
Bayesian statistics with R
5. Markov chains Monte Carlo (MCMC)

Olivier Gimenez
November-December 2024

1



Get posteriors with Markov chains
Monte Carlo (MCMC) methods



Back to the Bayes’ theorem

• Bayes inference is easy! Well, not so easy in real-life applications.

• The issue is in Pr(θ | data) = Pr(data | θ) Pr(θ)
Pr(data)

• Pr(data) =
∫

L(data | θ) Pr(θ)dθ is a N-dimensional integral if θ = θ1, . . . , θN

• Difficult, if not impossible to calculate!

2



Back to the Bayes’ theorem

• Bayes inference is easy! Well, not so easy in real-life applications.

• The issue is in Pr(θ | data) = Pr(data | θ) Pr(θ)
Pr(data)

• Pr(data) =
∫

L(data | θ) Pr(θ)dθ is a N-dimensional integral if θ = θ1, . . . , θN

• Difficult, if not impossible to calculate!

2



Back to the Bayes’ theorem

• Bayes inference is easy! Well, not so easy in real-life applications.

• The issue is in Pr(θ | data) = Pr(data | θ) Pr(θ)
Pr(data)

• Pr(data) =
∫

L(data | θ) Pr(θ)dθ is a N-dimensional integral if θ = θ1, . . . , θN

• Difficult, if not impossible to calculate!

2



Back to the Bayes’ theorem

• Bayes inference is easy! Well, not so easy in real-life applications.

• The issue is in Pr(θ | data) = Pr(data | θ) Pr(θ)
Pr(data)

• Pr(data) =
∫

L(data | θ) Pr(θ)dθ is a N-dimensional integral if θ = θ1, . . . , θN

• Difficult, if not impossible to calculate!

2



Brute force approach via numerical integration

• Deer data

y <- 19 # nb of success
n <- 57 # nb of attempts

• Likelihood Binomial(57, θ)
• Prior Beta(a = 1, b = 1)

3



Beta prior

a <- 1; b <- 1; p <- seq(0,1,.002)
plot(p, dbeta(p,a,b), type='l', lwd=3)

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

p

db
et

a(
p,

 a
, b

)

4



Apply Bayes theorem

• Likelihood times the prior: Pr(data | θ) Pr(θ)

numerator <- function(p) dbinom(y,n,p)*dbeta(p,a,b)

• Averaged likelihood: Pr(data) =
∫

L(θ | data) Pr(θ)dθ

denominator <- integrate(numerator,0,1)$value

5



Posterior inference via numerical integration

plot(p, numerator(p)/denominator,type="l", lwd=3, col="green", lty=2)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

p

nu
m

er
at

or
(p

)/
de

no
m

in
at

or

6



Superimpose explicit posterior distribution (Beta formula)

lines(p, dbeta(p,y+a,n-y+b), col='darkred', lwd=3)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

p

nu
m

er
at

or
(p

)/
de

no
m

in
at

or

7



And the prior

lines(p, dbeta(p,a,b), col='darkblue', lwd=3)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

p

nu
m

er
at

or
(p

)/
de

no
m

in
at

or

8



What if multiple parameters, like in a simple linear regression?

• Example of a linear regression with parameters α, β and σ to be estimated.

• Bayes’ theorem says:

P(α, β, σ | data) = P(data | α, β, σ) P(α, β, σ)∫∫∫
P(data | α, β, σ) P(α, β, σ) dα dβ dσ

• Do we really wish to calculate a 3D integral?

9



What if multiple parameters, like in a simple linear regression?

• Example of a linear regression with parameters α, β and σ to be estimated.

• Bayes’ theorem says:

P(α, β, σ | data) = P(data | α, β, σ) P(α, β, σ)∫∫∫
P(data | α, β, σ) P(α, β, σ) dα dβ dσ

• Do we really wish to calculate a 3D integral?

9



What if multiple parameters, like in a simple linear regression?

• Example of a linear regression with parameters α, β and σ to be estimated.

• Bayes’ theorem says:

P(α, β, σ | data) = P(data | α, β, σ) P(α, β, σ)∫∫∫
P(data | α, β, σ) P(α, β, σ) dα dβ dσ

• Do we really wish to calculate a 3D integral?

