs partial pooling vs no pooling

Biomass

N
um

be
r 

of
 s

ee
ds

0

10

20

30

0 2 4 6 8

AGREUP ARESER

0 2 4 6 8

ARIROT AVEBAR

0 2 4 6 8

BRAPHO BROERE

0 2 4 6 8

BROMAD CALNEP

0 2 4 6 8

CENASP

CONARV CONCAN CONSUM CREFOE CYNDAC DACGLO DAUCAR DIPFUL

0

10

20

30

EROCIC
0

10

20

30

GERROT INUCON LOLITA MEDLUP MEDMIN ORLGRA PICHIE SANMIN SEDNIC

TORJAP

0 2 4 6 8

TORMAX TRIANG

0 2 4 6 8

VERPER VICHYB

0 2 4 6 8

0

10

20

30

VICSAT

partial pooling
complete pooling
no pooling

33



Bonus: Model with varying intercept
and varying slope



Code: part 1

model <-
paste("
# varying-intercept, varying-slope allometry model
# with Vm as a species predictor

model {
for (i in 1:n){

y[i] ~ dnorm (mu[i], tau.y)
mu[i] <- a[species[i]] + b[species[i]] * x[i]

}

tau.y <- pow(sigma.y, -2)
sigma.y ~ dunif (0, 100)

...

34



Code: part 2

for (j in 1:nbspecies){
a[j] ~ dnorm (mu.a, tau.a)
b[j] ~ dnorm (mu.b, tau.b)

}

mu.a ~ dnorm (0, .001)
tau.a <- pow(sigma.a, -2)
sigma.a ~ dunif (0, 100)
mu.b ~ dnorm (0, .001)
tau.b <- pow(sigma.b, -2)
sigma.b ~ dunif (0, 100)

}
")
writeLines(model,here::here("slides","code","varintvarslope.bug"))

35



Prepare ingredients

init1 <- list(a = rnorm(nbspecies), b = rnorm(nbspecies),
mu.a = rnorm(1), mu.b = rnorm(1),
sigma.y = runif(1), sigma.a = runif(1), sigma.b = runif(1))

init2 <- list(a = rnorm(nbspecies), b = rnorm(nbspecies),
mu.a = rnorm(1), mu.b = rnorm(1),
sigma.y = runif(1), sigma.a = runif(1), sigma.b = runif(1))

inits <- list(init1, init2)
allom.parameters <- c ("a","b","mu.a","mu.b","sigma.y","sigma.a","sigma.b")

36



Run Jags

allom.4 <- jags(data = allom.data,
inits = inits,
parameters.to.save = allom.parameters,
n.iter = 2500,
model.file = here::here("slides","code","varintvarslope.bug"),
n.chains = 2,
n.burn = 1000)

#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 488
#> Unobserved stochastic nodes: 71
#> Total graph size: 2521
#>
#> Initializing model 37



Display results

round(allom.4$BUGSoutput$summary[c(1:2, 32:33, 34:35, 65:66, 68:72), -c(4,6)],2)
#> mean sd 2.5% 50% 97.5% Rhat n.eff
#> a[1] 7.77 1.28 5.23 7.79 10.23 1.00 530
#> a[2] 24.41 6.16 12.74 24.74 35.49 1.01 3000
#> a[32] 8.30 2.00 4.54 8.31 12.13 1.01 460
#> a[33] 13.05 4.16 4.91 12.86 21.13 1.00 3000
#> b[1] 1.64 2.73 -3.59 1.63 7.16 1.00 800
#> b[2] -10.53 10.68 -31.06 -9.87 8.55 1.01 1300
#> b[32] 5.10 4.57 -3.48 5.01 14.23 1.01 2100
#> b[33] 12.95 8.02 -2.65 12.69 28.87 1.00 3000
#> mu.a 16.68 1.95 12.79 16.70 20.60 1.00 420
#> mu.b 5.04 2.21 0.78 5.00 9.64 1.01 130
#> sigma.a 10.88 1.53 8.40 10.71 14.30 1.00 430
#> sigma.b 11.44 2.16 7.86 11.18 16.09 1.02 170
#> sigma.y 2.67 0.10 2.49 2.66 2.86 1.00 2500

