
Bayesian statistics with R
6. Bayesian analyses in R with the Jags software

Olivier Gimenez
November-December 2024

1

Bayes in practice

Software implementation (R friendly)

Oldies but goodies:

• WinBUGS, OpenBUGS: Where it all began.
• Jags: What we will use in this course.

The new kids on the block:

• Nimble: What I’m going for these days.
• Stan: Entirely different algorithmic approach.
• Greta: Dunno anything about it.

If you’re not into coding:

• brms: Bayesian regression models with Stan.
• MCMCglmm: Generalised Linear Mixed Models.
• Check out the CRAN Task View: Bayesian Inference for more.

2

https://r-nimble.org/
https://mc-stan.org/
https://greta-stats.org/
https://paul-buerkner.github.io/brms/
https://cran.r-project.org/web/packages/MCMCglmm/index.html
https://cran.r-project.org/web/views/Bayesian.html

Software implementation (R friendly)

Oldies but goodies:

• WinBUGS, OpenBUGS: Where it all began.
• Jags: What we will use in this course.

The new kids on the block:

• Nimble: What I’m going for these days.
• Stan: Entirely different algorithmic approach.
• Greta: Dunno anything about it.

If you’re not into coding:

• brms: Bayesian regression models with Stan.
• MCMCglmm: Generalised Linear Mixed Models.
• Check out the CRAN Task View: Bayesian Inference for more.

2

https://r-nimble.org/
https://mc-stan.org/
https://greta-stats.org/
https://paul-buerkner.github.io/brms/
https://cran.r-project.org/web/packages/MCMCglmm/index.html
https://cran.r-project.org/web/views/Bayesian.html

Software implementation (R friendly)

Oldies but goodies:

• WinBUGS, OpenBUGS: Where it all began.
• Jags: What we will use in this course.

The new kids on the block:

• Nimble: What I’m going for these days.
• Stan: Entirely different algorithmic approach.
• Greta: Dunno anything about it.

If you’re not into coding:

• brms: Bayesian regression models with Stan.
• MCMCglmm: Generalised Linear Mixed Models.
• Check out the CRAN Task View: Bayesian Inference for more.

2

https://r-nimble.org/
https://mc-stan.org/
https://greta-stats.org/
https://paul-buerkner.github.io/brms/
https://cran.r-project.org/web/packages/MCMCglmm/index.html
https://cran.r-project.org/web/views/Bayesian.html

Introduction to JAGS (Just Another Gibbs Sampler)

Martyn Plummer

3

Real example

Impact of climatic conditions on white stork breeding success

4

Let’s do a logistic regression on some White stork data

• Assess effects of temperature and rainfall on productivity.

• We have collected data.

• We need to build a model - write down the likelihood.

• We need to specify priors for parameters.

5

Let’s do a logistic regression on some White stork data

• Assess effects of temperature and rainfall on productivity.

• We have collected data.

• We need to build a model - write down the likelihood.

• We need to specify priors for parameters.

5

Let’s do a logistic regression on some White stork data

• Assess effects of temperature and rainfall on productivity.

• We have collected data.

• We need to build a model - write down the likelihood.

• We need to specify priors for parameters.

5

Let’s do a logistic regression on some White stork data

• Assess effects of temperature and rainfall on productivity.

• We have collected data.

• We need to build a model - write down the likelihood.

• We need to specify priors for parameters.

5

Read in the data

nbchicks <- c(151,105,73,107,113,87,77,108,118,122,112,120,122,89,69,71,
53,41,53,31,35,14,18)

nbpairs <- c(173,164,103,113,122,112,98,121,132,136,133,137,145,117,
90,80,67,54,58,39,42,23,23)

temp <- c(15.1,13.3,15.3,13.3,14.6,15.6,13.1,13.1,15.0,11.7,15.3,14.4,
14.4,12.7,11.7,11.9,15.9,13.4,14.0,13.9,12.9,15.1,13.0)

rain <- c(67,52,88,61,32,36,72,43,92,32,86,28,57,55,66,26,28,96,48,90,86,
78,87)

