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Bayes in practice



Software implementation (R friendly)

Oldies but goodies:

= WinBUGS, OpenBUGS: Where it all began.
= Jags: What we will use in this course.


https://r-nimble.org/
https://mc-stan.org/
https://greta-stats.org/
https://paul-buerkner.github.io/brms/
https://cran.r-project.org/web/packages/MCMCglmm/index.html
https://cran.r-project.org/web/views/Bayesian.html

Software implementation (R friendly)

Oldies but goodies:
= WinBUGS, OpenBUGS: Where it all began.
= Jags: What we will use in this course.

The new kids on the block:
= Nimble: What I'm going for these days.

= Stan: Entirely different algorithmic approach.
= Greta: Dunno anything about it.


https://r-nimble.org/
https://mc-stan.org/
https://greta-stats.org/
https://paul-buerkner.github.io/brms/
https://cran.r-project.org/web/packages/MCMCglmm/index.html
https://cran.r-project.org/web/views/Bayesian.html

Software implementation (R friendly)

Oldies but goodies:

= WinBUGS, OpenBUGS: Where it all began.
= Jags: What we will use in this course.

The new kids on the block:

= Nimble: What I'm going for these days.
= Stan: Entirely different algorithmic approach.
= Greta: Dunno anything about it.
If you're not into coding:
= brms: Bayesian regression models with Stan.

= MCMCglmm: Generalised Linear Mixed Models.
= Check out the CRAN Task View: Bayesian Inference for more.


https://r-nimble.org/
https://mc-stan.org/
https://greta-stats.org/
https://paul-buerkner.github.io/brms/
https://cran.r-project.org/web/packages/MCMCglmm/index.html
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Introduction to JAGS (Just Another Gibbs Sampler)

Martyn Plummer




Real example

Impact of climatic conditions on white stork breeding success
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Let’s do a logistic regression on some White stork data

= Assess effects of temperature and rainfall on productivity.
= \We have collected data.
= \We need to build a model - write down the likelihood.

= We need to specify priors for parameters.



Read in the data

nbchicks <- ¢(151,105,73,107,113,87,77,108,118,122,112,120,122,89,69,71,
53,41,53,31,35,14,18)

nbpairs <- c(173,164,103,113,122,112,98,121,132,136,133,137,145,117,
90,80,67,54,58,39,42,23,23)

temp <- ¢(15.1,13.3,15.3,13.3,14.6,15.6,13.1,13.1,15.0,11.7,15.3,14.4,
14.4,12.7,11.7,11.9,15.9,13.4,14.0,13.9,12.9,15.1,13.0)

rain <- c¢(67,52,88,61,32,36,72,43,92,32,86,28,57,55,66,26,28,96,48,90,86,
78,87)



datax <- list(N = 23,
nbchicks = nbchicks,
nbpairs = nbpairs,
temp = (temp - mean(temp))/sd(temp),

rain = (rain - mean(rain))/sd(rain))



Write down the model

nbchicks; ~ Binomial(nbpairs;, p;) [likelihood]
logit(pi) = @ + btemp temp; + brajn rain; [linear model]
a ~ Normal(0, 1000) [prior for a]

btemp ~ Normal(0, 1000) [prior for btemp)
brain ~ Normal(0, 1000) [prior for byain]



Build the model

{
# Likelihood
for( i in 1 : N){
nbchicks[i] ~ dbin(p[i],nbpairs[il)
logit(p[i]) <- a + b.temp * temp[i] + b.rain * rain[i]
}



Specify priors

# Priors

a ~ dnorm(0,0.001)
b.temp ~ dnorm(0,0.001)
b.rain ~ dnorm(0,0.001)