38



Compare with Frequentist approach

freq_lmm2 <- lmer (y ~ x + (1 + x | species), allom.data, REML = FALSE)
freq_lmm2
#> Linear mixed model fit by maximum likelihood ['lmerMod']
#> Formula: y ~ x + (1 + x | species)
#> Data: allom.data
#> AIC BIC logLik deviance df.resid
#> 2609.941 2635.083 -1298.971 2597.941 482
#> Random effects:
#> Groups Name Std.Dev. Corr
#> species (Intercept) 10.409
#> x 11.325 0.22
#> Residual 2.652
#> Number of obs: 488, groups: species, 33
#> Fixed Effects:
#> (Intercept) x
#> 16.866 5.244 39



Compare with Frequentist approach - with no correlation

freq_lmm_wocorr <- lmer(y ~ x + (1 | species) +
(0 + x | species), allom.data, REML = FALSE)

freq_lmm_wocorr
#> Linear mixed model fit by maximum likelihood ['lmerMod']
#> Formula: y ~ x + (1 | species) + (0 + x | species)
#> Data: allom.data
#> AIC BIC logLik deviance df.resid
#> 2609.086 2630.037 -1299.543 2599.086 483
#> Random effects:
#> Groups Name Std.Dev.
#> species (Intercept) 10.203
#> species.1 x 10.632
#> Residual 2.661
#> Number of obs: 488, groups: species, 33
#> Fixed Effects:
#> (Intercept) x
#> 16.688 4.929

40



Shrinkage results from pooling of information

• Varying effect estimates shrink towards mean (ᾱ).

• Avoids underfitting as in complete pooling model (null variance) or overfitting as in
no pooling model (infinite variance).

• Varying effects: adaptive regularization through cluster variance estimation.

• Further from mean, more shrinkage.

• Fewer data in cluster, more shrinkage.

41



Shrinkage results from pooling of information

• Varying effect estimates shrink towards mean (ᾱ).

• Avoids underfitting as in complete pooling model (null variance) or overfitting as in
no pooling model (infinite variance).

• Varying effects: adaptive regularization through cluster variance estimation.

• Further from mean, more shrinkage.

• Fewer data in cluster, more shrinkage.

41



Shrinkage results from pooling of information

• Varying effect estimates shrink towards mean (ᾱ).

• Avoids underfitting as in complete pooling model (null variance) or overfitting as in
no pooling model (infinite variance).

• Varying effects: adaptive regularization through cluster variance estimation.

• Further from mean, more shrinkage.

• Fewer data in cluster, more shrinkage.

41



Shrinkage results from pooling of information

• Varying effect estimates shrink towards mean (ᾱ).

• Avoids underfitting as in complete pooling model (null variance) or overfitting as in
no pooling model (infinite variance).

• Varying effects: adaptive regularization through cluster variance estimation.

• Further from mean, more shrinkage.

• Fewer data in cluster, more shrinkage.

41



Shrinkage results from pooling of information

• Varying effect estimates shrink towards mean (ᾱ).

• Avoids underfitting as in complete pooling model (null variance) or overfitting as in
no pooling model (infinite variance).

• Varying effects: adaptive regularization through cluster variance estimation.

• Further from mean, more shrinkage.

• Fewer data in cluster, more shrinkage.

41



Multilevel models are awesome!



Multilevel models in a nutshell

• Shrinkage via pooling is desirable. The no-pooling model overstates variation
among clusters and makes the individual clusters look more different than they are
(overfitting). The complete-pooling model simply ignores the variation among
clusters (underfitting).

• We can generalize to a wider population. Is there an allometry relationship
between number of seeds and biomass?

• We may consider varying slopes. We’d need to deal with correlations between
intercept and slope random effects. Open a whole new world with spatial (or time)
autocorrelation, phylogenetic regressions, quantitative genetics, network models.

• We may include predictors at the cluster level. Imagine we know something
about functional traits, and wish to determine whether some species-to-species
variation in the allometry relationship is explained by these traits.

42



Multilevel models in a nutshell

• Shrinkage via pooling is desirable. The no-pooling model overstates variation
among clusters and makes the individual clusters look more different than they are
(overfitting). The complete-pooling model simply ignores the variation among
clusters (underfitting).

• We can generalize to a wider population. Is there an allometry relationship
between number of seeds and biomass?