6

datax <- list(N = 23,
nbchicks = nbchicks,
nbpairs = nbpairs,
temp = (temp - mean(temp))/sd(temp),
rain = (rain - mean(rain))/sd(rain))

7

Write down the model

nbchicksi ∼ Binomial(nbpairsi , pi) [likelihood]
logit(pi) = a + btemp tempi + brain raini [linear model]

a ∼ Normal(0, 1000) [prior for a]
btemp ∼ Normal(0, 1000) [prior for btemp]
brain ∼ Normal(0, 1000) [prior for brain]

8

Build the model

{
Likelihood

for(i in 1 : N){
nbchicks[i] ~ dbin(p[i],nbpairs[i])
logit(p[i]) <- a + b.temp * temp[i] + b.rain * rain[i]
}

...

9

Specify priors

Priors
a ~ dnorm(0,0.001)
b.temp ~ dnorm(0,0.001)
b.rain ~ dnorm(0,0.001)
}

Warning: Jags uses precision for Normal distributions (1 / variance)

10

You need to write everything in a file

model <-
paste("
model
{

for(i in 1 : N)
{
nbchicks[i] ~ dbin(p[i],nbpairs[i])
logit(p[i]) <- a + b.temp * temp[i] + b.rain * rain[i]
}

a ~ dnorm(0,0.001)
b.temp ~ dnorm(0,0.001)
b.rain ~ dnorm(0,0.001)

}
")
writeLines(model,"code/logistic.txt")

11

Alternatively, you may write a R function

logistic <- function() {
for(i in 1 : N)

{
nbchicks[i] ~ dbin(p[i],nbpairs[i])
logit(p[i]) <- a + b.temp * temp[i] + b.rain * rain[i]
}

priors for regression parameters
a ~ dnorm(0,0.001)
b.temp ~ dnorm(0,0.001)
b.rain ~ dnorm(0,0.001)

}

12

Let us specify a few additional things

list of lists of initial values (one for each MCMC chain)
init1 <- list(a = -0.5, b.temp = -0.5, b.rain = -0.5)
init2 <- list(a = 0.5, b.temp = 0.5, b.rain = 0.5)
inits <- list(init1,init2)

specify parameters that need to be estimated
parameters <- c("a","b.temp","b.rain")

specify nb iterations for burn-in and final inference
nb.burnin <- 10000
nb.iterations <- 20000 # beware: nb.iterations includes nb.burnin!

13

Run Jags

load R2jags
library(R2jags)
run Jags
storks <- jags(data = datax,

inits = inits,
parameters.to.save = parameters,
#model.file = "code/logistic.txt",
model.file = logistic, # if a function was written
n.chains = 2,
n.iter = nb.iterations,
n.burnin = nb.burnin)

storks

14

Inspect parameter estimates

#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 23
#> Unobserved stochastic nodes: 3
#> Total graph size: 181
#>
#> Initializing model
#> Inference for Bugs model at "code/logistic.txt", fit using jags,
#> 2 chains, each with 20000 iterations (first 10000 discarded)
#> n.sims = 20000 iterations saved. Running time = 0.397 secs
#> mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
#> a 1.556 0.056 1.444 1.517 1.555 1.594 1.666 1.001 4800
#> b.rain -0.159 0.062 -0.280 -0.201 -0.158 -0.116 -0.039 1.003 880
#> b.temp 0.030 0.059 -0.084 -0.011 0.031 0.071 0.145 1.004 470
#> deviance 204.620 2.445 201.797 202.829 203.996 205.758 210.989 1.001 6400
#>
#> For each parameter, n.eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
#>
#> DIC info (using the rule: pV = var(deviance)/2)
#> pV = 3.0 and DIC = 207.6
#> DIC is an estimate of expected predictive error (lower deviance is better).

15

Your turn: Practical 5

Assess convergence

Reminder – MCMC Algorithm

• MCMC algorithms can be used to construct a Markov chain with a given stationary
distribution (set to be the posterior distribution).

• For the MCMC algorithm, the posterior distribution is only needed to be known up
to proportionality.