}

Warning: Jags uses precision for Normal distributions (1 / variance)
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You need to write everything in a file

model <-
paste("
model
{
for( i in 1 : N)
{
nbchicks[i] ~ dbin(p[i],nbpairs[i])
logit(p[i]) <- a + b.temp * temp[i] + b.rain * rain[i]
}
a ~ dnorm(0,0.001)
b.temp ~ dnorm(0,0.001)
b.rain ~ dnorm(0,0.001)
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Alternatively, you may write a R function

logistic <- function() {
for( i in 1 : N)
{
nbchicks[i] ~ dbin(p[i],nbpairs[i])
logit(p[i]) <- a + b.temp * temp[i] + b.rain * rain[i]

b

# priors for regression parameters
a ~ dnorm(0,0.001)

b.temp ~ dnorm(0,0.001)

b.rain ~ dnorm(0,0.001)

}
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Let us specify a few additional things

# list of lists of inttial wvalues (one for each MCMC chain)
-0.5, b.temp = -0.5, b.rain = -0.5)
0.5, b.temp = 0.5, b.rain = 0.5)

initl <- list(a
init2 <- list(a
inits <- list(init1,init2)

# spectify parameters that need to be estimated

parameters <- c("a","b.temp","b.rain")

# specify nb iterations for burn-in and final inference

nb.burnin <- 10000
nb.iterations <- 20000 # beware: nb.iterations includes nb.bdburnin!
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# load RZ2jags
library(R2jags)

# run Jags

storks <- jags(data

storks

datax,

inits = inits,

parameters.to.save = parameters,

#model. file = "code/logistic.tzt”,

model.file = logistic, # <f a function was written
n.chains = 2,

n.iter = nb.iterations,

n.burnin = nb.burnin)
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Inspect parameter estimates

#>
#>
#>
#>
#>
#>
#>
#>

#>
#>
#>
#>
#>
#>
#>
#>

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph information:

Observed stochastic nodes: 23

Unobserved stochastic nodes:

Total graph size

Initializing model

: 181

3

Inference for Bugs model at "code/logistic.txt", fit using jags,
2 chains, each with 20000 iterations (first 10000 discarded)
n.sims = 20000 iterations saved.

mu.vect sd
a 1.556
b.rain -0.159
b.temp 0.030
deviance 204.620

.vect
0.056
0.062
0.059
2.445

2.5Y%
1.444
-0.280
-0.084
201.797

Running time = 0.397 secs
25, 50% 75%  97.5%
1.517 1.555 1.594 1.666
-0.201 -0.158 -0.116 -0.039
-0.011 0.031 0.071 0.145
202.829 203.996 205.758 210.989

Rhat n.eff

1.001
1.003
1.004
1.001

4800
880
470

6400
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Your turn: Practical 5




Assess conve rgence




Reminder — MCMC Algorithm

= MCMC algorithms can be used to construct a Markov chain with a given stationary
distribution (set to be the posterior distribution).
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Reminder — MCMC Algorithm

= MCMC algorithms can be used to construct a Markov chain with a given stationary
distribution (set to be the posterior distribution).

= For the MCMC algorithm, the posterior distribution is only needed to be known up
to proportionality.

= Once the stationary distribution is reached we can regard the realisations of the
chain as a (dependent) sample from the posterior distribution (and obtain Monte
Carlo estimates).

= We consider some important implementation issues.
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MCMC - Proposal Distribution

= To implement a MCMC algorithm, we often need to specify a proposal distribution
from which we generate candidate value then accept/reject.
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MCMC - Proposal Distribution

= To implement a MCMC algorithm, we often need to specify a proposal distribution
from which we generate candidate value then accept/reject.

= This typically involves

= specifying a given distribution family (e.g. normal, uniform), and then,
= setting the parameters of the given distribution.

= Although the exact distribution specified is essentially arbitrary — it will have a
significant effect on the performance of the MCMC algorithm.

17



Why is the proposal distribution so important?

= If only small moves can be proposed, the acceptance probability is high, but it will
take a long time to explore the posterior distribution.
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Why is the proposal distribution so important?

If only small moves can be proposed, the acceptance probability is high, but it will
take a long time to explore the posterior distribution.

Proposing large jumps has the potential to move further, but generally have smaller

acceptance probabilities.