• We may consider varying slopes. We’d need to deal with correlations between
intercept and slope random effects. Open a whole new world with spatial (or time)
autocorrelation, phylogenetic regressions, quantitative genetics, network models.

• We may include predictors at the cluster level. Imagine we know something
about functional traits, and wish to determine whether some species-to-species
variation in the allometry relationship is explained by these traits.

42



Multilevel models in a nutshell

• Shrinkage via pooling is desirable. The no-pooling model overstates variation
among clusters and makes the individual clusters look more different than they are
(overfitting). The complete-pooling model simply ignores the variation among
clusters (underfitting).

• We can generalize to a wider population. Is there an allometry relationship
between number of seeds and biomass?

• We may consider varying slopes. We’d need to deal with correlations between
intercept and slope random effects. Open a whole new world with spatial (or time)
autocorrelation, phylogenetic regressions, quantitative genetics, network models.

• We may include predictors at the cluster level. Imagine we know something
about functional traits, and wish to determine whether some species-to-species
variation in the allometry relationship is explained by these traits.

42



Multilevel models in a nutshell

• Shrinkage via pooling is desirable. The no-pooling model overstates variation
among clusters and makes the individual clusters look more different than they are
(overfitting). The complete-pooling model simply ignores the variation among
clusters (underfitting).

• We can generalize to a wider population. Is there an allometry relationship
between number of seeds and biomass?

• We may consider varying slopes. We’d need to deal with correlations between
intercept and slope random effects. Open a whole new world with spatial (or time)
autocorrelation, phylogenetic regressions, quantitative genetics, network models.

• We may include predictors at the cluster level. Imagine we know something
about functional traits, and wish to determine whether some species-to-species
variation in the allometry relationship is explained by these traits.

42



Your turn: Practical 8



Conclusions



Take-home messages about Bayesian statistics

• Frees the modeler in you (M. Kéry)
• Uses probability to quantify uncertainty for everything (propagation of uncertainty).
• Allows use of prior information (‘better’ estimates).
• Can fit complex (hierarchical) models with same MCMC algorithms.

• With great tools come great responsabilities
• Checking convergence is painful.
• Specifying priors might be tricky.
• Model adequacy should be checked (posterior predictive checks - not covered).
• Computational burden can be high (see function R2jags::jags.parallel() and

package ‘jagsUI‘.

• So what?
• Make an informed and pragmatic choice.
• Are you after complexity, speed, uncertainties, etc?
• Talk to colleagues.

43

https://github.com/kenkellner/jagsui


Take-home messages about Bayesian statistics

• Frees the modeler in you (M. Kéry)
• Uses probability to quantify uncertainty for everything (propagation of uncertainty).
• Allows use of prior information (‘better’ estimates).
• Can fit complex (hierarchical) models with same MCMC algorithms.

• With great tools come great responsabilities
• Checking convergence is painful.
• Specifying priors might be tricky.
• Model adequacy should be checked (posterior predictive checks - not covered).
• Computational burden can be high (see function R2jags::jags.parallel() and

package ‘jagsUI‘.

• So what?
• Make an informed and pragmatic choice.
• Are you after complexity, speed, uncertainties, etc?
• Talk to colleagues.

43

https://github.com/kenkellner/jagsui


Take-home messages about Bayesian statistics

• Frees the modeler in you (M. Kéry)
• Uses probability to quantify uncertainty for everything (propagation of uncertainty).
• Allows use of prior information (‘better’ estimates).
• Can fit complex (hierarchical) models with same MCMC algorithms.

• With great tools come great responsabilities
• Checking convergence is painful.
• Specifying priors might be tricky.
• Model adequacy should be checked (posterior predictive checks - not covered).
• Computational burden can be high (see function R2jags::jags.parallel() and

package ‘jagsUI‘.

• So what?
• Make an informed and pragmatic choice.
• Are you after complexity, speed, uncertainties, etc?
• Talk to colleagues. 43

https://github.com/kenkellner/jagsui


44



Why become a bayesian? Ask twitter!

45

https://twitter.com/ChelseaParlett/status/1282798645453000704


Your turn: Practical 9


	Multilevel (aka mixed-effect) models
	Back to the plant example
	Bonus: Model with varying intercept and varying slope
	Multilevel models are awesome!
	Your turn: Practical 8
	Conclusions
	Your turn: Practical 9

