Bayesian statistics with R
5. Markov chains Monte Carlo (MCMC)

Olivier Gimenez
November-December 2024

Get posteriors with Markov chains
Monte Carlo (MCMC) methods

Back to the Bayes’ theorem

= Bayes inference is easy! Well, not so easy in real-life applications.

Back to the Bayes’ theorem

= Bayes inference is easy! Well, not so easy in real-life applications.

P P
= The issue is in Pr(6 | data) = r(data |) Pr(6)

Back to the Bayes’ theorem

= Bayes inference is easy! Well, not so easy in real-life applications.

P P
= The issue is in Pr(6 | data) = r(data |) Pr(6)

= is a N-dimensional integral if 0 = 61,...,0y

Back to the Bayes’ theorem

= Bayes inference is easy! Well, not so easy in real-life applications.

P P
= The issue is in Pr(6 | data) = r(data |) Pr(6)

= is a N-dimensional integral if 0 = 61,...,0y

= Difficult, if not impossible to calculate!

Brute force approach via numerical integration

= Deer data

y <- 19 # nb of success
n <- 57 # ndb of attempts

= Likelihood Binomial(57,6)
= Prior Beta(a=1,b=1)

IIEHHHHIHHHHII

a<-1; b <-1; p <~ seq(0,1,.002)
plot(p, dbeta(p,a,b), type='1l', 1lwd=3)

~
-

12
|

1.0

dbeta(p, a, b)

0.6
|

Apply Bayes theorem

= Likelihood times the prior: Pr(data | 8) Pr(9)

numerator <- function(p) dbinom(y,n,p)*dbeta(p,a,b)

= Averaged likelihood: Pr(data) = [L(6 | data) Pr(0)d@

denominator <- integrate(numerator,0,1)$value

Posterior inference via numerical integration

plot(p, numerator(p)/denominator,type="1", 1lwd=3, col="green", lty=2)

/7 \
© ‘N
! \
! \
o
5 ! J
2 I \
5 ¥ : ‘
s ! '
2 o ! D
S ! \
©
@ [} \
3 &9 ! \
c / \
“- / \
7 \
7 \
O - = e e e = - -~ N N e e e e e e e e e e e ==

Superimpose explicit posterior distribution (Beta formula)

lines(p, dbeta(p,y+a,n-y+b), col='darkred', 1lwd=3)

numerator(p)/denominator

0.0 0.2 0.4 0.6 0.8 1.0 7

And the prior

lines(p, dbeta(p,a,b), col='darkblue', lwd=3)

© -
0o

=

=]

154

£

E <

<]

<

@

o

=

S o

=t

S

]

15

o

@

E o +

=]

c
- - \
o - J

0.0 0.2 0.4 0.6 0.8 1.0 8

What if multiple parameters, like in a simple linear regression?

= Example of a linear regression with parameters «, 8 and o to be estimated.

What if multiple parameters, like in a simple linear regression?

= Example of a linear regression with parameters «, 8 and o to be estimated.

= Bayes' theorem says:

- P(data | «, 3,0) P(«, B, 0)
Pla B0 | data) = B ta T o, B,0) P(a, B, 0) da dB do

What if multiple parameters, like in a simple linear regression?

= Example of a linear regression with parameters «, 8 and o to be estimated.

= Bayes' theorem says:

- P(data | «, 3,0) P(«, B, 0)
Pla B0 | data) = B ta T o, B,0) P(a, B, 0) da dB do

= Do we really wish to calculate a 3D integral?

Bayesian computation

= In the early 1990s, statisticians rediscovered work from the 1950's in physics.

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines
NicuoLas MeTroPOLIS, ARIANNA W. RoseNaLuTi, MarsuaLL N. ROSENBLUTH, AND Avcusta H. TELLER,
Los Alamos Scientific Laboralory, Los Alamos, New Mexico
Ao
Epwarp TELLER,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modificd Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

10

Bayesian computation

= In the early 1990s, statisticians rediscovered work from the 1950's in physics.

VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NicuoLas MeTroPOLIS, ARIANNA W. RoseNaLuTi, MarsuaLL N. ROSENBLUTH, AND Avcusta H. TELLER,
Los Alamos Scientific Laboralory, Los Alamos, New Mexico
AND
Epwarp TELLER,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modificd Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

Use stochastic simulation to draw samples from posterior distributions.

10

Bayesian computation

= In the early 1990s, statisticians rediscovered work from the 1950's in physics.

VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NicuoLas MeTroPOLIS, ARIANNA W. RoseNaLuTi, MarsuaLL N. ROSENBLUTH, AND Avcusta H. TELLER,
Los Alamos Scientific Laboralory, Los Alamos, New Mexico
AND
Epwarp TELLER,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modificd Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

= Use stochastic simulation to draw samples from posterior distributions.

= Avoid explicit calculation of integrals in Bayes formula.

10

Bayesian computation

= In the early 1990s, statisticians rediscovered work from the 1950's in physics.

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NicuoLas MeTroPOLIS, ARIANNA W. RoseNaLuTi, MarsuaLL N. ROSENBLUTH, AND Avcusta H. TELLER,
Los Alamos Scientific Laboralory, Los Alamos, New Mexico

AND

Epwarp TELLER,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modificd Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

= Use stochastic simulation to draw samples from posterior distributions.
= Avoid explicit calculation of integrals in Bayes formula.

= |nstead, approximate posterior to arbitrary degree of precision by drawing large
sample.

10

Bayesian computation

= In the early 1990s, statisticians rediscovered work from the 1950's in physics.

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NicuoLas MeTroPOLIS, ARIANNA W. RoseNaLuTi, MarsuaLL N. ROSENBLUTH, AND Avcusta H. TELLER,
Los Alamos Scientific Laboralory, Los Alamos, New Mexico

AND

Epwarp TELLER,* Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modificd Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

= Use stochastic simulation to draw samples from posterior distributions.
= Avoid explicit calculation of integrals in Bayes formula.

= |nstead, approximate posterior to arbitrary degree of precision by drawing large
sample.

= Markov chain Monte Carlo = MCMC; boost to Bayesian statistics! 10

MANIAC

MANIAC:
Mathematical Analyzer, Numerical Integrator, and Computer

MANIAC:

1000 pounds

5 kilobytes of memory
70k multiplications/sec

Your laptop:

4-7 pounds

2-8 million kilobytes

Billions of multiplications/sec

11

Why are MCMC methods so useful?

= MCMC: stochastic algorithm to produce sequence of dependent random numbers
(from Markov chain).

12

Why are MCMC methods so useful?

= MCMC: stochastic algorithm to produce sequence of dependent random numbers
(from Markov chain).

= Converge to equilibrium (aka stationary) distribution.

12

Why are MCMC methods so useful?

= MCMC: stochastic algorithm to produce sequence of dependent random numbers

(from Markov chain).
= Converge to equilibrium (aka stationary) distribution.

= Equilibrium distribution is the desired posterior distribution!

12

Why are MCMC methods so useful?

= MCMC: stochastic algorithm to produce sequence of dependent random numbers

(from Markov chain).
= Converge to equilibrium (aka stationary) distribution.
= Equilibrium distribution is the desired posterior distribution!

= Several ways of constructing these chains: e.g., Metropolis-Hastings, Gibbs sampler,
Metropolis-within-Gibbs.

12

Why are MCMC methods so useful?

= MCMC: stochastic algorithm to produce sequence of dependent random numbers
(from Markov chain).

= Converge to equilibrium (aka stationary) distribution.
= Equilibrium distribution is the desired posterior distribution!

= Several ways of constructing these chains: e.g., Metropolis-Hastings, Gibbs sampler,
Metropolis-within-Gibbs.

= How to implement them in practice?!

12

The Metropolis algorithm

= Let's go back to the deer example and survival estimation.

13

The Metropolis algorithm

= Let's go back to the deer example and survival estimation.

= We illustrate sampling from the posterior distribution of winter survival.

13

The Metropolis algorithm

= Let's go back to the deer example and survival estimation.
= We illustrate sampling from the posterior distribution of winter survival.

= We write functions in R for the likelihood, the prior and the posterior.

13

deer data, 19 "success" out of 57 "attempts"
survived <- 19
released <- 57

log-likelihood function
loglikelihood <- function(x, p){

dbinom(x = x, size = released, prob = p, log = TRUE)

prior density
logprior <- function(p){
dunif(x = p, min = 0, max = 1, log = TRUE)

14

posterior density function (log scale)
posterior <- function(x, p){
loglikelihood(x, p) + logprior(p) # - log(Pr(data))

15

To simulate from this posterior distribution, we use the Metropolis algorithm:

16

To simulate from this posterior distribution, we use the Metropolis algorithm:

1. We start at any possible value of the parameter to be estimated.

16

To simulate from this posterior distribution, we use the Metropolis algorithm:

1.
2.

We start at any possible value of the parameter to be estimated.

To decide where to visit next, we propose to move away from the current value of
the parameter. We add to this current value some random value from say a normal
distribution with some variance. We call this the candidate location.