In order to balance the size of the proposed moves with the chance of accepting
them the proposal variance is often tuned to obtain a mean acceptance probability
of 20 — 40%.

Automatic in Jags — ouf!
The movement around the parameter space is often referred to as mixing.

18



—

Large 1 j
moves - i
bad

LI
IR Y A

D




Autocorrelation functions

= Traceplots of for small and big moves provide (relatively) high correlations (known
as autocorrelations) between successive observations of the Markov chain.
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Autocorrelation functions

= Traceplots of for small and big moves provide (relatively) high correlations (known
as autocorrelations) between successive observations of the Markov chain.

= Strongly correlated observations require large sample sizes and therefore longer

simulations.

= Autocorrelation function (ACF) plots are a convenient way of displaying the
strength of autocorrelation in the given sample values.

= ACF plots provide the autocorrelation between successively sampled values
separated by k iterations, referred to as lag, (i.e. cor(6¢,0¢1«)) for increasing values
of k.
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Small moves OK Big moves
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Autocorrelation for the storks

autocorr.plot(as.mcmc(storks) ,ask = FALSE)
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How do good chains behave?

= Converge to same target distribution: We need to think of the time required for
convergence (realisations of the Markov chain have to be discarded before this is
achieved).
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How do good chains behave?

= Converge to same target distribution: We need to think of the time required for
convergence (realisations of the Markov chain have to be discarded before this is

achieved).

= Once there, explore efficiently: The post-convergence sample size required for

suitable numerical summaries.
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Convergence assessment

= Here, we are looking to determine how long it takes for the Markov chain to
converge to the stationary distribution.
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Convergence assessment

= Here, we are looking to determine how long it takes for the Markov chain to

converge to the stationary distribution.

= In practice, we must discard observations from the start of the chain and just use
observations from the chain once it has converged.

= The initial observations that we discard are referred to as the burn-in.

= The simplest method to determine the length of the burn-in period is to look at

trace plots.
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Burn-in (if simulations cheap, be conservative)

Discard initial guesses that are
still far from optimum: the

BURN-IN ——

Accepted values

These numbers should be a good
sample of the Posterior P($ | data)

10
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S 1 : , :
0 2000 4000 6000 BODO 10000

Iteration
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Effective sample size n.eff

= How long of a chain is needed to produce stable estimates ?
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Effective sample size n.eff

= How long of a chain is needed to produce stable estimates ?
= Most MCMC chains are strongly autocorrelated.
= Successive steps are near each other, and are not independent.

= The effective sample size (n.eff) measures chain length while taking into account
the autocorrelation of the chain.

= n.eff is less than the number of MCMC iterations.
= Check the n.eff of every parameter of interest.
= Check the n.eff of any interesting parameter combinations.
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Effective sample size n.eff

= How long of a chain is needed to produce stable estimates ?
= Most MCMC chains are strongly autocorrelated.
= Successive steps are near each other, and are not independent.

= The effective sample size (n.eff) measures chain length while taking into account
the autocorrelation of the chain.

= n.eff is less than the number of MCMC iterations.
= Check the n.eff of every parameter of interest.
= Check the n.eff of any interesting parameter combinations.

= We need n.eff > 100 independent steps.
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Potential scale reduction factor

= Gelman-Rubin statistic R
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= Gelman-Rubin statistic R

= Measures the ratio of the total variability combining multiple chains (between-chain
plus within-chain) to the within-chain variability. Asks the question is there a chain
effect? Very much alike the F test in an ANOVA.
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Potential scale reduction factor

= Gelman-Rubin statistic R

= Measures the ratio of the total variability combining multiple chains (between-chain
plus within-chain) to the within-chain variability. Asks the question is there a chain
effect? Very much alike the F test in an ANOVA.

= Values near 1 indicates likely convergence, a value of < 1.1 is considered acceptable.