• Once the stationary distribution is reached we can regard the realisations of the
chain as a (dependent) sample from the posterior distribution (and obtain Monte
Carlo estimates).

• We consider some important implementation issues.

16

Reminder – MCMC Algorithm

• MCMC algorithms can be used to construct a Markov chain with a given stationary
distribution (set to be the posterior distribution).

• For the MCMC algorithm, the posterior distribution is only needed to be known up
to proportionality.

• Once the stationary distribution is reached we can regard the realisations of the
chain as a (dependent) sample from the posterior distribution (and obtain Monte
Carlo estimates).

• We consider some important implementation issues.

16

Reminder – MCMC Algorithm

• MCMC algorithms can be used to construct a Markov chain with a given stationary
distribution (set to be the posterior distribution).

• For the MCMC algorithm, the posterior distribution is only needed to be known up
to proportionality.

• Once the stationary distribution is reached we can regard the realisations of the
chain as a (dependent) sample from the posterior distribution (and obtain Monte
Carlo estimates).

• We consider some important implementation issues.

16

Reminder – MCMC Algorithm

• MCMC algorithms can be used to construct a Markov chain with a given stationary
distribution (set to be the posterior distribution).

• For the MCMC algorithm, the posterior distribution is only needed to be known up
to proportionality.

• Once the stationary distribution is reached we can regard the realisations of the
chain as a (dependent) sample from the posterior distribution (and obtain Monte
Carlo estimates).

• We consider some important implementation issues.

16

MCMC – Proposal Distribution

• To implement a MCMC algorithm, we often need to specify a proposal distribution
from which we generate candidate value then accept/reject.

• This typically involves
• specifying a given distribution family (e.g. normal, uniform), and then,
• setting the parameters of the given distribution.

• Although the exact distribution specified is essentially arbitrary – it will have a
significant effect on the performance of the MCMC algorithm.

17

MCMC – Proposal Distribution

• To implement a MCMC algorithm, we often need to specify a proposal distribution
from which we generate candidate value then accept/reject.

• This typically involves
• specifying a given distribution family (e.g. normal, uniform), and then,
• setting the parameters of the given distribution.

• Although the exact distribution specified is essentially arbitrary – it will have a
significant effect on the performance of the MCMC algorithm.

17

MCMC – Proposal Distribution

• To implement a MCMC algorithm, we often need to specify a proposal distribution
from which we generate candidate value then accept/reject.

• This typically involves
• specifying a given distribution family (e.g. normal, uniform), and then,
• setting the parameters of the given distribution.

• Although the exact distribution specified is essentially arbitrary – it will have a
significant effect on the performance of the MCMC algorithm.

17

Why is the proposal distribution so important?

• If only small moves can be proposed, the acceptance probability is high, but it will
take a long time to explore the posterior distribution.

• Proposing large jumps has the potential to move further, but generally have smaller
acceptance probabilities.

• In order to balance the size of the proposed moves with the chance of accepting
them the proposal variance is often tuned to obtain a mean acceptance probability
of 20 − 40%.

• Automatic in Jags – ouf!

• The movement around the parameter space is often referred to as mixing.

18

Why is the proposal distribution so important?

• If only small moves can be proposed, the acceptance probability is high, but it will
take a long time to explore the posterior distribution.

• Proposing large jumps has the potential to move further, but generally have smaller
acceptance probabilities.

• In order to balance the size of the proposed moves with the chance of accepting
them the proposal variance is often tuned to obtain a mean acceptance probability
of 20 − 40%.

• Automatic in Jags – ouf!

• The movement around the parameter space is often referred to as mixing.

18

Why is the proposal distribution so important?

• If only small moves can be proposed, the acceptance probability is high, but it will
take a long time to explore the posterior distribution.

• Proposing large jumps has the potential to move further, but generally have smaller
acceptance probabilities.

• In order to balance the size of the proposed moves with the chance of accepting
them the proposal variance is often tuned to obtain a mean acceptance probability
of 20 − 40%.

• Automatic in Jags – ouf!

• The movement around the parameter space is often referred to as mixing.

18

Why is the proposal distribution so important?