9



Bayesian computation

• In the early 1990s, statisticians rediscovered work from the 1950’s in physics.

• Use stochastic simulation to draw samples from posterior distributions.

• Avoid explicit calculation of integrals in Bayes formula.

• Instead, approximate posterior to arbitrary degree of precision by drawing large
sample.

• Markov chain Monte Carlo = MCMC; boost to Bayesian statistics!

10



Bayesian computation

• In the early 1990s, statisticians rediscovered work from the 1950’s in physics.

• Use stochastic simulation to draw samples from posterior distributions.

• Avoid explicit calculation of integrals in Bayes formula.

• Instead, approximate posterior to arbitrary degree of precision by drawing large
sample.

• Markov chain Monte Carlo = MCMC; boost to Bayesian statistics!

10



Bayesian computation

• In the early 1990s, statisticians rediscovered work from the 1950’s in physics.

• Use stochastic simulation to draw samples from posterior distributions.

• Avoid explicit calculation of integrals in Bayes formula.

• Instead, approximate posterior to arbitrary degree of precision by drawing large
sample.

• Markov chain Monte Carlo = MCMC; boost to Bayesian statistics!

10



Bayesian computation

• In the early 1990s, statisticians rediscovered work from the 1950’s in physics.

• Use stochastic simulation to draw samples from posterior distributions.

• Avoid explicit calculation of integrals in Bayes formula.

• Instead, approximate posterior to arbitrary degree of precision by drawing large
sample.

• Markov chain Monte Carlo = MCMC; boost to Bayesian statistics!

10



Bayesian computation

• In the early 1990s, statisticians rediscovered work from the 1950’s in physics.

• Use stochastic simulation to draw samples from posterior distributions.

• Avoid explicit calculation of integrals in Bayes formula.

• Instead, approximate posterior to arbitrary degree of precision by drawing large
sample.

• Markov chain Monte Carlo = MCMC; boost to Bayesian statistics! 10



MANIAC

11



Why are MCMC methods so useful?

• MCMC: stochastic algorithm to produce sequence of dependent random numbers
(from Markov chain).

• Converge to equilibrium (aka stationary) distribution.

• Equilibrium distribution is the desired posterior distribution!

• Several ways of constructing these chains: e.g., Metropolis-Hastings, Gibbs sampler,
Metropolis-within-Gibbs.

• How to implement them in practice?!

12



Why are MCMC methods so useful?

• MCMC: stochastic algorithm to produce sequence of dependent random numbers
(from Markov chain).

• Converge to equilibrium (aka stationary) distribution.

• Equilibrium distribution is the desired posterior distribution!

• Several ways of constructing these chains: e.g., Metropolis-Hastings, Gibbs sampler,
Metropolis-within-Gibbs.

• How to implement them in practice?!

12



Why are MCMC methods so useful?

• MCMC: stochastic algorithm to produce sequence of dependent random numbers
(from Markov chain).

• Converge to equilibrium (aka stationary) distribution.

• Equilibrium distribution is the desired posterior distribution!

• Several ways of constructing these chains: e.g., Metropolis-Hastings, Gibbs sampler,
Metropolis-within-Gibbs.

• How to implement them in practice?!

12



Why are MCMC methods so useful?

• MCMC: stochastic algorithm to produce sequence of dependent random numbers
(from Markov chain).

• Converge to equilibrium (aka stationary) distribution.

• Equilibrium distribution is the desired posterior distribution!

• Several ways of constructing these chains: e.g., Metropolis-Hastings, Gibbs sampler,
Metropolis-within-Gibbs.

• How to implement them in practice?!

12



Why are MCMC methods so useful?

• MCMC: stochastic algorithm to produce sequence of dependent random numbers
(from Markov chain).

• Converge to equilibrium (aka stationary) distribution.

• Equilibrium distribution is the desired posterior distribution!

• Several ways of constructing these chains: e.g., Metropolis-Hastings, Gibbs sampler,
Metropolis-within-Gibbs.

• How to implement them in practice?!