= Necessary condition, not sufficient; In other words, these diagnostics cannot tell you
that you have converged for sure, only that you have not.
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n.eff and R for the storks

storks
#> Inference for Bugs model at "code/logistic.tzt”, fit using jags,
#> 2 chains, each with 20000 iterations (first 10000 discarded)

#> mn.sims = 20000 iterations saved. Running time = 0.397 secs

#> mu.vect sd.vect 2.57 257 507 75%  97.57% Rhat n.eff
#> a 1.556 0.056 1.444 1.517 1.555 1.594 1.666 1.001 4800
#> b.rain -0.159 0.062 -0.280 -0.201 -0.158 -0.116 -0.039 1.003 880
#> b.temp 0.030 0.059 -0.084 -0.011 0.031 0.071 0.145 1.004 470
#> deviance 204.620  2.445 201.797 202.829 203.996 205.758 210.989 1.001 6400
#>

#> For each parameter, n.eff is a crude measure of effective sample size,

#> and Rhat %s the potential scale reduction factor (at convergence, Rhat=1).
#>

#> DIC info (using the rule: pV = wvar(deviance)/2)

#> pV = 3.0 and DIC = 207.6

#> DIC is an estimate of expected predictive error (lower deviance is better). o



= Run multiple chains from arbitrary starting places (initial values).
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= Run multiple chains from arbitrary starting places (initial values).
= Assume convergence when all chains reach same regime.
= Discard initial burn-in phase.

= Check autocorrelation, effective sample size and R.
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What if you have issues of convergence?

= |ncrease burn-in, sample more.
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What if you have issues of convergence?

= |ncrease burn-in, sample more.

= Use more informative priors.

= Pick better initial values (good guess).

= Reparameterize:

= Standardize covariates.
= Non-centering: o ~ N(0, o) becomes o = zo with z ~ N(0, 1).

= Something wrong with your model?

= Start with a simpler model (remove complexities).
= Use simulations.

= Change your sampler. Upgrade to Nimble or Stan.
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MCMC makes you queens and kings
of the stats world




Get all values sampled from posteriors

res <- as.mcmc(storks) # convert outputs in a list
res <- rbind(res[[1]],res[[2]]) # put two MCMC lists on top of each other

head(res)

#> a b.rain b.temp deviance
#> [1,] 1.592695 -0.1536290 -0.08196748 205. 7059
#> [2,] 1.565114 -0.1430165 -0.07531474 204.8535
#> [3,] 1.562266 -0.1507711 -0.04574838 203.3078
#> [4,] 1.568856 -0.1717589 -0.01386842 202.4108
#> [5,] 1.579275 -0.1555799 0.04397199 201.8867
#> [6,] 1.619766 -0.1632612 0.02921485 203.0722
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tail(res)

#>
#>
#>
#>
#>
#>
#>

[19995, ]
[1999%6, ]
[19997,]
[19998, ]
[19999, ]
[20000, ]

N N N RN RN

a

.537181
.531171
. 516007
. 555380
. 549064
. 520648

b.rain
-0.2060164 0.
-0.2032037 0.
-0.2136806 0.
-0.1974718 0.
-0.1977094 0.
-0.2096805 0.

b.temp deviance
14337311 205.4198
13371735 204.8634
12462898 204 .7411
10503041 203.3408
10357682 203.2665
07060464 202.7861

33



Compute a posteriori Pr(rain < 0)

# probability that the effect of rainfall ts negative
mean(res[, 'b.rain'] < 0)
#> [1] 0.9963
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Compute a posteriori Pr(temp < 0)

# probability that the effect of temperature is negative
mean(res[,'b.temp'] < 0)
#> [1] 0.3109
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Get credible interval for the rain effect

quantile(res[,'b.rain'],c(0.025,0.975))
#> 2.5/ 97.5)
#> -0.28026967 -0.03873445
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Get credible interval for the temperature effect

quantile(res[,'b.temp'],c(0.025,0.975))
#> 2.5/ 97.5)
#> -0.08415379 0.14466530
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Graphical summaries

Rainfall Temperature
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Your turn: Practical 6
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