• If only small moves can be proposed, the acceptance probability is high, but it will
take a long time to explore the posterior distribution.

• Proposing large jumps has the potential to move further, but generally have smaller
acceptance probabilities.

• In order to balance the size of the proposed moves with the chance of accepting
them the proposal variance is often tuned to obtain a mean acceptance probability
of 20 − 40%.

• Automatic in Jags – ouf!

• The movement around the parameter space is often referred to as mixing.

18

Why is the proposal distribution so important?

• If only small moves can be proposed, the acceptance probability is high, but it will
take a long time to explore the posterior distribution.

• Proposing large jumps has the potential to move further, but generally have smaller
acceptance probabilities.

• In order to balance the size of the proposed moves with the chance of accepting
them the proposal variance is often tuned to obtain a mean acceptance probability
of 20 − 40%.

• Automatic in Jags – ouf!

• The movement around the parameter space is often referred to as mixing.

18

Good/Bad Traces

19

Autocorrelation functions

• Traceplots of for small and big moves provide (relatively) high correlations (known
as autocorrelations) between successive observations of the Markov chain.

• Strongly correlated observations require large sample sizes and therefore longer
simulations.

• Autocorrelation function (ACF) plots are a convenient way of displaying the
strength of autocorrelation in the given sample values.

• ACF plots provide the autocorrelation between successively sampled values
separated by k iterations, referred to as lag, (i.e. cor(θt , θt+k)) for increasing values
of k.

20

Autocorrelation functions

• Traceplots of for small and big moves provide (relatively) high correlations (known
as autocorrelations) between successive observations of the Markov chain.

• Strongly correlated observations require large sample sizes and therefore longer
simulations.

• Autocorrelation function (ACF) plots are a convenient way of displaying the
strength of autocorrelation in the given sample values.

• ACF plots provide the autocorrelation between successively sampled values
separated by k iterations, referred to as lag, (i.e. cor(θt , θt+k)) for increasing values
of k.

20

Autocorrelation functions

• Traceplots of for small and big moves provide (relatively) high correlations (known
as autocorrelations) between successive observations of the Markov chain.

• Strongly correlated observations require large sample sizes and therefore longer
simulations.

• Autocorrelation function (ACF) plots are a convenient way of displaying the
strength of autocorrelation in the given sample values.

• ACF plots provide the autocorrelation between successively sampled values
separated by k iterations, referred to as lag, (i.e. cor(θt , θt+k)) for increasing values
of k.

20

Autocorrelation functions

• Traceplots of for small and big moves provide (relatively) high correlations (known
as autocorrelations) between successive observations of the Markov chain.

• Strongly correlated observations require large sample sizes and therefore longer
simulations.

• Autocorrelation function (ACF) plots are a convenient way of displaying the
strength of autocorrelation in the given sample values.

• ACF plots provide the autocorrelation between successively sampled values
separated by k iterations, referred to as lag, (i.e. cor(θt , θt+k)) for increasing values
of k.

20

ACFs

21

Traceplots for the storks

traceplot(storks,mfrow = c(1, 2), varname = c('b.rain','b.temp'), ask = FALSE)
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

b.rain

iteration

b.
ra

in

1000 3000 5000 7000 9000
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

b.temp

iteration

b.
te

m
p

1000 3000 5000 7000 9000

22

Autocorrelation for the storks

autocorr.plot(as.mcmc(storks),ask = FALSE)

0 5 10 15 20 25 30

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

a

0 5 10 15 20 25 30

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

b.rain

0 5 10 15 20 25 30

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

b.temp

0 5 10 15 20 25 30

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

deviance

0 5 10 15 20 25 30

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

a

0 5 10 15 20 25 30

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

b.rain

0 5 10 15 20 25 30

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

b.temp

0 5 10 15 20 25 30

−
1.

0
0.

0
0.

5
1.

0

Lag

A
ut

oc
or

re
la

tio
n

deviance

23

How do good chains behave?

• Converge to same target distribution: We need to think of the time required for
convergence (realisations of the Markov chain have to be discarded before this is
achieved).

• Once there, explore efficiently: The post-convergence sample size required for
suitable numerical summaries.