12



The Metropolis algorithm

• Let’s go back to the deer example and survival estimation.

• We illustrate sampling from the posterior distribution of winter survival.

• We write functions in R for the likelihood, the prior and the posterior.

13



The Metropolis algorithm

• Let’s go back to the deer example and survival estimation.

• We illustrate sampling from the posterior distribution of winter survival.

• We write functions in R for the likelihood, the prior and the posterior.

13



The Metropolis algorithm

• Let’s go back to the deer example and survival estimation.

• We illustrate sampling from the posterior distribution of winter survival.

• We write functions in R for the likelihood, the prior and the posterior.

13



# deer data, 19 "success" out of 57 "attempts"
survived <- 19
released <- 57

# log-likelihood function
loglikelihood <- function(x, p){

dbinom(x = x, size = released, prob = p, log = TRUE)
}

# prior density
logprior <- function(p){

dunif(x = p, min = 0, max = 1, log = TRUE)
}

14



# posterior density function (log scale)
posterior <- function(x, p){

loglikelihood(x, p) + logprior(p) # - log(Pr(data))
}

15



To simulate from this posterior distribution, we use the Metropolis algorithm:

1. We start at any possible value of the parameter to be estimated.

2. To decide where to visit next, we propose to move away from the current value of
the parameter. We add to this current value some random value from say a normal
distribution with some variance. We call this the candidate location.

3. We compute the ratio of the probabilities at the candidate and current locations
R = posterior(candidate)/posterior(current). This is where the magic of MCMC
happens, in that Pr(data) (the denominator of the Bayes theorem) cancels out
when we compute R.

4. We spin a continuous spinner that lands anywhere from 0 to 1 — call the random
spin X . If X is smaller than R, we move to the candidate location, otherwise we
remain at the current location.

5. We repeat 2-4 a number of times called steps (many steps).

16



To simulate from this posterior distribution, we use the Metropolis algorithm:

1. We start at any possible value of the parameter to be estimated.

2. To decide where to visit next, we propose to move away from the current value of
the parameter. We add to this current value some random value from say a normal
distribution with some variance. We call this the candidate location.

3. We compute the ratio of the probabilities at the candidate and current locations
R = posterior(candidate)/posterior(current). This is where the magic of MCMC
happens, in that Pr(data) (the denominator of the Bayes theorem) cancels out
when we compute R.

4. We spin a continuous spinner that lands anywhere from 0 to 1 — call the random
spin X . If X is smaller than R, we move to the candidate location, otherwise we
remain at the current location.

5. We repeat 2-4 a number of times called steps (many steps).

16



To simulate from this posterior distribution, we use the Metropolis algorithm:

1. We start at any possible value of the parameter to be estimated.

2. To decide where to visit next, we propose to move away from the current value of
the parameter. We add to this current value some random value from say a normal
distribution with some variance. We call this the candidate location.

3. We compute the ratio of the probabilities at the candidate and current locations
R = posterior(candidate)/posterior(current). This is where the magic of MCMC
happens, in that Pr(data) (the denominator of the Bayes theorem) cancels out
when we compute R.

4. We spin a continuous spinner that lands anywhere from 0 to 1 — call the random
spin X . If X is smaller than R, we move to the candidate location, otherwise we
remain at the current location.

5. We repeat 2-4 a number of times called steps (many steps).

16



To simulate from this posterior distribution, we use the Metropolis algorithm:

1. We start at any possible value of the parameter to be estimated.

2. To decide where to visit next, we propose to move away from the current value of
the parameter. We add to this current value some random value from say a normal
distribution with some variance. We call this the candidate location.

3. We compute the ratio of the probabilities at the candidate and current locations
R = posterior(candidate)/posterior(current). This is where the magic of MCMC
happens, in that Pr(data) (the denominator of the Bayes theorem) cancels out
when we compute R.

4. We spin a continuous spinner that lands anywhere from 0 to 1 — call the random
spin X . If X is smaller than R, we move to the candidate location, otherwise we
remain at the current location.