16

To simulate from this posterior distribution, we use the Metropolis algorithm:

1.
2.

We start at any possible value of the parameter to be estimated.

To decide where to visit next, we propose to move away from the current value of
the parameter. We add to this current value some random value from say a normal
distribution with some variance. We call this the candidate location.

We compute the ratio of the probabilities at the candidate and current locations
R = posterior(candidate)/posterior(current). This is where the magic of MCMC

happens, in that Pr(data) (the denominator of the Bayes theorem) cancels out
when we compute R.

16

To simulate from this posterior distribution, we use the Metropolis algorithm:

1.
2.

We start at any possible value of the parameter to be estimated.

To decide where to visit next, we propose to move away from the current value of
the parameter. We add to this current value some random value from say a normal
distribution with some variance. We call this the candidate location.

We compute the ratio of the probabilities at the candidate and current locations
R = posterior(candidate)/posterior(current). This is where the magic of MCMC
happens, in that Pr(data) (the denominator of the Bayes theorem) cancels out
when we compute R.

We spin a continuous spinner that lands anywhere from 0 to 1 — call the random
spin X. If X is smaller than R, we move to the candidate location, otherwise we
remain at the current location.

16

To simulate from this posterior distribution, we use the Metropolis algorithm:

1.
2.

We start at any possible value of the parameter to be estimated.

To decide where to visit next, we propose to move away from the current value of
the parameter. We add to this current value some random value from say a normal
distribution with some variance. We call this the candidate location.

We compute the ratio of the probabilities at the candidate and current locations
R = posterior(candidate)/posterior(current). This is where the magic of MCMC
happens, in that Pr(data) (the denominator of the Bayes theorem) cancels out
when we compute R.

We spin a continuous spinner that lands anywhere from 0 to 1 — call the random
spin X. If X is smaller than R, we move to the candidate location, otherwise we
remain at the current location.

We repeat 2-4 a number of times called steps (many steps).

16

propose candidate value

move <- function(x, away = .2){
logitx <- log(x / (1 - x))
logit_candidate <- logitx + rmorm(1l, 0, away)
candidate <- plogis(logit_candidate)

return(candidate)

set up the scene

steps <- 100

theta.post <- rep(NA, steps)
set.seed(1234)

17

pick starting value (step 1)
inits <- 0.5
theta.post[1] <- inits

18

for (¢t in 2:steps){ # repeat steps 2-4 (step 5)

propose candidate value for prob of success (step 2)

theta_star <- move(theta.post[t-1])

calculate ratio R (step 3)

pstar <- posterior(survived, p = theta_star)
pprev <- posterior(survived, p = theta.post[t-1])
logR <- pstar - pprev

R <- exp(logR)

decide to accept candidate value or to keep current value (step 4)
accept <- rbinom(1, 1, prob = min(R, 1))
theta.post[t] <- ifelse(accept == 1, theta_star, theta.post[t-1])

19

Starting at the value 0.5 and running the algorithm for 100 iterations.

head (theta.post)
#> [1] 0.5000000 0.4399381 0.4399381 0.4577124 0.4577124 0.4577124
tail (theta.post)
#> [1] 0.4145878 0.3772087 0.3772087 0.3860516 0.3898536 0.3624450

20

T T T T
S0 7’0 €0 0

uonnquISIp JoLeIsod Wolj senjea

TO0

100

80

60

40

20

iterations

21

T T T T
S0 7’0 €0 0

uonnquISIp JoLeIsod Wolj senjea

TO0

100

80

60

40

20

iterations

22

T T T T
S0 7’0 €0 0

uonnquISIp JoLeIsod Wolj senjea

TO0

100

80

60

40

20

iterations

23

values from posterior distribution

0.6

0.5

0.4

0.3

0.2

0.1

R l
Mt T T

U

posterior mean
max lik estimate

0 1000

2000 3000 4000 5000

iterations

24

Animating the Metropolis algorithm - 1D example

https://gist.github.com /oliviergimenez /5ee33af9c8d947b72a39ed1764040bf3

23

https://gist.github.com/oliviergimenez/5ee33af9c8d947b72a39ed1764040bf3

Animating the Metropolis algorithm - 2D example

https://mbjoseph.github.io/posts/2018-12-25-animating-the-metropolis-algorithm /

26

https://mbjoseph.github.io/posts/2018-12-25-animating-the-metropolis-algorithm/

The Markov-chain Monte Carlo Interactive Gallery

https://chi-feng.github.io/mcmc-demo/

27

https://chi-feng.github.io/mcmc-demo/

	Get posteriors with Markov chains Monte Carlo (MCMC) methods