24

How do good chains behave?

• Converge to same target distribution: We need to think of the time required for
convergence (realisations of the Markov chain have to be discarded before this is
achieved).

• Once there, explore efficiently: The post-convergence sample size required for
suitable numerical summaries.

24

Convergence assessment

• Here, we are looking to determine how long it takes for the Markov chain to
converge to the stationary distribution.

• In practice, we must discard observations from the start of the chain and just use
observations from the chain once it has converged.

• The initial observations that we discard are referred to as the burn-in.

• The simplest method to determine the length of the burn-in period is to look at
trace plots.

25

Convergence assessment

• Here, we are looking to determine how long it takes for the Markov chain to
converge to the stationary distribution.

• In practice, we must discard observations from the start of the chain and just use
observations from the chain once it has converged.

• The initial observations that we discard are referred to as the burn-in.

• The simplest method to determine the length of the burn-in period is to look at
trace plots.

25

Convergence assessment

• Here, we are looking to determine how long it takes for the Markov chain to
converge to the stationary distribution.

• In practice, we must discard observations from the start of the chain and just use
observations from the chain once it has converged.

• The initial observations that we discard are referred to as the burn-in.

• The simplest method to determine the length of the burn-in period is to look at
trace plots.

25

Convergence assessment

• Here, we are looking to determine how long it takes for the Markov chain to
converge to the stationary distribution.

• In practice, we must discard observations from the start of the chain and just use
observations from the chain once it has converged.

• The initial observations that we discard are referred to as the burn-in.

• The simplest method to determine the length of the burn-in period is to look at
trace plots.

25

Burn-in (if simulations cheap, be conservative)

26

Effective sample size n.eff

• How long of a chain is needed to produce stable estimates ?

• Most MCMC chains are strongly autocorrelated.

• Successive steps are near each other, and are not independent.

• The effective sample size (n.eff) measures chain length while taking into account
the autocorrelation of the chain.

• n.eff is less than the number of MCMC iterations.
• Check the n.eff of every parameter of interest.
• Check the n.eff of any interesting parameter combinations.

• We need n.eff ≥ 100 independent steps.

27

Effective sample size n.eff

• How long of a chain is needed to produce stable estimates ?

• Most MCMC chains are strongly autocorrelated.

• Successive steps are near each other, and are not independent.

• The effective sample size (n.eff) measures chain length while taking into account
the autocorrelation of the chain.

• n.eff is less than the number of MCMC iterations.
• Check the n.eff of every parameter of interest.
• Check the n.eff of any interesting parameter combinations.

• We need n.eff ≥ 100 independent steps.

27

Effective sample size n.eff

• How long of a chain is needed to produce stable estimates ?

• Most MCMC chains are strongly autocorrelated.

• Successive steps are near each other, and are not independent.

• The effective sample size (n.eff) measures chain length while taking into account
the autocorrelation of the chain.

• n.eff is less than the number of MCMC iterations.
• Check the n.eff of every parameter of interest.
• Check the n.eff of any interesting parameter combinations.

• We need n.eff ≥ 100 independent steps.

27

Effective sample size n.eff

• How long of a chain is needed to produce stable estimates ?

• Most MCMC chains are strongly autocorrelated.

• Successive steps are near each other, and are not independent.

• The effective sample size (n.eff) measures chain length while taking into account
the autocorrelation of the chain.

• n.eff is less than the number of MCMC iterations.
• Check the n.eff of every parameter of interest.
• Check the n.eff of any interesting parameter combinations.

• We need n.eff ≥ 100 independent steps.

27

Effective sample size n.eff

• How long of a chain is needed to produce stable estimates ?

• Most MCMC chains are strongly autocorrelated.

• Successive steps are near each other, and are not independent.

• The effective sample size (n.eff) measures chain length while taking into account
the autocorrelation of the chain.

• n.eff is less than the number of MCMC iterations.
• Check the n.eff of every parameter of interest.
• Check the n.eff of any interesting parameter combinations.

• We need n.eff ≥ 100 independent steps.