5. We repeat 2-4 a number of times called steps (many steps).

16



To simulate from this posterior distribution, we use the Metropolis algorithm:

1. We start at any possible value of the parameter to be estimated.

2. To decide where to visit next, we propose to move away from the current value of
the parameter. We add to this current value some random value from say a normal
distribution with some variance. We call this the candidate location.

3. We compute the ratio of the probabilities at the candidate and current locations
R = posterior(candidate)/posterior(current). This is where the magic of MCMC
happens, in that Pr(data) (the denominator of the Bayes theorem) cancels out
when we compute R.

4. We spin a continuous spinner that lands anywhere from 0 to 1 — call the random
spin X . If X is smaller than R, we move to the candidate location, otherwise we
remain at the current location.

5. We repeat 2-4 a number of times called steps (many steps).

16



To simulate from this posterior distribution, we use the Metropolis algorithm:

1. We start at any possible value of the parameter to be estimated.

2. To decide where to visit next, we propose to move away from the current value of
the parameter. We add to this current value some random value from say a normal
distribution with some variance. We call this the candidate location.

3. We compute the ratio of the probabilities at the candidate and current locations
R = posterior(candidate)/posterior(current). This is where the magic of MCMC
happens, in that Pr(data) (the denominator of the Bayes theorem) cancels out
when we compute R.

4. We spin a continuous spinner that lands anywhere from 0 to 1 — call the random
spin X . If X is smaller than R, we move to the candidate location, otherwise we
remain at the current location.

5. We repeat 2-4 a number of times called steps (many steps).
16



# propose candidate value
move <- function(x, away = .2){

logitx <- log(x / (1 - x))
logit_candidate <- logitx + rnorm(1, 0, away)
candidate <- plogis(logit_candidate)
return(candidate)

}

# set up the scene
steps <- 100
theta.post <- rep(NA, steps)
set.seed(1234)

17



# pick starting value (step 1)
inits <- 0.5
theta.post[1] <- inits

18



for (t in 2:steps){ # repeat steps 2-4 (step 5)

# propose candidate value for prob of success (step 2)
theta_star <- move(theta.post[t-1])

# calculate ratio R (step 3)
pstar <- posterior(survived, p = theta_star)
pprev <- posterior(survived, p = theta.post[t-1])
logR <- pstar - pprev
R <- exp(logR)

# decide to accept candidate value or to keep current value (step 4)
accept <- rbinom(1, 1, prob = min(R, 1))
theta.post[t] <- ifelse(accept == 1, theta_star, theta.post[t-1])

} 19



Starting at the value 0.5 and running the algorithm for 100 iterations.

head(theta.post)
#> [1] 0.5000000 0.4399381 0.4399381 0.4577124 0.4577124 0.4577124
tail(theta.post)
#> [1] 0.4145878 0.3772087 0.3772087 0.3860516 0.3898536 0.3624450

20



0 20 40 60 80 100

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

iterations

va
lu

es
 fr

om
 p

os
te

rio
r 

di
st

rib
ut

io
n

21



0 20 40 60 80 100

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

iterations

va
lu

es
 fr

om
 p

os
te

rio
r 

di
st

rib
ut

io
n

22



0 20 40 60 80 100

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

iterations

va
lu

es
 fr

om
 p

os
te

rio
r 

di
st

rib
ut

io
n

23



0 1000 2000 3000 4000 5000

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

iterations

va
lu

es
 fr

om
 p

os
te

rio
r 

di
st

rib
ut

io
n

posterior mean
max lik estimate

24



Animating the Metropolis algorithm - 1D example

https://gist.github.com/oliviergimenez/5ee33af9c8d947b72a39ed1764040bf3

25

https://gist.github.com/oliviergimenez/5ee33af9c8d947b72a39ed1764040bf3


Animating the Metropolis algorithm - 2D example

https://mbjoseph.github.io/posts/2018-12-25-animating-the-metropolis-algorithm/

26

https://mbjoseph.github.io/posts/2018-12-25-animating-the-metropolis-algorithm/


The Markov-chain Monte Carlo Interactive Gallery

https://chi-feng.github.io/mcmc-demo/

27

https://chi-feng.github.io/mcmc-demo/

	Get posteriors with Markov chains Monte Carlo (MCMC) methods