27

Potential scale reduction factor

• Gelman-Rubin statistic R̂

• Measures the ratio of the total variability combining multiple chains (between-chain
plus within-chain) to the within-chain variability. Asks the question is there a chain
effect? Very much alike the F test in an ANOVA.

• Values near 1 indicates likely convergence, a value of ≤ 1.1 is considered acceptable.

• Necessary condition, not sufficient; In other words, these diagnostics cannot tell you
that you have converged for sure, only that you have not.

28

Potential scale reduction factor

• Gelman-Rubin statistic R̂

• Measures the ratio of the total variability combining multiple chains (between-chain
plus within-chain) to the within-chain variability. Asks the question is there a chain
effect? Very much alike the F test in an ANOVA.

• Values near 1 indicates likely convergence, a value of ≤ 1.1 is considered acceptable.

• Necessary condition, not sufficient; In other words, these diagnostics cannot tell you
that you have converged for sure, only that you have not.

28

Potential scale reduction factor

• Gelman-Rubin statistic R̂

• Measures the ratio of the total variability combining multiple chains (between-chain
plus within-chain) to the within-chain variability. Asks the question is there a chain
effect? Very much alike the F test in an ANOVA.

• Values near 1 indicates likely convergence, a value of ≤ 1.1 is considered acceptable.

• Necessary condition, not sufficient; In other words, these diagnostics cannot tell you
that you have converged for sure, only that you have not.

28

Potential scale reduction factor

• Gelman-Rubin statistic R̂

• Measures the ratio of the total variability combining multiple chains (between-chain
plus within-chain) to the within-chain variability. Asks the question is there a chain
effect? Very much alike the F test in an ANOVA.

• Values near 1 indicates likely convergence, a value of ≤ 1.1 is considered acceptable.

• Necessary condition, not sufficient; In other words, these diagnostics cannot tell you
that you have converged for sure, only that you have not.

28

n.eff and R̂ for the storks

storks
#> Inference for Bugs model at "code/logistic.txt", fit using jags,
#> 2 chains, each with 20000 iterations (first 10000 discarded)
#> n.sims = 20000 iterations saved. Running time = 0.397 secs
#> mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
#> a 1.556 0.056 1.444 1.517 1.555 1.594 1.666 1.001 4800
#> b.rain -0.159 0.062 -0.280 -0.201 -0.158 -0.116 -0.039 1.003 880
#> b.temp 0.030 0.059 -0.084 -0.011 0.031 0.071 0.145 1.004 470
#> deviance 204.620 2.445 201.797 202.829 203.996 205.758 210.989 1.001 6400
#>
#> For each parameter, n.eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
#>
#> DIC info (using the rule: pV = var(deviance)/2)
#> pV = 3.0 and DIC = 207.6
#> DIC is an estimate of expected predictive error (lower deviance is better).

29

To sum up

• Run multiple chains from arbitrary starting places (initial values).

• Assume convergence when all chains reach same regime.

• Discard initial burn-in phase.

• Check autocorrelation, effective sample size and R̂.

30

To sum up

• Run multiple chains from arbitrary starting places (initial values).

• Assume convergence when all chains reach same regime.

• Discard initial burn-in phase.

• Check autocorrelation, effective sample size and R̂.

30

To sum up

• Run multiple chains from arbitrary starting places (initial values).

• Assume convergence when all chains reach same regime.

• Discard initial burn-in phase.

• Check autocorrelation, effective sample size and R̂.

30

To sum up

• Run multiple chains from arbitrary starting places (initial values).

• Assume convergence when all chains reach same regime.

• Discard initial burn-in phase.

• Check autocorrelation, effective sample size and R̂.

30

What if you have issues of convergence?

• Increase burn-in, sample more.

• Use more informative priors.
• Pick better initial values (good guess).

• Reparameterize:
• Standardize covariates.
• Non-centering: α ∼ N(0, σ) becomes α = zσ with z ∼ N(0, 1).

• Something wrong with your model?
• Start with a simpler model (remove complexities).
• Use simulations.

• Change your sampler. Upgrade to Nimble or Stan.

31

What if you have issues of convergence?

• Increase burn-in, sample more.

• Use more informative priors.
• Pick better initial values (good guess).

• Reparameterize:
• Standardize covariates.
• Non-centering: α ∼ N(0, σ) becomes α = zσ with z ∼ N(0, 1).

• Something wrong with your model?
• Start with a simpler model (remove complexities).
• Use simulations.

• Change your sampler. Upgrade to Nimble or Stan.

31

What if you have issues of convergence?

• Increase burn-in, sample more.

• Use more informative priors.
• Pick better initial values (good guess).

• Reparameterize:
• Standardize covariates.
• Non-centering: α ∼ N(0, σ) becomes α = zσ with z ∼ N(0, 1).

• Something wrong with your model?
• Start with a simpler model (remove complexities).
• Use simulations.

• Change your sampler. Upgrade to Nimble or Stan.

31

What if you have issues of convergence?

• Increase burn-in, sample more.

• Use more informative priors.
• Pick better initial values (good guess).

• Reparameterize:
• Standardize covariates.
• Non-centering: α ∼ N(0, σ) becomes α = zσ with z ∼ N(0, 1).

• Something wrong with your model?
• Start with a simpler model (remove complexities).
• Use simulations.

• Change your sampler. Upgrade to Nimble or Stan.

31

What if you have issues of convergence?

• Increase burn-in, sample more.

• Use more informative priors.
• Pick better initial values (good guess).

• Reparameterize:
• Standardize covariates.
• Non-centering: α ∼ N(0, σ) becomes α = zσ with z ∼ N(0, 1).

• Something wrong with your model?
• Start with a simpler model (remove complexities).
• Use simulations.

• Change your sampler. Upgrade to Nimble or Stan.

31

MCMC makes you queens and kings
of the stats world

Get all values sampled from posteriors

res <- as.mcmc(storks) # convert outputs in a list
res <- rbind(res[[1]],res[[2]]) # put two MCMC lists on top of each other
head(res)
#> a b.rain b.temp deviance
#> [1,] 1.592695 -0.1536290 -0.08196748 205.7059
#> [2,] 1.565114 -0.1430165 -0.07531474 204.8535
#> [3,] 1.562266 -0.1507711 -0.04574838 203.3078
#> [4,] 1.568856 -0.1717589 -0.01386842 202.4108
#> [5,] 1.579275 -0.1555799 0.04397199 201.8867
#> [6,] 1.619766 -0.1632612 0.02921485 203.0722

32

tail(res)
#> a b.rain b.temp deviance
#> [19995,] 1.537181 -0.2060164 0.14337311 205.4198
#> [19996,] 1.531171 -0.2032037 0.13371735 204.8634
#> [19997,] 1.516007 -0.2136806 0.12462898 204.7411
#> [19998,] 1.555380 -0.1974718 0.10503041 203.3408
#> [19999,] 1.549064 -0.1977094 0.10357682 203.2665
#> [20000,] 1.520648 -0.2096805 0.07060464 202.7861

33

Compute a posteriori Pr(rain < 0)

probability that the effect of rainfall is negative
mean(res[,'b.rain'] < 0)
#> [1] 0.9963

34

Compute a posteriori Pr(temp < 0)

probability that the effect of temperature is negative
mean(res[,'b.temp'] < 0)
#> [1] 0.3109

35

Get credible interval for the rain effect

quantile(res[,'b.rain'],c(0.025,0.975))
#> 2.5% 97.5%
#> -0.28026967 -0.03873445

36

Get credible interval for the temperature effect

quantile(res[,'b.temp'],c(0.025,0.975))
#> 2.5% 97.5%
#> -0.08415379 0.14466530

37

Graphical summaries

−0.4 −0.3 −0.2 −0.1 0.0 0.1

0
1

2
3

4
5

6
Rainfall

−0.2 −0.1 0.0 0.1 0.2 0.3

0
1

2
3

4
5

6

Temperature

38

Your turn: Practical 6

	Bayes in practice
	Your turn: Practical 5
	Assess convergence
	MCMC makes you queens and kings of the stats world
	Your turn: Practical 6

